Skip to main content Accessibility help
×
    • You have access
    • Open access
Publisher:
Cambridge University Press
Online publication date:
May 2025
Print publication year:
2025
Online ISBN:
9781009625715
Creative Commons:
Creative Common License - CC Creative Common License - BY Creative Common License - NC Creative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/creativelicenses

Book description

String diagrams are a powerful graphical language used to represent computational phenomena across diverse scientific fields, including computer science, physics, linguistics, amongst others. The appeal of string diagrams lies in their multi-faceted nature: they offer a simple, visual representation of complex scientific ideas, while also allowing rigorous mathematical treatment. Originating in category theory, string diagrams have since evolved into a versatile formalism, extending well beyond their abstract algebraic roots, and offering alternative entry points to their study. This text provides an accessible introduction to string diagrams from the perspective of computer science. Rather than starting from categorical concepts, the authors draw on intuitions from formal language theory, treating string diagrams as a syntax with its own semantics. They survey the basic theory, outline fundamental principles, and highlight modern applications of string diagrams in different fields. This title is also available as open access on Cambridge Core.

References

[01]Abramsky, Samson. Retracing some paths in process algebra. In Montanari, Ugo and Sassone, Vladimiro (eds.), CONCUR’96 Proceedings, pages 117. Springer, 2005.
[02]Alvarez-Picallo, Mario, Ghica, Dan R., Sprunger, David, and Zanasi, Fabio. Rewriting for monoidal closed categories. In Amy, P. Felty (ed.), FSCD’22 Proceedings, volume 228 of LIPIcs, pages 29:1–29:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
[03]Alvarez-Picallo, Mario, Ghica, Dan R., Sprunger, David, and Zanasi, Fabio. Functorial string diagrams for reverse-mode automatic differentiation. In Klin, Bartek and Pimentel, Elaine (eds.), CSL’23 Proceedings, volume 252 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
[04]Baez, John C., Brandon Coya, and Franciscus Rebro. Props in network theory. Theory and Applications of Categories, 33(25):727783, 2018.
[05]Baez, John C. and Dolan, James. Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics, 36(11):60736105, 1995.
[06]Baez, John C. and Erbele, Jason. Categories in control. Theory and Applications of Categories, 30:836881, 2015.
[07]Baez, John C. and Master, Jade. Open petri nets. Mathematical Structures in Computer Science, 30(3):314341, 2020.
[08]Barendregt, Hendrik Pieter (ed.). The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics. North-Holland, 1985.
[09]Barr, Michael. *-Autonomous Categories, volume 752, Springer Lecture Notes in Mathematics. Springer, 2006.
[10]Boisseau, Guillaume and Piedeleu, Robin. Graphical piecewise-linear algebra. In Bouyer, Patricia and Schröder, Lutz (eds.), FOSSACS’22 (ETAPS) Proceedings, pages 101119. Springer International Publishing, 2022.
[11]Boisseau, Guillaume and Sobociński, Paweł. String diagrammatic electrical circuit theory. In Kishida, K. (Ed.), Fourth International Conference on Applied Category Theory (ACT 2021). EPTCS 372, pp. 178191. DOI: https://doi.org/10.4204/EPTCS.372.13, 2022.
[12]Bolt, Joe, Hedges, Jules, and Zahn, Philipp. Bayesian open games. Compositionality, October 4, Volume 5. DOI: https://doi.org/10.32408/compositionality-5-9, 2023.
[13]Bonchi, Filippo, Gadducci, Fabio, Kissinger, Aleks, Sobociński, Paweł, and Zanasi, Fabio. Rewriting modulo symmetric monoidal structure. In LICS’16 Proceedings, https://dl.acm.org/doi/proceedings/10.1145/2933575, pages 710719. Institute of Electrical and Electronics Engineers, 2016.
[14]Bonchi, Filippo, Gadducci, Fabio, Kissinger, Aleks, Sobocinski, Pawel, and Zanasi, Fabio. String diagram rewrite theory I: Rewriting with Frobenius structure. Journal of the ACM, 69(2):14:1–14:58, 2022.
[15]Bonchi, Filippo, Holland, Joshua, Pavlovic, Dusko, and Sobociński, Paweł. Refinement for signal flow graphs. In Meyer, Roland and Nestmann, Uwe (eds.), CONCUR’17 Proceedings, pages 24: 124:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
[16]Bonchi, Filippo, Holland, Joshua, Piedeleu, Robin, Sobociński, Paweł, and Zanasi, Fabio. Diagrammatic algebra: From linear to concurrent systems. POPL’19 Proceedings, 3:128, Association for Computing Machinery, 2019.
[17]Bonchi, Filippo, Piedeleu, Robin, Sobociński, Paweł, and Zanasi, Fabio. Graphical affine algebra. In LICS’19 Proceedings, pages 112, 2019.
[18]Bonchi, Filippo, Seeber, Jens, and Sobociński, Paweł. Graphical conjunctive queries. In Dan, R. Ghica and Jung, Achim (eds.), CSL’18 Proceedings. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
[19]Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. Interacting bialgebras are Frobenius. In Muscholl, Anca (ed.), FOSSACS’14 Proceedings, volume 8412 of LNCS, pages 351365. Springer, 2014.
[20]Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. Full abstraction for signal flow graphs. ACM SIGPLAN Notices, 50(1):515526, 2015.
[21]Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. The calculus of signal flow diagrams I: Linear relations on streams. Information and Computation, 252:229, 2017.
[22]Bonchi, Filippo, Sobocinski, Pawel, and Zanasi, Fabio. Interacting Hopf algebras. Journal of Pure and Applied Algebra, 221(1):144184, 2017.
[23]Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. Deconstructing Lawvere with distributive laws. Journal of Logical and Algebraic Methods in Programming, 95:128146, 2018.
[24]Bruni, Roberto and Gadducci, Fabio. Some algebraic laws for spans (and their connections with multirelations). Electronic Notes in Theoretical Computer Science, 44(3): 175193, 2001.
[25]Bruni, Roberto, Melgratti, Hernán, and Connector algebras, Ugo Montanari., Petri nets, and BIP. In Clarke, Edmund, Virbitskaite, Irina, and Voronkov, Andrei (eds.), Perspectives of Systems Informatics. PSI 2011. Lecture Notes in Computer Science, vol. 7162, pages 1938. Springer, 2011.
[26]Bruni, Roberto, Hernán C. Melgratti, Ugo Montanari, and Sobociński, Paweł. Connector algebras for C/E and P/T nets’ interactions. Logical Methods in Computer Science, 9(16): n. pag., 2013.
[27]Aurelio, Carboni and Walters., R. F. C. Cartesian bicategories I. Journal of Pure and Applied Algebra, 49:1132, 1987.
[28]Carette, Titouan, De Visme, Marc, and Perdrix, Simon. Graphical language with delayed trace: Picturing quantum computing with finite memory. In LICS’21 Proceedings, pages 113. Institute of Electrical and Electronics Engineers, 2021.
[29]Cheng, Eugenia. Iterated distributive laws. Mathematical Proceedings of the Cambridge Philosophical Society, 150(3):459487, 2011.
[30]Clark, Stephen, Coecke, Bob, and Sadrzadeh, Mehrnoosh. A compositional distributional model of meaning. In Bruza, Peter D., Lawless, William F., Rijsbergen, Keith van, Donald, A. Sofge, and Coecke, Bob (eds.), Proceedings of the Second Quantum Interaction Symposium (QI-2008), pages 133140. College Publications, 2008.
[31]Clément, Alexandre, Heurtel, Nicolas, Mansfield, Shane, Perdrix, Simon, and Valiron, Benoît. LOv-calculus: A graphical language for linear optical quantum circuits. In Szeider, Stefan, Ganian, Robert, and Silva, Alexandra (eds.), MFCS’22 Proceedings, volume 241 of LIPIcs, pages 35:1–35:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
[32]Cockett, J. Robin B., Cruttwell, Geoff S. H., Gallagher, Jonathan, Pacaud Lemay, Jean-Simon, MacAdam, Benjamin, Plotkin, Gordon D., and Pronk, Dorette. Reverse derivative categories. In Fernández, Maribel and Muscholl, Anca (eds.), CSL’20 Proceedings, volume 152 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
[33]Robin, J. Cockett, B. and Robert, A. G. Seely. Weakly distributive categories. Journal of Pure and Applied Algebra, 114(2):133173, 1997.
[34]Coecke, Bob and Duncan, Ross. Interacting quantum observables. In Aceto, Luca, Damgärd, Ivan B., and Goldberg, Leslie A. (eds.), ICALP’08 Proceedings, Part II, pages 298310. Springer, 2008.
[35]Coecke, Bob and Kissinger, Aleks. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.
[36]Coecke, Bob, Pavlovic, Dusko, and Vicary, Jamie. A new description of orthogonal bases. Mathematical Structures in Computer Science, 23(3):557567, 2012.
[37]Coecke, Bob and Robert, W. Spekkens. Picturing classical and quantum Bayesian inference. Synthese, 186:651696, 2012.
[38]Coya, Brandon and Fong, Brendan. Corelations are the prop for extraspecial commutative Frobenius monoids. Theory and Applications of Categories, 32(11):380395, 2017.
[39]H. Cruttwell, Geoffrey S., Gavranović, Bruno, Ghani, Neil, Paul, W. Wilson, and Zanasi, Fabio. Categorical foundations of gradient-based learning. In Sergey, Ilya (ed.), ESOP’22, volume 13240 of LNCS, pages 128. Springer, 2022.
[40]Ştefănescu, Gheorghe. Network Algebra. Discrete Mathematics and Theoretical Computer Science. Springer, 2000.
[41]Danos, Vincent and Regnier, Laurent. The structure of multiplicatives. Archive for Mathematical Logic, 28(3):181203, 1989.
[42]De Felice, Giovanni and Coecke, Bob. Quantum linear optics via string diagrams. arXiv:2204.12985, 2022.
[43]de Felice, Giovanni, Toumi, Alexis, and Coecke, Bob. DisCoPy: Monoidal categories in Python. Electronic Proceedings in Theoretical Computer Science, 333:183197, 2021.
[44]Di Lavore, Elena, de Felice, Giovanni, and Román, Mario. Monoidal streams for dataflow programming. In Baier, Christel (ed.), LICS’22 Proceedings, pages 114, 2022.
[45]Di Lavore, Elena, Gianola, Alessandro, Román, Mario, Sabadini, Nicoletta, and Sobociński, Paweł. A canonical algebra of open transition systems. In Salaün, Gwen and Wijs, Anton (eds.), FACS’21 Proceedings 17, pages 6381. Springer, 2021.
[46]Dixon, Luca and Kissinger, Aleks. Open-graphs and monoidal theories. Mathematical Structures in Computer Science, 23(2):308359, 2013.
[47]Duncan, Ross and Dunne, Kevin. Interacting Frobenius algebras are Hopf. In LICS’16, pages 535544, Institute of Electrical and Electronics Engineers, 2016.
[48]Duncan, Ross, Kissinger, Aleks, Perdrix, Simon, and Van De Wetering, John. Graph-theoretic simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, 2020.
[49]Dunn, Lawrence and Vicary, Jamie. Coherence for Frobenius pseudomonoids and the geometry of linear proofs. Logical Methods in Computer Science, 15, 2019.
[50]Ehrig, Hartmut, Pfender, Michael, and Jürgen Schneider, Hans. Graph-grammars: An algebraic approach. In SWAT’73 Proceedings, pages 167180. Institute of Electrical and Electronics Engineers, 1973.
[51]Fong, Brendan. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis, University of Oxford, 2012. arXiv: 1301.6201.
[52]Fong, Brendan. Decorated cospans. Theory and Applications of Categories, 30(33):10961120, 2015.
[53]Fong, Brendan. The Algebra of Open and Interconnected Systems. PhD thesis, University of Oxford, 2016. arXiv:1609.05382.
[54]Fong, Brendan. Decorated corelations. Theory & Applications of Categories, 33, 2018.
[55]Fong, Brendan, Sobociński, Paweł, and Rapisarda, Paolo. A categorical approach to open and interconnected dynamical systems. In LICS’16 Proceedings, pages 495504, Association for Computing Machinery, 2016.
[56]Fong, Brendan, Spivak, David I., and Tuyéras, Rémy. Backprop as functor: A compositional perspective on supervised learning. In LICS’16 Proceedings, pages 113. IEEE, 2019.
[57]Fritz, Tobias. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Advances in Mathematics, 370:107239, 2020.
[58]Fritz, Tobias, Gonda, Tomáš, and Perrone, Paolo. De Finetti’s theorem in categorical probability. Journal of Stochastic Analysis, 2(4):6, 2021.
[59]Fritz, Tobias and Liang, Wendong. Free gs-monoidal categories and free Markov categories. Applied Categorical Structures, 31(2):21, 2023.
[60]Fritz, Tobias and Fjeldgren Rischel, Eigil. The zero-one laws of Kolmogorov and Hewitt–Savage in categorical probability. Compositionality, 2:3, 2020.
[61]Gadducci, Fabio and Heckel, Reiko. An inductive view of graph transformation. In Presicce, Francesco Parisi (ed.), WADT’97 Proceedings, pages 223237, Springer, 1997.
[62]Gavranović, Bruno. Category theory ∩ machine learning. https://github.com/bgavran/Category_Theory_Machine_Learning. Accessed: 9 June 2023.
[63]Gavranović, Bruno. Compositional deep learning. arXiv:1907.08292, 2019.
[64]Ghani, Neil, Hedges, Jules, Winschel, Viktor, and Zahn, Philipp. Compositional game theory. In LICS’18 Proceedings, pages 472481, Association for Computing Machinery, 2018.
[65]Ghica, Dan and Zanasi, Fabio. String diagrams for λ-calculi and functional computation. arXiv:2305.18945, 2023.
[66]Dan, R. Ghica. Diagrammatic reasoning for delay-insensitive asynchronous circuits. In Coecke, Bob, Ong, Luke, and Panangaden, Prakash (eds.), Computation, Logic, Games, and Quantum Foundations: The Many Facets of Samson Abramsky, pages 5268. Springer, 2013.
[67]Ghica, Dan R. and Kaye, George. Rewriting modulo traced comonoid structure. arXiv:2302.09631, 2023.
[68]Ghica, Dan R., Kaye, George, and Sprunger, David. Full abstraction for digital circuits. arXiv:2201.10456, 2022.
[69]Girard, Jean-Yves. Linear logic. Theoretical Computer Science, 50:1102, 1987.
[70]Hadzihasanovic, Amar and Kessler, Diana. Data structures for topologically sound higher-dimensional diagram rewriting. In ACT’22 Proceedings. arXiv:2209.09509, 2022.
[71]Hasegawa, Masahito. Recursion from cyclic sharing: Traced monoidal categories and models of cyclic lambda calculi. In de Groote, Philippe and Hindley, J. Roger (eds.), TLCA’97 Proceedings, pages 196213. Springer, 1997.
[72]Haydon, Nathan and Sobociński, Paweł. Compositional diagrammatic first-order logic. In Pietarinen, Ahti-Veikko, Chapman, Peter, Smet, Leonie Bosveld-de, Giardino, Valeria, Corter, James, and Linker, Sven (eds.), Diagrams’20 Proceedings, pages 402418. Springer, 2020.
[73]Heunen, Chris and Vicary, Jamie. Categories for Quantum Theory: An Introduction. Oxford University Press, 2019.
[74]Hyland, Martin and Power, John. The category theoretic understanding of universal algebra: Lawvere theories and monads. In Cardelli, Luca, Fiore, Marco, and Winskel, Glynn (eds.), Computation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin, volume 172 of Electronic Notes in Theoretical Computer Science, pages 437458. Elsevier, 2007.
[75]Jacobs, Bart, Kissinger, Aleks, and Zanasi, Fabio. Causal inference via string diagram surgery: A diagrammatic approach to interventions and counterfactuals. Mathematical Structures in Computer Science, 31(5):553574, 2021.
[76]Joyal, André and Street, Ross. Braided monoidal categories. Mathematics Reports, 86008, 1986.
[77]Joyal, André and Street, Ross. The geometry of tensor calculus, I. Advances in Mathematics, 88(1):55112, 1991.
[78]Katis, Piergiulio, Sabadini, Nicoletta, and Walters, Robert F. C.. Feedback, trace and fixed-point semantics. RAIRO-Theoretical Informatics and Applications, 36(2):181194, 2002.
[79]Maxwell Kelly, Gregory. Many-variable functorial calculus. I. In Kelly, Gregory M., Laplaza, Miguel L., Lewis, Geoffrey, and Lane, Saunders Mac (eds.), Coherence in Categories, pages 66105. Springer, 1972.
[80]Maxwell Kelly, Gregory and Laplaza, Miguel L.. Coherence for compact closed categories. Journal of Pure and Applied Algebra, 19:193213, 1980.
[81]Boris Khesin, Andrey, Jonathan, Z. Lu, and Shor, Peter W.. Graphical quantum Clifford-encoder compilers from the ZX calculus. arXiv:2301.02356, 2023.
[82]Kissinger, Aleks and van de Wetering, John. PyZX: Large scale automated diagrammatic reasoning. arXiv:1904.04735, 2019.
[83]Kissinger, Aleks and Zamdzhiev, Vladimir. Quantomatic: A proof assistant for diagrammatic reasoning. In Amy, P. Felty and Middeldorp, Aart (eds.), CADE-25 Proceedings, pages 326336. Springer, 2015.
[84]Lack, Stephen. Composing PROPs. Theory and Application of Categories, 13(9):147163, 2004.
[85]Lafont, Yves. Towards an algebraic theory of Boolean circuits. Journal of Pure and Applied Algebra, 184(2–3):257–310, 2003.
[86]Leinster, Tom. Basic Category Theory, volume 143. Cambridge University Press, 2014.
[87]Lorenz, Robin and Tull, Sean. Causal models in string diagrams. arXiv:2304.07638, 2023.
[88]Mac Lane, Saunders. Categorical algebra. Bulletin of the American Mathematical Society, 71:40106, 1965.
[89]Mac Lane, Saunders. Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5. Springer, 1971.
[90]Marsden, Daniel. Category theory using string diagrams. arXiv:1401. 7220, 2014.
[91]Melliès, Paul-André. Functorial boxes in string diagrams. In Ésik, Zoltán (ed.), International Workshop on Computer Science Logic, pages 130. Springer, 2006.
[92]Mellies, Paul-André. Categorical semantics of linear logic. Panoramas et Syntheses, 27:15215, 2009.
[93]Milosavljevic, Aleksandar and Zanasi, Fabio. String diagram rewriting modulo commutative monoid structure. To appear in CALCO’23 Proceedings, arXiv:2204.04274, 2023.
[94]Moss, Sean and Perrone, Paolo. A category-theoretic proof of the ergodic decomposition theorem. arXiv:2207.07353, 2022.
[95]Muroya, Koko and Dan, R. Ghica. The dynamic geometry of interaction machine: A call-by-need graph rewriter. CSL’17 Proceedings. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. DOI: https://doi.org/10.4230/LIPIcs.CSL.2017.32.
[96]Pavlovic, Dusko. Quantum and classical structures in nondeterministic computation. In Bruza, Peter, Sofge, Donald, Lawless, William, van Rijsbergen, Keith, and Klusch, Matthias (eds.), International Symposium on Quantum Interaction, pages 143157. Springer, 2009.
[97]Pavlovic, Dusko. Monoidal computer I: Basic computability by string diagrams. Information and Computation, 226:94116, 2013.
[98]Pavlovic, Dusko. Categorical computability in monoidal computer: Programs as diagrams. arXiv:2208.03817, 2022.
[99]Sanders Peirce, Charles. Collected Papers of Charles Sanders Peirce, volume 4. Harvard University Press, 1974.
[100]Penrose, Roger. Applications of negative dimension tensors. In Welsh, Dominic, editor, Combinatorial Mathematics and Its Applications, pages 221244. Academic Press, 1971.
[101]Penrose, Roger. Applications of negative dimensional tensors. Combinatorial Mathematics and Its Applications, 1:221244, 1971.
[102]Piedeleu, Robin and Zanasi, Fabio. A finite axiomatisation of finite-state automata using string diagrams. Logical Methods in Computer Science, 19, 2023.
[103]Poór, Boldizsár, Wang, Quanlong, Shaikh, Razin A., Yeh, Lia, Yeung, Richie, and Coecke, Bob. Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus. arXiv:2302.12135, 2023.
[104]Sadrzadeh, Mehrnoosh, Clark, Stephen, and Coecke, Bob. The Frobenius anatomy of word meanings I: Subject and object relative pronouns. Journal of Logic and Computation, 23(6):12931317, 2013.
[105]Sadrzadeh, Mehrnoosh, Clark, Stephen, and Coecke, Bob. The Frobenius anatomy of word meanings II: Possessive relative pronouns. Journal of Logic and Computation, 26(2):785815, 2014.
[106]Selinger, Peter. A survey of graphical languages for monoidal categories. Springer Lecture Notes in Physics, 13(813):289355, 2011.
[107]Shiebler, Dan, Gavranović, Bruno, and Wilson, Paul. Category theory in machine learning. arXiv:2106.07032, 2021.
[108]Sobociński, Paweł, Wilson, Paul W., and Zanasi, Fabio. CARTOGRAPHER: A tool for string diagrammatic reasoning. In jtlCALCO’19 Proceedings, page 25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
[109]van de Wetering, John. ZX-calculus for the working quantum computer scientist. arXiv:2012.13966, 2020.
[110]Vicary, Jamie, Kissinger, Aleks, and Bar, Krzysztof. Globular: An online proof assistant for higher-dimensional rewriting. Logical Methods in Computer Science, 14. arXiv:1612.01093v1, 2018.
[111]Wilson, Paul W., Ghica, Dan R., and Zanasi, Fabio. String diagrams for non-strict monoidal categories. In Klin, Bartek and Pimentel, Elaine (eds.), CSL, volume 252 of LIPIcs, pages 37:1–37:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
[112]Wilson, Paul W. and Zanasi, Fabio. Reverse derivative ascent: A categorical approach to learning Boolean circuits. In David, I. Spivak and Vicary, Jamie (eds.), ACT’20 Proceedings, volume 333 of EPTCS, pages 247260, 2020.
[113]Wilson, Paul W. and Zanasi, Fabio. The cost of compositionality: A high-performance implementation of string diagram composition. In ACT’21 Proceedings, volume 372 of EPTCS, pages 262275. arXiv:2105.09257, 2021.
[114]Wilson, Paul W. and Zanasi, Fabio. Categories of differentiable polynomial circuits for machine learning. In Behr, Nicolas and Strüber, Daniel (eds.), ICGT, volume 13349 of Lecture Notes in Computer Science, pages 7793. Springer, 2022.
[115]Wilson, Paul W. and Zanasi, Fabio. Data-parallel algorithms for string diagrams. arXiv:2305.01041, 2023.
[116]Zanasi, Fabio. Interacting Hopf Algebras: The Theory of Linear Systems. PhD thesis, Ecole Normale Supérieure de Lyon, 2015.
[117]Zanasi, Fabio. The algebra of partial equivalence relations. Electronic Notes in Theoretical Computer Science, 325:313333, 2016.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.