Skip to main content Accessibility help
×
  • Cited by 28
Publisher:
Cambridge University Press
Online publication date:
April 2016
Print publication year:
2016
Online ISBN:
9781316729755

Book description

A careful and accessible exposition of a functional analytic approach to initial boundary value problems for semilinear parabolic differential equations, with a focus on the relationship between analytic semigroups and initial boundary value problems. This semigroup approach is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in the theory of pseudo-differential operators, one of the most influential works in the modern history of analysis. Complete with ample illustrations and additional references, this new edition offers both streamlined analysis and better coverage of important examples and applications. A powerful method for the study of elliptic boundary value problems, capable of further extensive development, is provided for advanced undergraduates or beginning graduate students, as well as mathematicians with an interest in functional analysis and partial differential equations.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Adams, R.A. and Fournier, J.J.F. (2003). Sobolev spaces, Pure and Applied Mathematics, second edition (Elsevier/Academic Press, Amsterdam).
[2] Agmon, S. (1965). Lectures on elliptic boundary value problems (Van Nostrand, Princeton, New Jersey).
[3] Agmon, S., Douglis, A. and Nirenberg, L. (1959). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12, 623–727.
[4] Amann, H. (1978). Periodic solutions of semi-linear parabolic equations. In: Nonlinear analysis, L., Cesari, R., Kannan and H. F., Weinberger (eds.), 1–29 (Academic Press, New York San Francisco London).
[5] Aronszajn, N. and Smith, K.T. (1961). Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11, 385–475.
[6] Banach, S. (1963). Théorie des opérations linéaires, second edition (Chelsea Publishing Company, New York).
[7] Bergh, J. and Löfström, J. (1976). Interpolation spaces, an introduction (Springer-Verlag, Berlin Heidelberg New York).
[8] Bourdaud, G. (1982). Lp-estimates for certain non-regular pseudo-differential operators, Comm. Part. Diff. Eq. 7, 1023–1033.
[9] Boutet de Monvel, L. (1971). Boundary problems for pseudo-differential operators, Acta Math. 126, 11–51.
[10] Calderón, A.P. (1963). Boundary value problems for elliptic equations. In: Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), 303–304 (Acad. Sci. USSR Siberian Branch, Moscow).
[11] Chazarain, J. et Piriou, A. (1981). Introduction à la théorie des équations aux dérivées partielles linéaires (Gauthier-Villars, Paris).
[12] Egorov, Ju.V. (1975). Subelliptic operators, Uspekhi Mat. Nauk 30:2 (182), 57–114, 30:3 (183), 57–104 (Russian); English translation: Russian Math. Surv. 30:2, 59–118, 30:3, 55–105.
[13] Fefferman, C. and Phong, D.H. (1978). On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. 75, 4673–4674.
[14] Folland, G.B. (1995). Introduction to partial differential equations, Second edition (Princeton University Press, Princeton, New Jersey).
[15] Folland, G.B. (1999). Real analysis, second edition (John Wiley & Sons, New York Chichester Weinheim Brisbane Singapore Toronto).
[16] Friedman, A. (1969). Partial differential equations (Holt, Rinehart and Winston, New York).
[17] Friedman, A. (1970). Foundations of modern analysis (Holt, Rinehart and Winston Inc., New York Montreal London).
[18] Fujita, H. and Kato, T. (1964). On the Navier–Stokes initial value problem I, Arch. Rat. Mech. and Anal. 16, 269–315.
[19] Fujiwara, D. (1970). On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ. Tokyo Sec. IA. 17, 123–152.
[20] Fujiwara, D. and Uchiyama, K. (1971). On some dissipative boundary value problems for the Laplacian, J. Math. Soc. Japan 23, 625–635.
[21] Gagliardo, E. (1958). Proprietà di alcune classi di funzioni in più variabili, Ric. di Mat. 7, 102–137.
[22] Gårding, L. (1953). Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1, 55–72.
[23] Gel'fand, I.M. and Shilov, G.E. (1964). Generalized functions I, Properties and operations (Academic Press, New York London).
[24] Gilbarg, D. and Trudinger, N.S. (1998). Elliptic partial differential equations of second order, 1998 edition (Springer-Verlag, New York Berlin Heidelberg Tokyo).
[25] Gohberg, I.C. and Kreĭn, M.G. (1957/1960). The basic propositions on defect numbers, root numbers and indices of linear operatorsUspehi Mat. Nauk. 12 (1957), 43–118 (Russian); English translation: Amer. Math. Soc. Transl. 13 (1960), 185–264.
[26] Henry, D. (1981). Geometric theory of semilinear parabolic equations, Lecture Notes in Math. No. 840 (Springer-Verlag, Berlin).
[27] Hille, E. and Phillips, R.S. (1957). Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, 1957 edition (Amer. Math. Soc., Providence, Rhode Island).
[28] Hopf, E. (1952). A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc. 3, 791–793.
[29] Hörmander, L. (1966). Pseudo-Differential operators and non-elliptic boundary problems, Ann. of Math. 83, 129–209.
[30] Hörmander, L. (1967). Pseudo-differential operators and hypoelliptic equations. In: Proc. Sym. Pure Math., X, Singular integrals, A.P., Calderón (ed.), 138–183 (Amer. Math. Soc., Providence, Rhode Island).
[31] Hörmander, L. (1979). Subelliptic operators. In: Seminar on singularities of solutions of linear partial differential equations, Annals of Mathematics Studies, No. 91, 127–208 (Princeton Univ. Press, Princeton).
[32] Hörmander, L. (1994). The analysis of linear partial differential operators III, 1994 edition (Springer-Verlag, Berlin Heidelberg New York Tokyo).
[33] Kannai, Y. (1976). Hypoellipticity of certain degenerate elliptic boundary value problems, Trans. Amer. Math. Soc. 217, 311–328.
[34] Kreĭn, S.G. (1967/1971/1972). Linear differential equations in Banach space (Nauka, Moscow, 1967) (Russian); English translation: (Amer. Math. Soc., Providence, Rhode Island, 1971); Japanese translation: (Yoshioka Shoten, Kyoto, 1972).
[35] Kumano-go, H. (1981). Pseudo-Differential operators (MIT Press, Cambridge, Massachusetts).
[36] Lang, S. (2002). Introduction to differentiable manifolds, Universitext, second edition (Springer-Verlag, New York).
[37] Lax, P.D. (1957). Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24, 627–646.
[38] Lions, J.-L. et Magenes., E. (1968/1972). Problèmes aux limites non homogènes et applications 1, 2 (Dunod, Paris, 1968); English translation: Non-homogeneous boundary value problems and applications 1, 2 (Springer-Verlag, Berlin Heidelberg New York, 1972).
[39] Masuda, K. (1975). Evolution equations (Japanese) (Kinokuniya-Shoten, Tokyo).
[40] McLean, W. (2000). Strongly elliptic systems and boundary integral equations (Cambridge University Press, Cambridge).
[41] Melin, A. (1971). Lower bounds for pseudo-differential operators, Ark. Mat. 9, 117–140.
[42] Melin, A and Sjöstrand, J. (1976). Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. Partial Differential Equations 1, 313–400.
[43] Mizohata, S. (1973). The theory of partial differential equations (Cambridge University Press, London, New York).
[44] Munkres, J.R. (1966). Elementary differential topology, Annals of Mathematics Studies, No. 54 (Princeton University Press, Princeton, New Jersey).
[45] Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, Berlin).
[46] Peetre, J. (1961). Another approach to elliptic boundary problems, Comm. Pure Appl. Math. 14, 711–731.
[47] Protter, M.H. and Weinberger, H.F. (1967). Maximum principles in differential equations (Prentice-Hall, Englewood Cliffs, New Jersey).
[48] Rempel, S. and Schulze, B.-W. (1982). Index theory of elliptic boundary problems (Akademie-Verlag, Berlin).
[49] Schwarz, G. (1995). Hodge decomposition – A method for solving boundary value problems, Lecture Notes in Mathematics, Vol. 1607. (Springer- Verlag, Berlin Heidelberg New York Tokyo).
[50] Seeley, R.T. (1964). Extension of C8 functions defined in a half-space, Proc. Amer. Math. Soc. 15, 625–626.
[51] Seeley, R.T. (1965). Refinement of the functional calculus of Calderón and Zygmund, Proc. Nederl. Akad. Wetensch., Ser. A 68, 521–531.
[52] Seeley, R.T. (1966). Singular integrals and boundary value problems, Amer. J. Math. 88, 781–809.
[53] Stein, E.M. (1962) The characterization of functions arising as potentials II, Bull. Amer. Math. Soc. 68, 577–582.
[54] Stein, E.M. (1970). Singular integrals and differentiability properties of functions (Princeton Univ. Press, Princeton).
[55] Suzuki, H. (1969/1970) Improving estimates for differential operators in two independent variables, Publ. RIMS, Kyoto Univ. 5, 287–299.
[56] Taibleson, M.H. (1964). On the theory of Lipschitz spaces of distributions on Euclidean n-space I, J. Math. Mech. 13, 407–479.
[57] Taira, K. (1976). On some degenerate oblique derivative problems, J. Fac. Sci. Univ. Tokyo Sec.IA 23, 259–287.
[58] Taira, K. (1978). Sur le problème de la dérivée oblique I, J. Math. Pures Appl. 57, 379–395.
[59] Taira, K. (1979). Sur le problème de la dérivée oblique II, Ark. för Mat. 17, 177–191.
[60] Taira, K. (1981). Un théorème d'existence et d'unicité des solutions pour des problèmes aux limites non-elliptiques, J. Functional Analysis, 43, 166–192.
[61] Taira, K. (1988). Diffusion processes and partial differential equations (Academic Press, San Diego New York London Tokyo).
[62] Taira, K. (1989). The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math. 13, 513– 562.
[63] Taira, K. (1996). Boundary value problems for elliptic integro-differential operators, Math. Z. 222, 305–327.
[64] Taira, K. (2009). Boundary value problems and Markov processes, Lecture Notes in Mathematics, No. 1499, second edition (Springer-Verlag, Berlin Heidelberg New York).
[65] Taira, K. (2014). Semigroups, boundary value problems and Markov processes, Springer Monographs in Mathematics, second edition (Springer- Verlag, Berlin Heidelberg New York).
[66] Tanabe, H. (1975/1979). Equations of evolution (Iwanami-Shoten, Tokyo, 1975) (Japanese); English translation: (Pitman, London, 1979).
[67] Tanabe, H. (1997). Functional analytic methods for partial differential equations (Marcel Dekker, New York Basel).
[68] Taylor, M. (1981). Pseudo-Differential operators, Princeton Mathematical Series, No. 34 (Princeton Univ. Press, Princeton, New Jersey).
[69] Treves, F. (1971). A new method of the subelliptic estimates, Comm. Pure Appl. Math. 24, 71–115.
[70] Triebel, H. (1978). Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam).
[71] Watson, G.N. (1944). A treatise on the theory of Bessel functions, second edition (Cambridge University Press, Cambridge).
[72] Wells, R.O. Jr. (2008). Differential analysis on complex manifolds, Graduate Texts in Mathematics, Vol. 65, third edition (Springer-Verlag, New York).
[73] Winzell, B. (1981). A boundary value problem with an oblique derivative, Comm. Partial Differential Equations 6, 305–328.
[74] Wloka, J. (1987). Partial differential equations (Cambridge University Press, Cambridge).
[75] Yosida, K. (1980). Functional analysis, sixth edition (Springer-Verlag, Berlin Heidelberg New York).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.