An accessible introduction to advanced quantum theory, this graduate-level textbook focuses on its practical applications rather than mathematical technicalities. It treats real-life examples, from topics ranging from quantum transport to nanotechnology, to equip students with a toolbox of theoretical techniques. Beginning with second quantization, the authors illustrate its use with different condensed matter physics examples. They then explain how to quantize classical fields, with a focus on the electromagnetic field, taking students from Maxwell's equations to photons, coherent states and absorption and emission of photons. Following this is a unique master-level presentation on dissipative quantum mechanics, before the textbook concludes with a short introduction to relativistic quantum mechanics, covering the Dirac equation and a relativistic second quantization formalism. The textbook includes 70 end-of-chapter problems. Solutions to some problems are given at the end of the chapter and full solutions to all problems are available for instructors at www.cambridge.org/9780521761505.
'This is a clear and concise graduate-level textbook with an emphasis on applications. It is ideal for readers wishing to apply quantum mechanics to construct quantum dots, qubits and nanodevices. The authors use a fresh approach to discuss the quantization of fields, the interaction of radiation and matter and coherent states, which I found to be very helpful. This unique presentation ends with a brief introduction to relativistic quantum mechanics.'
Barry R. Masters Source: Optics and Photonics News
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.