[1] Adams, R.A. and Fournier, J.J.F. (2003). Sobolev spaces, Pure and Applied Mathematics, second edition (Elsevier/Academic Press, Amsterdam).
[2] Agmon, S. (1965). Lectures on elliptic boundary value problems (Van Nostrand, Princeton, New Jersey).
[3] Agmon, S., Douglis, A. and Nirenberg, L. (1959). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12, 623–727.
[4] Amann, H. (1978). Periodic solutions of semi-linear parabolic equations. In: Nonlinear analysis, L., Cesari, R., Kannan and H. F., Weinberger (eds.), 1–29 (Academic Press, New York San Francisco London).
[5] Aronszajn, N. and Smith, K.T. (1961). Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11, 385–475.
[6] Banach, S. (1963). Théorie des opérations linéaires, second edition (Chelsea Publishing Company, New York).
[7] Bergh, J. and Löfström, J. (1976). Interpolation spaces, an introduction (Springer-Verlag, Berlin Heidelberg New York).
[8] Bourdaud, G. (1982). Lp-estimates for certain non-regular pseudo-differential operators, Comm. Part. Diff. Eq. 7, 1023–1033.
[9] Boutet de Monvel, L. (1971). Boundary problems for pseudo-differential operators, Acta Math. 126, 11–51.
[10] Calderón, A.P. (1963). Boundary value problems for elliptic equations. In: Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), 303–304 (Acad. Sci. USSR Siberian Branch, Moscow).
[11] Chazarain, J. et Piriou, A. (1981). Introduction à la théorie des équations aux dérivées partielles linéaires (Gauthier-Villars, Paris).
[12] Egorov, Ju.V. (1975). Subelliptic operators, Uspekhi Mat. Nauk 30:2 (182), 57–114, 30:3 (183), 57–104 (Russian); English translation: Russian Math. Surv. 30:2, 59–118, 30:3, 55–105.
[13] Fefferman, C. and Phong, D.H. (1978). On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. 75, 4673–4674.
[14] Folland, G.B. (1995). Introduction to partial differential equations, Second edition (Princeton University Press, Princeton, New Jersey).
[15] Folland, G.B. (1999). Real analysis, second edition (John Wiley & Sons, New York Chichester Weinheim Brisbane Singapore Toronto).
[16] Friedman, A. (1969). Partial differential equations (Holt, Rinehart and Winston, New York).
[17] Friedman, A. (1970). Foundations of modern analysis (Holt, Rinehart and Winston Inc., New York Montreal London).
[18] Fujita, H. and Kato, T. (1964). On the Navier–Stokes initial value problem I, Arch. Rat. Mech. and Anal. 16, 269–315.
[19] Fujiwara, D. (1970). On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ. Tokyo Sec. IA. 17, 123–152.
[20] Fujiwara, D. and Uchiyama, K. (1971). On some dissipative boundary value problems for the Laplacian, J. Math. Soc. Japan 23, 625–635.
[21] Gagliardo, E. (1958). Proprietà di alcune classi di funzioni in più variabili, Ric. di Mat. 7, 102–137.
[22] Gårding, L. (1953). Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1, 55–72.
[23] Gel'fand, I.M. and Shilov, G.E. (1964). Generalized functions I, Properties and operations (Academic Press, New York London).
[24] Gilbarg, D. and Trudinger, N.S. (1998). Elliptic partial differential equations of second order, 1998 edition (Springer-Verlag, New York Berlin Heidelberg Tokyo).
[25] Gohberg, I.C. and Kreĭn, M.G. (1957/1960). The basic propositions on defect numbers, root numbers and indices of linear operatorsUspehi Mat. Nauk. 12 (1957), 43–118 (Russian); English translation: Amer. Math. Soc. Transl. 13 (1960), 185–264.
[26] Henry, D. (1981). Geometric theory of semilinear parabolic equations, Lecture Notes in Math. No. 840 (Springer-Verlag, Berlin).
[27] Hille, E. and Phillips, R.S. (1957). Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, 1957 edition (Amer. Math. Soc., Providence, Rhode Island).
[28] Hopf, E. (1952). A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc. 3, 791–793.
[29] Hörmander, L. (1966). Pseudo-Differential operators and non-elliptic boundary problems, Ann. of Math. 83, 129–209.
[30] Hörmander, L. (1967). Pseudo-differential operators and hypoelliptic equations. In: Proc. Sym. Pure Math., X, Singular integrals, A.P., Calderón (ed.), 138–183 (Amer. Math. Soc., Providence, Rhode Island).
[31] Hörmander, L. (1979). Subelliptic operators. In: Seminar on singularities of solutions of linear partial differential equations, Annals of Mathematics Studies, No. 91, 127–208 (Princeton Univ. Press, Princeton).
[32] Hörmander, L. (1994). The analysis of linear partial differential operators III, 1994 edition (Springer-Verlag, Berlin Heidelberg New York Tokyo).
[33] Kannai, Y. (1976). Hypoellipticity of certain degenerate elliptic boundary value problems, Trans. Amer. Math. Soc. 217, 311–328.
[34] Kreĭn, S.G. (1967/1971/1972). Linear differential equations in Banach space (Nauka, Moscow, 1967) (Russian); English translation: (Amer. Math. Soc., Providence, Rhode Island, 1971); Japanese translation: (Yoshioka Shoten, Kyoto, 1972).
[35] Kumano-go, H. (1981). Pseudo-Differential operators (MIT Press, Cambridge, Massachusetts).
[36] Lang, S. (2002). Introduction to differentiable manifolds, Universitext, second edition (Springer-Verlag, New York).
[37] Lax, P.D. (1957). Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24, 627–646.
[38] Lions, J.-L. et Magenes., E. (1968/1972). Problèmes aux limites non homogènes et applications 1, 2 (Dunod, Paris, 1968); English translation: Non-homogeneous boundary value problems and applications 1, 2 (Springer-Verlag, Berlin Heidelberg New York, 1972).
[39] Masuda, K. (1975). Evolution equations (Japanese) (Kinokuniya-Shoten, Tokyo).
[40] McLean, W. (2000). Strongly elliptic systems and boundary integral equations (Cambridge University Press, Cambridge).
[41] Melin, A. (1971). Lower bounds for pseudo-differential operators, Ark. Mat. 9, 117–140.
[42] Melin, A and Sjöstrand, J. (1976). Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. Partial Differential Equations 1, 313–400.
[43] Mizohata, S. (1973). The theory of partial differential equations (Cambridge University Press, London, New York).
[44] Munkres, J.R. (1966). Elementary differential topology, Annals of Mathematics Studies, No. 54 (Princeton University Press, Princeton, New Jersey).
[45] Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, Berlin).
[46] Peetre, J. (1961). Another approach to elliptic boundary problems, Comm. Pure Appl. Math. 14, 711–731.
[47] Protter, M.H. and Weinberger, H.F. (1967). Maximum principles in differential equations (Prentice-Hall, Englewood Cliffs, New Jersey).
[48] Rempel, S. and Schulze, B.-W. (1982). Index theory of elliptic boundary problems (Akademie-Verlag, Berlin).
[49] Schwarz, G. (1995). Hodge decomposition – A method for solving boundary value problems, Lecture Notes in Mathematics, Vol. 1607. (Springer- Verlag, Berlin Heidelberg New York Tokyo).
[50] Seeley, R.T. (1964). Extension of C8 functions defined in a half-space, Proc. Amer. Math. Soc. 15, 625–626.
[51] Seeley, R.T. (1965). Refinement of the functional calculus of Calderón and Zygmund, Proc. Nederl. Akad. Wetensch., Ser. A 68, 521–531.
[52] Seeley, R.T. (1966). Singular integrals and boundary value problems, Amer. J. Math. 88, 781–809.
[53] Stein, E.M. (1962) The characterization of functions arising as potentials II, Bull. Amer. Math. Soc. 68, 577–582.
[54] Stein, E.M. (1970). Singular integrals and differentiability properties of functions (Princeton Univ. Press, Princeton).
[55] Suzuki, H. (1969/1970) Improving estimates for differential operators in two independent variables, Publ. RIMS, Kyoto Univ. 5, 287–299.
[56] Taibleson, M.H. (1964). On the theory of Lipschitz spaces of distributions on Euclidean n-space I, J. Math. Mech. 13, 407–479.
[57] Taira, K. (1976). On some degenerate oblique derivative problems, J. Fac. Sci. Univ. Tokyo Sec.IA 23, 259–287.
[58] Taira, K. (1978). Sur le problème de la dérivée oblique I, J. Math. Pures Appl. 57, 379–395.
[59] Taira, K. (1979). Sur le problème de la dérivée oblique II, Ark. för Mat. 17, 177–191.
[60] Taira, K. (1981). Un théorème d'existence et d'unicité des solutions pour des problèmes aux limites non-elliptiques, J. Functional Analysis, 43, 166–192.
[61] Taira, K. (1988). Diffusion processes and partial differential equations (Academic Press, San Diego New York London Tokyo).
[62] Taira, K. (1989). The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math. 13, 513– 562.
[63] Taira, K. (1996). Boundary value problems for elliptic integro-differential operators, Math. Z. 222, 305–327.
[64] Taira, K. (2009). Boundary value problems and Markov processes, Lecture Notes in Mathematics, No. 1499, second edition (Springer-Verlag, Berlin Heidelberg New York).
[65] Taira, K. (2014). Semigroups, boundary value problems and Markov processes, Springer Monographs in Mathematics, second edition (Springer- Verlag, Berlin Heidelberg New York).
[66] Tanabe, H. (1975/1979). Equations of evolution (Iwanami-Shoten, Tokyo, 1975) (Japanese); English translation: (Pitman, London, 1979).
[67] Tanabe, H. (1997). Functional analytic methods for partial differential equations (Marcel Dekker, New York Basel).
[68] Taylor, M. (1981). Pseudo-Differential operators, Princeton Mathematical Series, No. 34 (Princeton Univ. Press, Princeton, New Jersey).
[69] Treves, F. (1971). A new method of the subelliptic estimates, Comm. Pure Appl. Math. 24, 71–115.
[70] Triebel, H. (1978). Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam).
[71] Watson, G.N. (1944). A treatise on the theory of Bessel functions, second edition (Cambridge University Press, Cambridge).
[72] Wells, R.O. Jr. (2008). Differential analysis on complex manifolds, Graduate Texts in Mathematics, Vol. 65, third edition (Springer-Verlag, New York).
[73] Winzell, B. (1981). A boundary value problem with an oblique derivative, Comm. Partial Differential Equations 6, 305–328.
[74] Wloka, J. (1987). Partial differential equations (Cambridge University Press, Cambridge).
[75] Yosida, K. (1980). Functional analysis, sixth edition (Springer-Verlag, Berlin Heidelberg New York).