Skip to main content Accessibility help
×
  • Cited by 306
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      March 2023
      March 2023
      ISBN:
      9781009166164
      9781009166171
      9781009166157
      Dimensions:
      (254 x 177 mm)
      Weight & Pages:
      0.89kg, 358 Pages
      Dimensions:
      (254 x 177 mm)
      Weight & Pages:
      0.67kg, 358 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.

    Reviews

    ‘With its inviting embedded-first progression and its many examples and exercises, this book constitutes an excellent companion to the literature on Riemannian optimization - from the early developments in the late 20th century to topics that have gained prominence since the 2008 book ‘Optimization Algorithms on Matrix Manifolds’, and related software, such as Manopt/Pymanopt/Manopt.jl.’

    P.-A. Absil - University of Louvain

    ‘This new book by Nicolas Boumal focuses on optimization on manifolds, which appears naturally in many areas of data science. It successfully covers all important and required concepts in differential geometry with an intuitive and pedagogical approach which is adapted to readers with no prior exposure. Algorithms and analysis are then presented with the perfect mix of significance and mathematical depth. This is a must-read for all graduate students and researchers in data science.’

    Francis Bach - INRIA

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.