Skip to main content Accesibility Help
×
×
Home
Algorithmic Aspects of Machine Learning
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Algorithmic Aspects of Machine Learning
    • Online ISBN: 9781316882177
    • Book DOI: https://doi.org/10.1017/9781316882177
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems.

Reviews

'The unreasonable effectiveness of modern machine learning has thrown the gauntlet down to theoretical computer science. Why do heuristic algorithms so often solve problems that are intractable in the worst case? Is there predictable structure in the problem instances that arise in practice? Can we design novel algorithms that exploit such structure? This book is an introduction to the state-of-the-art at the interface of machine learning and theoretical computer science, lucidly written by a leading expert in the area.'

Tim Roughgarden - Stanford University, California

'This book is a gem. It is a series of well-chosen and organized chapters, each centered on one algorithmic problem arising in machine learning applications. In each, the reader is lead through different ways of thinking about these problems, modeling them, and applying different algorithmic techniques to solving them. In this process, the reader learns new mathematical techniques from algebra, probability, geometry and analysis that underlie the algorithms and their complexity. All this material is delivered in a clear and intuitive fashion.'

Avi Wigderson - Institute for Advanced Study, New Jersey

'A very readable introduction to a well-curated set of topics and algorithms. It will be an excellent resource for students and researchers interested in theoretical machine learning and applied mathematics.'

Sanjeev Arora - Princeton University, New Jersey

'This text gives a clear exposition of important algorithmic problems in unsupervised machine learning including nonnegative matrix factorization, topic modeling, tensor decomposition, matrix completion, compressed sensing, and mixture model learning. It describes the challenges that these problems present, gives provable guarantees known for solving them, and explains important algorithmic techniques used. This is an invaluable resource for instructors and students, as well as all those interested in understanding and advancing research in this area.'

Avrim Blum - Toyota Technical Institute at Chicago

'Moitra … has written a high-level, fast-paced book on connections between theoretical computer science and machine learning. … A main theme throughout the book is to go beyond worst-case analysis of algorithms. This is done in three ways: by probabilistic algorithms, by algorithms that are very efficient on simple inputs, and by notions of stability that emphasize instances of problems that have meaningful answers and thus are particularly important to solve. … Summing Up: Highly recommended.'

M. Bona Source: Choice

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed