Skip to main content Accessibility help
Atmospheric and Oceanic Fluid Dynamics
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 44
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Delplace, Pierre Marston, J. B. and Venaille, Antoine 2017. Topological origin of equatorial waves. Science, Vol. 358, Issue. 6366, p. 1075.

    Penn, James and Vallis, Geoffrey K 2017. The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model. The Astrophysical Journal, Vol. 842, Issue. 2, p. 101.

    Chen, Nan and Majda, Andrew J. 2017. Beating the curse of dimension with accurate statistics for the Fokker–Planck equation in complex turbulent systems. Proceedings of the National Academy of Sciences, Vol. 114, Issue. 49, p. 12864.

    Haqq-Misra, Jacob Wolf, Eric. T. Joshi, Manoj Zhang, Xi and Kopparapu, Ravi Kumar 2018. Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone. The Astrophysical Journal, Vol. 852, Issue. 2, p. 67.

    Thuburn, John and Vallis, Geoffrey K. 2018. Properties of conditionally filtered equations: Conservation, normal modes, and variational formulation. Quarterly Journal of the Royal Meteorological Society, Vol. 144, Issue. 714, p. 1555.

    Callies, Jörn 2018. Restratification of Abyssal Mixing Layers by Submesoscale Baroclinic Eddies. Journal of Physical Oceanography, Vol. 48, Issue. 9, p. 1995.

    Frishman, Anna and Herbert, Corentin 2018. Turbulence Statistics in a Two-Dimensional Vortex Condensate. Physical Review Letters, Vol. 120, Issue. 20,

    Khatri, Hemant and Berloff, Pavel 2018. A mechanism for jet drift over topography. Journal of Fluid Mechanics, Vol. 845, Issue. , p. 392.

    Miyamoto, Yoshiaki Nolan, David S. and Sugimoto, Norihiko 2018. A Dynamical Mechanism for Secondary Eyewall Formation in Tropical Cyclones. Journal of the Atmospheric Sciences, Vol. 75, Issue. 11, p. 3965.

    Haigh, Michael C. and Berloff, Pavel S. 2018. Potential vorticity redistribution by localised transient forcing in the shallow-water model. Journal of Fluid Mechanics, Vol. 852, Issue. , p. 199.

    Penn, James and Vallis, Geoffrey K. 2018. Atmospheric Circulation and Thermal Phase-curve Offset of Tidally and Nontidally Locked Terrestrial Exoplanets. The Astrophysical Journal, Vol. 868, Issue. 2, p. 147.

    Lingam, Manasvi and Loeb, Abraham 2018. Implications of Tides for Life on Exoplanets. Astrobiology, Vol. 18, Issue. 7, p. 967.

    Ghaffari, Peygham Isachsen, Pål Erik Nøst, Ole Anders and Weber, Jan Erik 2018. The Influence of Topography on the Stability of the Norwegian Atlantic Current off Northern Norway. Journal of Physical Oceanography, Vol. 48, Issue. 11, p. 2761.

    Read, Peter L. Lewis, Stephen R. and Vallis, Geoffrey K. 2018. Handbook of Exoplanets. p. 1.

    Grassi, D. Adriani, A. Moriconi, M. L. Mura, A. Tabataba-Vakili, F. Ingersoll, A. Orton, G. Hansen, C. Altieri, F. Filacchione, G. Sindoni, G. Dinelli, B. M. Fabiano, F. Bolton, S. J. Levin, S. Atreya, S. K. Lunine, J. I. Momary, T. Tosi, F. Migliorini, A. Piccioni, G. Noschese, R. Cicchetti, A. Plainaki, C. Olivieri, A. Turrini, D. Stefani, S. Sordini, R. and Amoroso, M. 2018. First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM-Juno Images. Journal of Geophysical Research: Planets, Vol. 123, Issue. 6, p. 1511.

    Wang, Jiabao Kim, Hye-Mi and Chang, Edmund K. M. 2018. Interannual Modulation of Northern Hemisphere Winter Storm Tracks by the QBO. Geophysical Research Letters, Vol. 45, Issue. 6, p. 2786.

    Vallis, Geoffrey K. Colyer, Greg Geen, Ruth Gerber, Edwin Jucker, Martin Maher, Penelope Paterson, Alexander Pietschnig, Marianne Penn, James and Thomson, Stephen I. 2018. Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geoscientific Model Development, Vol. 11, Issue. 3, p. 843.

    Nagura, Motoki 2018. Annual Rossby Waves Below the Pycnocline in the Indian Ocean. Journal of Geophysical Research: Oceans,

    Read, Peter L. Lewis, Stephen R. and Vallis, Geoffrey K. 2018. Handbook of Exoplanets. p. 1.

    Thomson, Stephen I. and Vallis, Geoffrey K. 2018. Atmospheric Response to SST Anomalies. Part I: Background-State Dependence, Teleconnections, and Local Effects in Winter. Journal of the Atmospheric Sciences, Vol. 75, Issue. 12, p. 4107.


Book description

The atmosphere and ocean are two of the most important components of the climate system, and fluid dynamics is central to our understanding of both. This book provides a unified and comprehensive treatment of the field that blends classical results with modern interpretations. It takes the reader seamlessly from the basics to the frontiers of knowledge, from the equations of motion to modern theories of the general circulation of the atmosphere and ocean. These concepts are illustrated throughout the book with observations and numerical examples. As well as updating existing chapters, this full-color second edition includes new chapters on tropical dynamics, El Niño, the stratosphere and gravity waves. Supplementary resources are provided online, including figures from the book and problem sets, making this new edition an ideal resource for students in the atmospheric, oceanic and climate sciences, as well as in applied mathematics and engineering.


‘The maturity of a scientific discipline can be measured by the degree of intellectual rigor and pedagogy contained in its textbooks. In 2006, Vallis' first edition of AOFD offered the atmospheric and oceanic sciences community a truly great book, marking a milestone in our discipline. Well, Vallis has done it again! This second edition of AOFD represents the pinnacle of a maturing discipline. It is The Great Book of the field, and it will remain so for a generation or longer. … This book will be well used by fluid dynamicists, oceanographers, atmospheric scientists, applied mathematicians, and physicists for decades to come. Each sentence, paragraph, section, chapter, and figure, are thoughtful and erudite, providing the reader with insights and rigor needed to truly capture the physical and mathematical essence of each topic.’

Stephen M. Griffies - Geophysical Fluid Dynamics Laboratory and Princeton University, New Jersey

‘Vallis speaks my language. He successfully weaves together fundamental theory, physical intuition, and observed phenomena to tell the story of geophysical fluid behavior at local and global scales. This multi-pronged approach makes this an ideal text for both beginners and experts alike - there is something for everyone. This is why it is the book I use for my class, the book I recommend to incoming graduate students (no matter their background) and the book I go to first when I need clarity on GFD topics. … With the new edition, we now get an even more comprehensive view of how the fundamental processes that dictate the evolution of our atmosphere and oceans drive the complex phenomena we observe (e.g. El Nino). In addition, Vallis has kept-up with the times and the text now includes an entire chapter dedicated to water vapor and tropical moist dynamics.’

Elizabeth A. Barnes - Colorado State University

‘This second edition is a further major achievement by the author. It includes significant new material on the atmosphere and on the ocean, presented in two separate later sections of the book, but building carefully and clearly on the ‘unified’ material in the first part of the book. This is a very effective (and perhaps the only effective) way to bring the reader close to the research frontier without losing the unified treatment … the success of this book is determined by what it contains and little compromised by what it does not contain. The second edition will be an exceptionally valuable resource for those designing advanced-level courses, for the students taking those courses and for researchers, many of whom will surely be stimulated by the clear presentation of existing theory to identify what such theory does not explain and where progress is needed.’

Peter Haynes - University of Cambridge

‘This second edition is even more comprehensive than the first. It now covers subjects such as the derivation of the first law of thermodynamics, the fundamental physics involved in the meridional overturning of the ocean, and equatorial oceanography. The book concentrates on the fundamentals of each subject, with sufficient motivation to make the exposition clear. For good reason, the first edition is now the standard text for courses in oceanography, and this will clearly continue with this second edition, helping all of us, not just students, to clarify our understanding of this field.’

Trevor J. McDougall - University of New South Wales

'Vallis has written a compendious account of geophysical fluid mechanics with coverage of many topics not easily found in other textbooks and research monographs. In the first five chapters the fundamentals are covered thoroughly at the level of a good introductory one-semester class required for beginning meteorologists and oceanographers. The other seventeen chapters contain a mixture of topics, all treated at the level of a research monograph. Researchers looking for an informative and coherent treatment of the dynamics of the atmosphere and ocean, starting at a fundamental level, and proceeding to advanced topics, will find that this book is a truly superb resource. … The book is particularly notable for its even-handed treatment of the ocean and the atmosphere and its synthetic discussion of observations, numerics and analytic methods. Other unique features include signposted guides to unsettled research problems, extensive historical notes and even relevant literary quotations.'

William R. Young - Scripps Institution of Oceanography

'Vallis writes explanations as clear as tropical ocean waters, bringing fresh new light to complex concepts. This expanded text will be immediately useful both for graduate students and seasoned researchers in the field.'

Dargan M. W. Frierson - University of Washington

Praise for the first edition:'… provide[s] a clear and consistent view from the fundamentals to the current research topics … extremely helpful to introduce the issues of fluid dynamics to students … I would be happy to see this wonderful textbook on as many desks of our community as possible.'

Source: Meteorologische Zeitschrift

Praise for the first edition:' …sure to grace the shelves of libraries and … [that of] individuals for many years to come, both as a reference and a tutorial text.'

Source: Quarterly Journal of the Royal Meteorological Society

Praise for the first edition:'… highly recommended textbook: those who would like to gain a deeper understanding of the large-scale atmospheric and oceanic circulation, and at the same time want to be provided with the necessary hydrodynamic foundations, will be served very well indeed by this book.'

Source: Physik Journala

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Page 1 of 2

Page 1 of 2

Abarbanel, H. D. I. & Young, W. R., Eds., 1987. General Circulation of the Ocean. Springer-Verlag, 291 pp.
Abbe, C., 1901. The physical basis of long-range weather forecasts. Mon. Wea. Rev, 29, 551–561.
Ablowitz, M. J., 2011. Nonlinear dispersive waves: asymptotic analysis and solitons. Vol. 47, Cambridge University Press, 311 pp.
Abramowitz, M. & Stegun, I. A., 1965. Handbook of Mathematical Functions. Dover Publications, 1046 pp.
Allen, J. S., 1993. Iterated geostrophic intermediate models. J. Phys. Oceanogr., 23, 2447–2461.
Allen, J. S., Barth, J. A. & Newberger, P. A., 1990a. On intermediate models for barotropic continental shelf and slope flow fields. Part I: Formulation and comparison of exact solutions. J. Phys. Oceanogr., 20, 1017–1042.
Allen, J. S., Barth, J. A. & Newberger, P. A., 1990b. On intermediate models for barotropic continental shelf and slope flow fields. Part II: Comparison of numerical model solutions in doubly periodic domains. J. Phys. Oceanogr., 20, 1043–1082.
Allen, J. S., Holm, D. D. & Newberger, P. A., 2002. Extended-geostrophic Euler–Poincaré models for mesoscale oceanographic flow. In J, Norbury & I, Roulstone, Eds., Large-scale Atmosphere–Ocean Dynamics I. Cambridge University Press.
Ambaum, M. H. P., 2010. Thermal Physics of the Atmosphere. Wiley, 239 pp.
Andrews, D. G., 1987. On the interpretation of the Eliassen–Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113, 323–338.
Andrews, D. G., 2010. An Introduction to Atmospheric Physics. Cambridge University Press, 237 pp.
Andrews, D. G., Holton, J. R. & Leovy, C. B., 1987. Middle Atmosphere Dynamics. Academic Press, 489 pp.
Andrews, D. G. & McIntyre, M. E., 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.
Andrews, D. G. & McIntyre, M. E., 1978. Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185.
Angell, J. K. & Korshover, J., 1964. Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479–492.
Arakawa, A., 2004. The cumulus parameterization problem: Past, present, and future. J. Climate., 17, 13, 2493–2525.
Arakawa, A. & Schubert, W. H., 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, part i. J. Atmos. Sci., 31, 3, 674–701.
Arbic, B. K., Flierl, G. R. & Scott, R. B., 2007. Cascade inequalities for forced-dissipated geostrophic turbulence. J. Phys. Oceanogr., 37, 1470–1487.
Arnold, V. I., 1965. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Akad. Nauk SSSR., 162, 975–978. Engl. transl.: Sov. Math..6, 773–777 (1965).
Arnold, V. I., 1966. On an a priori estimate in the theory of hydrodynamic stability. Izv. Vyssh. Uchebn. Zaved. Math., 54, 3–5. Engl. transl.: Am Mat. Soc. Transl. Ser.,.2, 79, 267–289 (1969).
Assmann, R., 1902. & Uuml;ber die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. (On the existence of a warmer airflow at heights from 10 to 15 km). Sitzber. Königl. Preuss. Akad. Wiss. Berlin., 24, 495–504.
Aubin, D. & Dahan Dalmedico, A., 2002. Writing the history of dynamical systems and chaos: longue durée. and revolution, disciplines and cultures. Historia Mathematica., 29, 1–67.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K. et al., 2001. The quasi-biennial oscillation. Rev. Geophys., 39, 179–229.
Ball, J. M. & James, R. D., 2002. The scientific life and influence of Clifford Ambrose Truesdell III. Arch. Rational Mech. Anal., 161, 1–26.
Bannon, P. R., 1995. Potential vorticity conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci., 52, 2301–2312.
Bannon, P. R., 1996. On the anelastic equation for a compressible atmosphere. J. Atmos. Sci., 53, 3618–3628.
Bartello, P. & Warn, T., 1996. Self-similarity of decaying two-dimensional turbulence. J. Fluid Mech., 326, 357–372.
Batchelor, G. K., 1953a. The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Quart. J. Roy. Meteor. Soc., 79, 224–235.
Batchelor, G. K., 1953b. The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.
Batchelor, G. K., 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1: General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–133.
Batchelor, G. K., 1967. An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.
Batchelor, G. K., 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl., 12, II–233—II–239.
Battisti, D. S., 1988. Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere– ocean model. J. Atmos. Sci., 45, 2889–2919.
Baumert, H. Z., Simpson, J. & Sündermann, J., Eds., 2005. Marine Turbulence: Theories, Observations an. Models. Cambridge University Press, 630 pp.
Bell, E. T., 1937. Men of Mathematics. Simon & Schuster, 590 pp.
Bell, M. J., 2015a. Meridional overturning circulations driven by surface wind and buoyancy forcing. J. Phys. Oceanogr., 45, 2701–2714.
Bell, M. J., 2015b. Water mass transformations driven by Ekman upwelling and surface warming in subpolar gyres. J. Phys. Oceanogr., 45, 2356–2380.
Bender, C. M. & Orszag, S. A., 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw- Hill, 593 pp.
Berrisford, P., Marshall, J. C. & White, A. A., 1993. Quasi-geostrophic potential vorticity in isentropic coordinates. Quart. J. Roy. Meteor. Soc., 119, 778–782.
Betts, A. K., 1973. Non-precipitating convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178–196.
Betts, A. K., 1986. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.
Betts, A. K. & Miller, M. J., 1986. A new convective adjustment scheme. Part II: Single column test using GATE wave, BOMEX, ATEX and Arctic air mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.
Birner, T., 2006. Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104.
Birner, T., Dörnbrack, A. & Schumann, U., 2002. How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 1700.
Bjerknes, J., 1919. On the structure of moving cyclones. Geofys. Publ., 1 (2), 1–8.
Bjerknes, J., 1937. Die Theorie der aussertropischen Zyklonenbildung (The theory of extra-tropical cyclone formation). Meteor. Zeitschr., 12, 460–466.
Bjerknes, J., 1959. Atlantic air–sea interaction. In Advances in Geophysics., Vol. 10, pp. 1–82. Academic Press.
Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.
Bjerknes, V., 1898a. Über die Bildung von Cirkulationsbewegungen und Wirbeln in reibunglosen Flüssigkeiten (On the generation of circulation and vortices in inviscid fluids). Skr. Nor. Vidensk.-Akad. 1: Mat.-Naturvidensk. Kl., 5, 3–29.
Bjerknes, V., 1898b. Über einen hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die Mechanik der Atmosphäre und des Weltmeeres (On a fundamental principle of hydrodynamics and its application particularly to the mechanics of the atmosphere and the world's oceans). Kongl. Sven. Vetensk. Akad. Handlingar., 31, 1–35.
Bjerknes, V., 1902. Cirkulation relativ zu der Erde (Circulation relative to the Earth). Meteor. Z., 37, 97–108.
Bjerknes, V., 1904. Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physic (The problem of weather forecasting as a problem in mathematics and physics). Meteor. Z., January, 1–7. Engl. transl.: Y, Mintz, in Shapiro and Grønas (1999), pp. 1–7.
Blumen, W., 1968. On the stability of quasi-geostrophic flow. J. Atmos. Sci., 25, 929–933.
Boccaletti, G., Pacanowski, R. C., Philander, S. G. H. & Fedorov, A. V., 2004. The thermal structure of the upper ocean. J. Phys. Oceanogr., 34, 888–902.
Boer, G. J. & Shepherd, T. G., 1983. Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164–184.
Boffetta, G. & Ecke, R. E., 2012. Two-dimensional turbulence. Ann. Rev. Fluid Mech., 44, 427–451.
Bohren, C. F. & Albrecht, B. A., 1998. Atmospheric thermodynamics. Oxford University Press, 416 pp.
Bolton, D., 1980. The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053.
Booker, J. R. & Bretherton, F. P., 1967. The critical layer for internal gravity waves in a shear flow. J. Flui. Mech., 27, 513–539.
Boussinesq, J., 1903. Théorie analytique de la chaleur (Analytic theory of heat). Tome, Paris, Gauthier-Villars., II, 170–172.
Box, G. E. P., 1976. Science and statistics. J. Am. Stat. Assoc., 71, 791–799.
Box, G. E. P., 1979. Robustness in the strategy of scientific model building. In R. L, Launer & G. N., Wilkinson, Eds., Robustness in Statistic., pp. 201–236. Academic Press.
Boyd, J. P., 1976. The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 2285–2291.
Boyd, J. P., 1978. The effects of latitudinal shear on equatorial waves. Part 1. Theory and method. J. Atmos. Sci., 35, 2236–2258.
Boyd, J. P., 1980. The nonlinear equatorial Kelvin wave. J. Phys. Oceanogr., 10, 1–11.
Branscome, L. E., 1983. The Charney baroclinic stability problem: approximate solutions and modal structures. J. Atmos. Sci., 40, 1393–1409.
Bretherton, C. S. & Schär, C., 1993. Flux of potential vorticity substance: a simple derivation and a uniqueness property. J. Atmos. Sci., 50, 1834–1836.
Bretherton, C. S. & Smolarkiewicz, P. K., 1989. Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740–759.
Bretherton, C. S. & Sobel, A. H., 2002. A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. . Climate., 15, 2907–2920.
Bretherton, C. S. & Sobel, A. H., 2003. The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451–460.
Bretherton, F. P., 1964. Low frequency oscillations trapped near the equator. Tellus., 16, 181–185.
Bretherton, F. P., 1966a. Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92, 335–345.
Bretherton, F. P., 1966b. Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325–334.
Bretherton, F. P., 1969. Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213–243.
Brewer, A. W., 1949. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 251–363.
Brillouin, L., 1926. La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives (The wave mechanics of Schrödinger: a general method of solution by successive approximation). Comptes Rendus., 183, 24–26.
Browning, G., Kreiss, H. & Schubert, W., 2000. The role of gravity waves in slowly varying in time tropospheric motions near the equator. J. Atmos. Sci., 57, 4008–4019.
Bryan, F., 1986. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature., 323, 301–304.
Bryden, H. & Brady, E. C., 1985. Diagnostic study of the three-dimensional circulation of the upper equatorialPacific Ocean. J. Phys. Oceanogr., 15, 1255–1273.
Buchanan, J. Y., 1886. On the similarities in the physical geography of the great oceans. Proc. Roy. Geogr. Soc., 8, 753–770.
Bühler, O., 2009. Waves and Mean Flows. Cambridge University Press, 370 pp.
Burger, A., 1958. Scale considerations of planetary motions of the atmosphere. Tellus., 10, 195–205.
Burke, A., Stewart, A. L., Adkins, J. F., Ferrari, R. et al., 2015. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanog., 30, 1021–1039.
Caballero, R., 2014. Physics of the Atmosphere. IOP Publishing, 132 pp.
Callen, H. B., 1985. Thermodynamics and an Introduction to Themostatistics. John Wiley & Sons, 493 pp.
Cane, M. A., 1979a. The response of an equatorial ocean to simple wind stress patterns: I. Model formulation and analytic results. J. Mar. Res., 37, 232–252.
Cane, M. A., 1979b. The response of an equatorial ocean to simple wind stress patterns: II. Numerical results. J. Mar. Res., 37, 355–398.
Cane, M. A. & Zebiak, S. E., 1985. A theory for El Niño and the Southern Oscillation. Science., 228, 1084–1087.
Carillo, C. N., 1892. Desertacion sobre las corrientes y estudios de la corriente Peruana de Humboldt. (Dissertation on currents and studies of the Peruvian Humboldt current). Bol. Soc. Geogr. Lima., 11, 72–110.
Carlini, F., 1837. Ricerche sulla convergenza della serie che serva alla soluzione del problema di Keplero (Research on the convergence of series for the solution of Kepler's problem). Milan.
Cessi, P., 2001. Thermohaline circulation variability. In Conceptual Models of the Climate. Woods Hole Program in Geophysical Fluid Dynamics.(2001). Also available from
Cessi, P. & Fantini, M., 2004. The eddy-driven thermocline. J. Phys. Oceanogr., 34, 2642–2658.
Cessi, P. & Young, W. R., 1992. Multiple equilibria in two-dimensional thermohaline circulation. J. Flui. Mech., 241, 291–309.
Chai, J., 2016. Understanding geostrophic turbulence in a hierarchy of models. Ph. D thesis, Princeton University.
Chandrasekhar, S., 1961. Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 652 pp. Reprinted by Dover Publications, 1981.
Chang, E. K. M. & Orlanski, I., 1994. On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51, 3823–3828.
Chang, P., Ji, L., Li, H. & Flügel, M., 1996. Chaotic dynamics versus stochastic processes in El Niño–Southern Oscillation in coupled ocean–atmosphere models. Physica D., 98, 301–320.
Chapman, D. C., Malanotte-Rizzoli, P. & Hendershott, M., 1989. Wave motions in the ocean. Unpublished notes based on lectures by Myrl Hendershott.
Chapman, S. & Lindzen, R. S., 1970. Atmospheric Tides. Gordon and Breach, 200 pp.
Charlton, A. J. & Polvani, L. M., 2007. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate., 20, 449–469.
Charlton, A. J., Polvani, L. M., Perlwitz, J., Sassi, F. et al., 2007. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate., 20, 470–488.
Charney, J. G., 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.
Charney, J. G., 1948. On the scale of atmospheric motion. Geofys. Publ. Oslo., 17(2), 1–17.
Charney, J. G., 1955. The Gulf Stream as an inertial boundary layer. Proc. Nat. Acad. Sci., 41, 731–740.
Charney, J. G., 1960. Non-linear theory of a wind-driven homogeneous layer near the equator. Deep-Se. Res., 6, 303–310.
Charney, J. G., 1963. A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607–609.
Charney, J. G., 1971. Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095.
Charney, J. G. & Drazin, P. G., 1961. Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109.
Charney, J. G. & Eliassen, A., 1949. A numerical method for predicting the perturbations of the mid-latitude westerlies. Tellus., 1, 3 8–54.
Charney, J. G. & Eliassen, A., 1964. On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75.
Charney, J. G. & Stern, M. E., 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172.
Charnock, H., Green, J., Ludlam, F., Scorer, R. & Sheppard, P., 1966. Dr. E. T. Eady, B. A. (Obituary). Quart. J. Roy. Meteor. Soc., 92, 591–592.
Chasnov, J. R., 1991. Simulation of the inertial-conductive subrange. Phys. Fluids., 3, 1164–1168.
Chelton, D. B., de Szoeke, R. A., Schlax, M. G., Naggar, K. E. & Siwertz, N., 1998. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433–460.
Christiansen, B., 1999. Stratospheric vacillations in a general circulation model. J. Atmos. Sci., 56, 1858–1872.
Christiansen, B., 2000. Chaos, quasiperiodicity, and interannual variability: studies of a stratospheric vacillation model. J. Atmos. Sci., 57, 3161–3173.
Clarke, A. J., 2008. An Introduction to the Dynamics of El Niño and the Southern Oscillation. Elsevier, 308 pp.
Clarke, A. J., Van Gorder, S. & Colantuono, G., 2007. Wind stress curl and enso discharge/recharge in the equatorial Pacific. J. Phys. Oceanogr., 37, 1077–1091.
Colin de Verdière, A., 1980. Quasi-geostrophic turbulence in a rotating homogeneous fluid. Geophys. Astrophys. Fluid Dyn., 15, 213–251.
Colin de Verdière, A., 1989. On the interaction of wind and buoyancy driven gyres. J. Mar. Res., 47, 595–633.
Conkright, M. E., Antonov, J., Baranova, O., Boyer, T. P. et al., 2001. World ocean database 2001, vol. 1. In S, Levitus, Ed., NOAA Atlas NESDIS 42., pp. 167. US Government Printing Office, Washington DC.
Coriolis, G. G., 1832. Mémoire sur le principe des forces vives dans les mouvements relatifs des machines (On the principle of kinetic energy in the relative movement of machines). J. Ec. Polytech., 13, 268–301.
Coriolis, G. G., 1835. Mémoire sur les équations du mouvement relatif des systèmes de corps (On the equations of relative motion of a system of bodies). J. Ec. Polytech., 15, 142–154.
Corrsin, S., 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469–473. Erratum: J. Appl. Phys..22, 1292, (1951).
Craig, G. C. & Gray, S. L., 1996. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 3528–3540.
Cressman, G. P., 1996. The origin and rise of numerical weather prediction. In J. R, Fleming, Ed., Historica. Essays on Meteorology 1919–199., pp. 617. American Meteorological Society.
Cromwell, T., 1953. Circulation in a meridional plane in the central equatorial Pacific. J. Mar. Res., 12, 196–213.
Da Vinci, L., 1500. The notebooks of Leonardo da Vinci,.Vol. 2. J. P, Richter, Ed. Dover Publications, 1970.
Danielsen, E. F., 1990. In defense of Ertel's potential vorticity and its general applicability as a meteorological tracer. J. Atmos. Sci., 47, 2353–2361.
Danilov, S. & Gryanik, V., 2002. Rhines scale and spectra of the plane turbulence with bottom drag. Phys. Rev. E., 65, 067301–1–067301–3.
Danilov, S. & Gurarie, D., 2001. Quasi-two-dimensional turbulence. Usp. Fiz. Nauk., 170, 921–968.
Davidson, P., 2015. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 688 pp.
Davies-Jones, R., 2003. Comments on “A generalization of Bernoulli's theorem”. J. Atmos. Sci., 60, 2039–2041.
Davis, R. E., de Szoeke, R., Halpern, D. & Niiler, P., 1981. Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28, 1427–1452.
De Morgan, A., 1872. A Budget of Paradoxes. Thoemmmes Continuum, 814 pp.
de Szoeke, R. & Bennett, A. F., 1993. Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 24, 2254–2264.
de Szoeke, R. A., 2000. Equations of motion using thermodynamic coordinates. J. Phys. Oceanogr., 30, 2814–2829.
de Szoeke, R. A., 2004. An effect of the thermobaric nonlinearity of the equation of state: A mechanism for sustaining solitary Rossby waves. J. Phys. Oceanogr., 34, 2042–2056.
Dee, D., Uppala, S., Simmons, A., Berrisford, P. et al., 2011. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.
Defant, A., 1921. Die Zirkulation der Atmosphäre in den gemäßigten Breiten der Erde. Grundzüge einer Theorie der Klimaschwankungen (The circulation of the atmosphere in the Earth's mid-latitudes. Basic features of a theory of climate fluctuations). Geograf. Ann., 3, 209–266.
Dellar, P. J., 2011. Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere. J. Fluid Mech., 674, 174–195.
Dewar, W. K. & Huang, R. X., 1995. Fluid flow in loops driven by freshwater and heat fluxes. J. Fluid Mech., 297, 153–191.
Dewar, W. K., Samelson, R. S. & Vallis, G. K., 2005. The ventilated pool: a model of subtropical mode water. J. Phys. Oceanogr., 35, 137–150.
Dias, J. & Kiladis, G. N., 2014. Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 6904–6913.
Dickinson, R. E., 1968. Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 984–1002.
Dickinson, R. E., 1969. Theory of planetary wave–zonal flow interaction. J. Atmos. Sci., 26, 73–81.
Dickinson, R. E., 1980. Planetary waves: theory and observation. In Orographic Effects on Planetary Flows., Number 23 in GARP Publication Series. World Meteorological Organization.
Dijkstra, H. A., 2008. Dynamical Oceanography. Springer, 407 pp.
Dima, I. & Wallace, J. M., 2003. On the seasonality of the Hadley Cell. J. Atmos. Sci., 60, 1522–1527.
Dobson, G. M. B., 1956. Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. Lond. A., 236, 187–193.
Döös, K. & Coward, A., 1997. The Southern Ocean as the major upwelling zone of the North Atlantic. Int. WOCE Newsletter.27, 3–4.
Drazin, P. G. & Reid, W. H., 1981. Hydrodynamic Stability. Cambridge University Press, 527 pp.
Drijfhout, S. S. & Hazeleger, W., 2001. Eddy mixing of potential vorticity versus temperature in an isopycnic ocean model. J. Phys. Oceanogr., 31, 481–505.
Dritschel, D. & McIntyre, M., 2008. Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855–874.
Dunkerton, T., Hsu, C.-P. & McIntrye, M. E., 1981. Some Eulerian and Lagrangian diagnostics for a model stratosphere warming. JAS, 38, 819–843.
Dunkerton, T. J., 1980. A Lagrangian-mean theory of wave, mean-flow interaction with applications to non-acceleration and its breakdown. Rev. Geophys. Space Phys., 18, 387–400.
Dunkerton, T. J., 1982. Shear zone asymmetry in the observed and simulated quasi-biennial oscillation. J. Atmos. Sci., 38, 461–469.
Dunkerton, T. J., 1997. The role of gravity waves in the quasi-biennial oscillation. JGR, 102, 26053–26076.
Dunkerton, T. J., Delisi, D. P. & Baldwin, M. P., 1988. Distribution of major stratospheric warmings in relation to the quasi-biennial oscillation. Geophys. Res. Lett., 115, 136–139.
Durran, D. R., 1989. Improving the anelastic approximation. J. Atmos. Sci., 46, 1453–1461.
Durran, D. R., 1990. Mountain waves and downslope winds. Meteor. Monogr., 23, 59–81.
Durran, D. R., 1993. Is the Coriolis force really responsible for the inertial oscillations? Bull. Am. Meteor. Soc., 74, 2179–2184.
Durran, D. R., 2015. Lee waves and mountain waves. Encycl. Atmos. Sci.,.2nd edn, 4, 95–102.
Durst, C. S. & Sutcliffe, R. C., 1938. The effect of vertical motion on the “geostrophic departure” of the wind. Quart. J. Roy. Meteor. Soc., 64, 240.
Dutton, J. A., 1986. The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. Dover Publications, 617 pp.
Eady, E. T., 1949. Long waves and cyclone waves. Tellus., 1, 33–52.
Eady, E. T., 1950. The cause of the general circulation of the atmosphere. In Cent. Proc. Roy. Meteor. Soc. (1950), pp. 156–172.
Eady, E. T., 1954. The maintenance of the mean zonal surface currents. Proc. Toronto Meteor. Conf. 1953., 138, 124–128. Royal Meteorological Society.
Eady, E. T., 1957. The general circulation of the atmosphere and oceans. In D. R, Bates, Ed., The Earth an. its Atmosphere., pp. 130–151. New York, Basic Books.
Eady, E. T. & Sawyer, J. S., 1951. Dynamics of flow patterns in extra-tropical regions. Quart. J. Roy. Meteor. Soc., 77, 531–551.
Ebdon, R. A., 1960. Notes on the wind flow at 50 mb in tropical and subtropical regions in January 1957 and in 1960. Quart. J. Roy. Meteor. Soc., 86, 540–542.
Eden, C. & Willebrand, J., 1999. Neutral density revisited. Deep Sea Res., Part II., 46, 33–54.
Edmon, H. J., Hoskins, B. J. & McIntyre, M. E., 1980. Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616.
Egger, J., 1976. Linear response of a two-level primitive equation model to forcing by topography. Mon. Wea. Rev., 104, 351–364.
Ekman, V. W., 1905. On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phys., 2, 1–52.
Eliassen, A. & Palm, E., 1961. On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1–23.
Eluszkiewicz, J., Crisp, D., Grainger, R. G., Lambert, A. et al., 1997. Sensitivity of the residual circulation diagnosed from the UARS data to the uncertainties in the input fields and to the inclusion of aerosols. J. Atmos. Sci., 54, 1739–1757.
Emanuel, K., 2007. Quasi-equilibrium dynamics of the tropical atmosphere. In T, Schneider & A, Sobel, Eds., The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges., pp. 143–185. Princeton University Press.
Emanuel, K. A., 1987. An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340.
Emanuel, K. A., 1994. Atmospheric Convection. Oxford University Press, 580 pp.
Emanuel, K. A., 2011. Edward Norton Lorenz, 1917–2008. In Biog. Memoirs., pp. 1–28. Nat'l. Acad. Sci.
Emanuel, K. A., Neelin, J. D. & Bretherton, C. S., 1994. On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.
Er-El, J. & Peskin, R., 1981. Relative diffusion of constant-level balloons in the Southern Hemisphere. J. Atmos. Sci., 38, 2264–2274.
Ertel, H., 1942a. Ein neuer hydrodynamischer Wirbelsatz (A new hydrodynamic eddy theorem). Meteorol. Z., 59, 277–281.
Ertel, H., 1942b. Über des Verhältnis des neuen hydrodynamischen Wirbelsatzes zum Zirculationssatz von V. Bjerknes (On the relationship of the new hydrodynamic eddy theorem to the circulation theorem of V. Bjerknes). Meteorol. Z., 59, 385–387.
Ertel, H. & Rossby, C.-G., 1949a. Ein neuer Erhaltungs-satz der Hydrodynamik (A new conservation theorem of hydrodynamics). Sitzungsber. d. Deutschen Akad. Wissenschaften Berlin., 1, 3–11.
Ertel, H. & Rossby, C.-G., 1949b. A new conservation theorem of hydrodynamics. Geofis. Pura Appl., 14, 189–193.
Fang, M. & Tung, K. K., 1996. A simple model of nonlinear Hadley circulation with an ITCZ: analytic and numerical solutions. J. Atmos. Sci., 53, 1241–1261.
Fang, M. & Tung, K. K., 1999. Time-dependent nonlinear Hadley circulation. J. Atmos. Sci., 56, 1797–1807.
Farrell, B., 1984. Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668–673.
Farrell, B. & Ioannou, P. J., 1995. Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci., 52, 1642–1656.
Farrell, B. F. & Ioannou, P. J., 1996. Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci., 53, 2025–2040.
Farrell, B. F. & Ioannou, P. J., 2008. Formation of jets by baroclinic turbulence. J. Atmos. Sci., 65, 3353–3375.
Feistel, R., 2008. A Gibbs function for seawater thermodynamics for aˆ6° C to 80° C and salinity up to 120 g kg-1. Deep-Sea Res., 55, 1639–1671.
Feistel, R., Wright, D., Kretzschmar, H.-J., Hagen, E. et al., 2010. Thermodynamic properties of sea air. Oce. Sci., 6, 91–141.
Ferrari, R., Griffies, S. M., Nurser, G. & Vallis, G. K., 2010. A boundary-value problem for the parameterized mesoscale eddy transport. Oce. Model., 32, 143–156.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A. et al., 2014. Antarctic sea ice control on ocean circulation in present and glacial climates. Proceedings of the National Academy of Sciences., 111, 8753–8758.
Ferrel, W., 1856a. An essay on the winds and currents of the ocean. Nashville J. Med. & Surg., 11, 287–301.
Ferrel, W., 1856b. The problem of the tides. Astron. J., 4, 173–176.
Ferrel, W., 1858. The influence of the Earth's rotation upon the relative motion of bodies near its surface. Astron. J., V, No. 13 (109), 97–100.
Fjørtoft, R., 1950. Application of integral theorems in deriving criteria for laminar flows and for the baroclinic circular vortex. Geophys. Publ., 17, 1–52.
Fjørtoft, R., 1953. On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow. Tellus., 5, 225–230.
Fleming, E. L., Chandra, S., Schoeberl, M. R. & Barnett, J. J., 1988. Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0-120 km. Technical report, NASA/Goddard Space Flight Center, Greenbelt, MD. NASA Tech. Memo. 100697.
Fofonoff, N. P., 1954. Steady flow in a frictionless homogeneous ocean. J. Mar. Res., 13, 254–262.
Gage, K. S. & Nastrom, G. D., 1986. Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729–740.
Galanti, E. & Tziperman, E., 2000. ENSO's phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57, 2936–2950.
Galperin, B. & Read, P. L., Eds., 2017. Zonal Jets: Phenomenology, Genesis, Physics. Cambridge University Press, 431 pp.
Galperin, B., Sukoriansky, S. & Dikovskaya, N., 2010. Geophysical flows with anisotropic turbulence and dispersive waves: flows with a ö-effect. Ocean Dynamics., 60, 427–441.
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P. et al., 2006. Anisotropic turbulence and zonal jets in rotating flows with a ö-effect. Nonlinear Proc. Geophys., 13, 83–98.
Garcia, R. R., 1987. On the mean meridional circulation of the stratosphere. J. Atmos. Sci., 44, 2599–2609.
Fofonoff, N. P., 1959. Interpretation of oceanographic measurements – thermodynamics. In Physical an. Chemical Properties of Sea Water., Vol. 600. Nat. Acad. Sci., Nat. Res. Counc., Publ.
Fofonoff, N. P. & Montgomery, R. B., 1955. The equatorial undercurrent in the light of the vorticity equation. Tellus., 7, 518–521.
Fox-Kemper, B. & Pedlosky, J., 2004. Wind-driven barotropic gyre I: Circulation control by eddy vorticity fluxes to an enhanced removal region. J. Mar. Res., 62, 169–193.
Franklin, W. S., 1898. Review of P, Duhem, Traité Elementaire de Méchanique Chimique fondée sur la Thermodynamique. Two volumes. Paris, 1897. Phys. Rev., 6, 170–175.
Friedman, R. M., 1989. Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Moder. Meteorology. Cornell University Press, 251 pp.
Frierson, D. M. W., Lu, J. & Chen, G., 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804.
Fu, L. L. & Flierl, G. R., 1980. Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans., 4, 219–246.
Gardiner, C. W., 1985. Handbook of Stochastic Methods. Springer-Verlag, 442 pp.
Gent, P. R. & McWilliams, J. C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.
Gent, P. R., Willebrand, J., McDougall, T. J. & McWilliams, J. C., 1995. Parameterizing eddy-induced transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474.
Gierasch, P. J., 1975. Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci., 32, 1038–1044.
Gill, A. E., 1971. The equatorial current in a homogeneous ocean. Deep-Sea Res., 18, 421–431.
Gill, A. E., 1975. Models of equatorial currents. In Proceedings of Numerical Models of Ocean Circulation., pp. 181–203. National Academy of Science.
Gill, A. E., 1980. Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.
Gill, A. E., 1982. Atmosphere–Ocean Dynamics. Academic Press, 662 pp.
Gill, A. E. & Clarke, A. J., 1974. Wind-induced upwelling, coastal currents and sea-level changes. Deep-Se. Res., 21, 325–345.
Gill, A. E., Green, J. S. A. & Simmons, A. J., 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499–528.
Gille, S. T., 1997. The Southern Ocean momentum balance: evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 2219–2232.
Gilman, P. A. & Glatzmaier, G. A., 1981. Compressible convection in a rotating spherical shell. I. Anelastic equations. Astrophys. J. Suppl. Ser., 45, 335–349.
Giorgetta, M. A., Manzini, E. & Roeckner, E., 2002. Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245.
Gnanadesikan, A., 1999. A simple predictive model for the structure of the oceanic pycnocline. Science., 283, 2077–2079.
Godske, C. L., Bergeron, T., Bjerknes, J. & Budgaard, R. C., 1957. Dynamic Meteorology and Weather Forecasting. American Meteorological Society, 864 pp.
Goody, R. M. & Yung, Y. L., 1995. Atmospheric radiation: theoretical basis. Oxford University Press, 544 pp.
Gough, D. O., 1969. The anelastic approximation for thermal convection. J. Atmos. Sci., 216, 448–456.
Graham, F. S. & McDougall, T. J., 2013. Quantifying the nonconservative production of conservative temperature, potential temperature and entropy. J. Phys. Oceanogr., 43, 838–862.
Grant, H. L., Hughes, B. A., Vogel, W. M. & Moilliet, A., 1968. The spectrum of temperaure fluctuation in turbulent flow. J. Fluid Mech., 344, 423–442.
Grant, H. L., Stewart, R. W. & Moilliet, A., 1962. Turbulent spectra from a tidal channel. J. Fluid Mech., 12, 241–268.
Gray, D. D. & Giorgini, A., 1976. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat and Mass Transfer., 19, 545–551.
Gray, L. J., 2010. Stratospheric equatorial dynamics. In The Stratosphere: Dynamics, Transport, and Chemistry., Geophys. Monogr. Ser, Vol. 190 (2010).
Gray, L. J., Crooks, S., Pascoe, C. & Palmer, M., 2001. Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61, 2777–2796.
Gray, L. J., Phipps, S. J., Dunkerton, T. J., Baldwin, M. P. et al., 2001. A data study of the influence of the upper stratosphere on northern hemisphere stratospheric warmings. Quart. J. Roy. Meteor. Soc., 127, 1985–2003.
Greatbatch, R. J., 1998. Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422–432.
Green, G., 1837. On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc., 6, 457–462.
Green, J. S. A., 1960. A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237–251.
Green, J. S. A., 1970. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157–185.
Green, J. S. A., 1977. The weather during July 1976: some dynamical considerations of the drought. Weather., 32, 120–128.
Green, J. S. A., 1999. Atmospheric Dynamics. Cambridge University Press, 213 pp.
Greenspan, H., 1962. A criterion for the existence of inertial boundary layers in oceanic circulation. Proc. Nat. Acad. Sci., 48, 2034–2039.
Gregg, M. C., 1998. Estimation and geography of diapycnal mixing in the stratified ocean. In J, Imberger, Ed., Physical Processes in Lakes and Oceans., pp. 305–338. American Geophysical Union.
Griffies, S. M., 1998. The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831–841.
Griffies, S. M., 2004. Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.
Grose, W. & Hoskins, B., 1979. On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36, 223–234.
Hadley, G., 1735. Concerning the cause of the general trade-winds. Phil. Trans. Roy. Soc., 29, 58–62.
Haine, T. W. N. & Marshall, J., 1998. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634–658.
Hallberg, R. & Gnanadesikan, A., 2001. An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 3312–3330.
Hamilton, K., Wilson, R. J. & Hemler, R. S., 2001. Spontaneous QBO-like oscillations simulated by the GFDL SKYHI general circulation mode. J. Atmos. Sci., 58, 3271–3292.
Hamilton, K. P., 1998. Dynamics of the tropical middle atmosphere: a tutorial review. Atmosphere–Ocean., 36, 319–354.
Haney, R. L., 1971. Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241–248.
Harnik, N. & Heifetz, E., 2007. Relating overreflection and wave geometry to the counterpropagating Rossby wave perspective: Toward a deeper mechanistic understanding of shear instability. J. Atmos. Sci., 64, 7, 2238–2261.
Haurwitz, B., 1941. Dynamic meteorology. Haurwitz press, 380 pp. Reprinted in 2007.
Hayes, M., 1977. A note on group velocity. Proc. Roy. Soc. Lond. A., 354, 533–535.
Haynes, P., 2005. Stratospheric dynamics. Ann. Rev. Fluid Mech., 37, 263–293.
Haynes, P. H., 2015. Critical layers. Encycl. Atmos. Sci.,.2nd edn, 2, 317–323.
Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G. & Shine, K. P., 1991. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–678.
Haynes, P. H. & McIntyre, M. E., 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841.
Haynes, P. H. & McIntyre, M. E., 1990. On the conservation and impermeability theorem for potential vorticity. J. Atmos. Sci., 47, 2021–2031.
Heckley, W. & Gill, A., 1984. Some simple analytical solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203–217.
Heifetz, E. & Caballero, R., 2014. An alternative view on the role of the ö-effect in the Rossby wave propagation mechanism. Tellus A., 66, 1–6.
Held, I. M., 1982. On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412–417.
Held, I. M., 1983. Stationary and quasi-stationary eddies in the extratropical troposphere: theory. In B, Hoskins & R. P, Pearce, Eds., Large-Scale Dynamical Processes in the Atmosphere., pp. 127–168. Academic Press.
Held, I. M., 1985. Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42, 2280–2288.
Held, I. M., 2000. The general circulation of the atmosphere. In Woods Hole Program in Geophysical Fluid. Dynamics.(2000), pp. 66.
Held, I. M. & Hou, A. Y., 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533.
Held, I. M. & Larichev, V. D., 1996. A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 946–952.
Held, I. M., Tang, M. & Wang, H., 2002. Northern winter stationary waves: theory and modeling. J. Climate., 15, 2125–2144.
Helmholtz, H., 1858. Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewengungen entsprechen (On the integrals of the hydrodynamic equations that correspond to eddy motion). J. Reine Angew. Math., 25, 25–55. Engl. transl.: C, Abbe, Smithson. Misc. Collect., no. 34, pp. 78–93, Smithsonian Institution, Washington DC, 1893.
Helmholtz, H., 1868. Über discontinuirliche Flüssigkeitsbewegungen (On discontinuous liquid motion). Monats. Königl. Preuss. Akad. Wiss. Berlin., 23, 215–228. Engl. trans.: F. Guthrie: On discontinuous movements of fluids. Phil. Mag., 36, 337–346 (1868).
Hendershott, M., 1987. Single layer models of the general circulation. In H, Abarbanel & W. R, Young, Eds., General Circulation of the Ocean., pp. 202–267. Springer-Verlag.
Henning, C. C. & Vallis, G. K., 2004. The effect of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34, 2428–2443.
Henning, C. C. & Vallis, G. K., 2005. The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35, 880–896.
Hide, R., 1969. Dynamics of the atmospheres of major planets with an appendix on the viscous boundary layer at the rigid boundary surface of an electrically conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841–853.
Hilborn, R. C., 2004. Sea-gulls, butterflies, and grasshoppers: a brief history of the butterfly effect in nonlinear dynamics. Am. J. Phys., 72, 425–427.
Hirst, A. C., 1986. Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606–632.
Hockney, R., 1970. The potential calculation and some applications. In Methods of Computational Physics., Vol. 9, pp. 135–211. Academic Press.
Hogg, N., 2001. Quantification of the deep circulation. In G, Siedler, J, Church, & J, Gould, Eds., Ocea. Circulation and Climate: Observing and Modelling the Global Ocean., pp. 259–270. Academic Press.
Hoinka, K. P., 1997. The tropopause: discovery, definition and demarcation. Meteorol. Z., 6, 281–303.
Holland, W. R., Keffer, T. & Rhines, P. B., 1984. Dynamics of the oceanic circulation: The potential vorticity field. Nature., 308, 698–705.
Holloway, G. & Hendershott, M. C., 1977. Stochastic closure for nonlinear Rossby waves. J. Fluid Mech., 82, 747–765.
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A., 1985. Nonlinear stability of fluid and plasma equilibria. Phys. Rep., 123, 1–116.
Holmes, M. H., 2013. Introduction to Perturbation Methods. 2nd edn. Springer, 436 pp.
Holton, J. R., 1974. Forcing of mean flows by stationary waves. J. Atmos. Sci., 31, 942–945.
Holton, J. R., 1992. An Introduction to Dynamic Meteorology. 3rd edn. Academic Press, 507 pp.
Holton, J. R. & Hakim, G., 2012. An Introduction to Dynamic Meteorology. 5th edn. Academic Press, 552 pp.
Holton, J. R., Haynes, P. R., McIntyre, M. E., Douglass, A. R. et al., 1995. Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439.
Holton, J. R. & Lindzen, R. S., 1972. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076–1080.
Holton, J. R. & Mass, C., 1976. Stratospheric vacillation cycles. J. Atmos. Sci., 33, 2218–2215.
Holton, J. R. & Tan, H.-C., 1980. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208.
Holton, J. R. & Tan, H.-C., 1982. The quasi-biennial oscillation in the northern hemisphere lower stratosphere. J. Meteor. Soc. Japan., 60, 140–158.
Hoskins, B. J. & Karoly, D. J., 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.
Hough, S. S., 1897. On the application of harmonic analysis to the dynamical theory of the tides. Part I: On Laplace's “Oscillations of the first species”, and on the dynamics of ocean currents. Phil. Trans. (A)., 189 (IX), 201–258.
Hough, S. S., 1898. On the application of harmonic analysis to the dynamical theory of the tides. Part II: On the general integration of Laplace's dynamical equations. Phil. Trans. (A)., 191 (V), 139–186.
Huang, R. X., 1998. Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669–678.
Huang, R. X., 1999. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746.
Huang, R. X., 2010. Ocean Circulation. Cambridge University Press, 791 pp.
Hughes, C. W., 2002. Sverdrup-like theories of the Antarctic Circumpolar Current. J. Mar. Res., 60, 1–17.
Hughes, C. W. & de Cuevas, B., 2001. Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 2871–2885.
Hughes, G. O. & Griffiths, R. W., 2008. Horizontal convection. Ann. Rev. Fluid Mech., 185–2008, 40.
Ierley, G. R. & Ruehr, O. G., 1986. Analytic and numerical solutions of a nonlinear boundary value problem. Stud. Appl. Math., 75, 1–36.
Ilicak, M. & Vallis, G. K., 2012. Simulations and scaling of horizontal convection. Tellus A., 64, 1–17.
Il'in, A. M. & Kamenkovich, V. M., 1964. The structure of the boundary layer in the two-dimensional theory of ocean currents (in Russian). Okeanologiya., 4 (5), 756–769.
Ingersoll, A. P., 2005. Boussinesq and anelastic approximations revisited: potential energy release during thermobaric instability. J. Phys. Oceanogr., 35, 1359–1369.
IOC, SCOR & IAPSO, 2010. The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Technical report, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, unesco (English).
Iwayama, T., Shepherd, T. G. & Watanabe, T., 2002. An ‘ideal’ form of decaying two-dimensional turbulence. J. Fluid Mech., 456, 183–198.
Jackett, D. R. & McDougall, T. J., 1997. A neutral density variable for the world's oceans. J. Phys. Oceanogr., 28, 237–263.
Jackson, L., Hughes, C. W. & Williams, R. G., 2006. Topographic control of basin and channel flows: the role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 1786–1805.
Jansen, M. & Ferrari, R., 2012. Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695–713.
Jansen, M. & Ferrari, R., 2013. Equilibration of an atmosphere by adiabatic eddy fluxes. J. Atmos. Sci., 70, 2948–2962.
Jeffreys, H., 1924. On certain approximate solutions of linear differential equations of the second order. Proc. London Math. Soc., 23, 428–436.
Jeffreys, H., 1926. On the dynamics of geostrophic winds. Quart. J. Roy. Meteor. Soc., 51, 85–104.
Jeffreys, H. & Jeffreys, B. S., 1946. Methods of Mathematical Physics. Cambridge University Press, 728 pp.
Jin, F.-F., 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.
Jin, F.-F., 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.
Johnson, G. C. & Bryden, H. L., 1989. On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 39–53.
Jones, D. B. A., Schneider, H. R. & McElroy, M. B., 1998. Effects of the quasi-biennial oscillation on the zonally averaged transport of tracer. J. Geophys. Res., 103, 11235–11249.
Jones, W. L., 1967. Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30, 439–448.
Jucker, M., 2014. Scientific visualisation of atmospheric data with ParaView. J. Open Res. Software., 2, e4.
Jucker, M., Fueglistaler, S. & Vallis, G. K., 2013. Maintenance of stratospheric structure in an idealized general circulation model. J. Atmos. Sci., 70, 3341–3358.
Jucker, M., Fueglistaler, S. & Vallis, G. K., 2014. Stratospheric sudden warmings in an idealized GCM. J. Geophys. Res. (Atmospheres)., 119, 11054–11064.
Juckes, M. N., 2000. The static stability of the midlatitude troposphere: the relevance of moisture. J. Atmos. Sci., 57, 3050–3057.
Juckes, M. N., 2001. A generalization of the transformed Eulerian-mean meridional circulation. Quart. J. Roy. Meteor. Soc., 127, 147–160.
Kalnay, E., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.
Karsten, R., Jones, H. & Marshall, J., 2002. The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 39–54.
Keffer, T., 1985. The ventilation of the world's oceans: maps of potential vorticity. J. Phys. Oceanogr., 15, 509–523.
Kessler, W. S., Johnson, G. C. & Moore, D. W., 2003. Sverdrup and nonlinear dynamics of the Pacific equatorial currents. J. Phys. Oceanogr., 33, 994–1008.
Kevorkian, J. & Cole, J. D., 2011. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, 648 pp.
Kibel, I., 1940. Priloozhenie k meteorogi uravnenii mekhaniki baroklinnoi zhidkosti (Application of baroclinic fluid dynamic equations to meteorology). SSSR Ser. Geogr. Geofiz., 5, 627–637.
Kiladis, G. N., Straub, K. H. & Haertel, P. T., 2005. Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 2790–2809.
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E., 2009. Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003.
Killworth, P. D., 1987. A continuously stratified nonlinear ventilated thermocline. J. Phys. Oceanogr., 17, 1925–1943.
Killworth, P. D., 1997. On the parameterization of eddy transfer. Part I: theory. J. Marine Res., 55, 1171–1197.
Killworth, P. D. & McIntyre, M. E., 1985. Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449–492.
Kim, H.-K. & Lee, S., 2001. Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 19, 2859–2871.
Kimoto, M. & Ghil, M., 1993. Multiple flow regimes in the northern hemisphere winter. Part 1: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 2625–2643.
Kolmogorov, A. N., 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Acad. Sci. USSR., 30, 299–303.
Kolmogorov, A. N., 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech., 13, 82–85.
Kraichnan, R., 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids., 10, 1417–1423.
Kraichnan, R. & Montgomery, D., 1980. Two-dimensional turbulence. Rep. Prog. Phys., 43, 547–619.
Kramers, H. A., 1926. Wellenmechanik und halbzahlige Quantisierung (Wave mechanics and semi-integral quantization). Zeit. fur Physik A., 39, 828–840.
Kundu, P., Allen, J. S. & Smith, R. L., 1975. Modal decomposition of the velocity field near the Oregon coast. J. Phys. Oceanogr., 5, 683–704.
Kundu, P., Cohen, I. M. & Dowling, D. R., 2015. Fluid Mechanics. Academic Press, 928 pp.
Kuo, H.-l., 1949. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol., 6, 105–122.
Kuo, H.-l., 1951. Vorticity transfer as related to the development of the general circulation. J. Meteorol., 8, 307–315.
Kushner, P. J., 2010. Annular modes of the troposphere and stratosphere. In The Stratosphere: Dynamics. Transport, and Chemistry., Geophys. Monogr. Ser (2010).
Kushnir, Y., Robinson, W. A., Bladé, I., Hall, N. M. J. et al., 2002. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Climate., 15, 2233–2256.
Labitzke, K., Kunze, M. & Bronnimann, S., 2006. Sunspots, the QBO and the stratosphere in north polar regions — 20 years later. Meteor. Z., 15, 355–363.
LaCasce, J. H. & Ohlmann, C., 2003. Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 65, 285–312.
Lait, L. R., 1994. An alternative form for potential vorticity. J. Atmos. Sci., 51, 1754–1759.
Lamb, H., 1932. Hydrodynamics. Cambridge University Press, reissued by Dover Publications 1945, 768 pp.
Lanczos, C., 1970. The Variational Principles of Mechanics. University of Toronto Press, Reprinted by Dover Publications 1980, 418 pp.
Landau, L. D., 1944. On the problem of turbulence. Dokl. Akad. Nauk SSSR., 44, 311–314.
Landau, L. D. & Lifshitz, E. M., 1987. Fluid Mechanics.(Course of Theoretical Physics, v. 6). 2nd edn. Pergamon Press, 539 pp.
Larichev, V. D. & Held, I. M., 1995. Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 2285–2297.
Latif, M. & Barnett, T., 1996. Decadal climate variability over the North Pacific and North America: dynamics and predictability. J. Climate., 10, 219–239.
Lau, K.-M., 1981. Oscillations in a simple equatorial climate system. J. Atmos. Sci., 38, 248–261.
Lawrence, M. G., 2005. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteor. Soc., 86, 225–233.
LeBlond, P. H. & Mysak, L. A., 1980. Waves in the Ocean. Elsevier, 616 pp.
Ledwell, J., Watson, A. & Law, C., 1998. Mixing of a tracer released in the pycnocline. J. Geophys. Res., 103, 21499–21529.
Lee, M.-M., Marshall, D. P. & Williams, R. G., 1997. On the eddy transfer of tracers: advective or diffusive? J. Mar. Res., 55, 483–595.
Lee, T. D., 1951. Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid. J. Appl. Phys., 22, 524.
Leetmaa, A., Niiler, P. & Stommel, H., 1977. Does the Sverdrup relation account for the mid-Atlantic circulation? J. Mar. Res., 35, 1–10.
Leith, C. E., 1968. Diffusion approximation for two-dimensional turbulence. Phys. Fluids., 11, 671–672.
Lesieur, M., 1997. Turbulence in Fluids: Third Revised and Enlarged Edition. Kluwer, 515 pp.
Levinson, N., 1950. The 1st boundary value problem for for small epsilon. Ann. Math., 51, 429–445.
Lewis, R., Ed., 1991. Meteorological Glossary. 6th edn. Her Majesty's Stationery Office, 335 pp.
Lighthill, J., 1978. Waves in Fluids. Cambridge University Press, 504 pp.
Lighthill, M. J., 1965. Group velocity. J. Inst. Math. Appl., 1, 1–28.
Lighthill, M. J., 1969. Dynamic response of the Indian Ocean to onset of the southwest monsoon. Phil. Trans. Roy. Soc. Lond. A., 265, 45–92.
Lilly, D. K., 1969. Numerical simulation of two-dimensional turbulence. Phys. Fluid Suppl. II., 12, 240–249.
Lilly, D. K., 1996. A comparison of incompressible, anelastic and Boussinesq dynamics. Atmos. Res., 40, 143–151.
Limpasuvan, V., Thompson, D. W. J. & Hartmann, D. L., 2000. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate., 17, 2584–2596.
Lindborg, E., 1999. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288.
Lindborg, E. & Alvelius, K., 2000. The kinetic energy spectrum of the two-dimensional enstrophy turbulence cascade. Phys. Fluids., 12, 945–947.
Lindzen, R. S. & Farrell, B., 1980. The role of the polar regions in global climate, and a new parameterization of global heat transport. Mon. Wea. Rev., 108, 2064–2079.
Lindzen, R. S. & Holton, J. R., 1968. A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 1095–1107.
Lindzen, R. S. & Hou, A. Y., 1988. Hadley circulation for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427.
Lindzen, R. S., Lorenz, E. N. & Plazman, G. W., Eds., 1990. The Atmosphere — a Challenge: the Science of Jul. Gregory Charney. American Meteorological Society,321 pp.
Lindzen, R. S. & Nigam, S., 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.
Liouville, J., 1837. Sur le développement des fonction ou parties de fonction en séries (On the development of functions of parts of functions in series). J. Math. Pures Appl., 2, 16–35.
Lipps, F. B. & Hemler, R. S., 1982. A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 2192–2210.
Longuet-Higgins, M. S., 1964. Planetary waves on a rotating sphere, I. Proc. Roy. Soc. Lond. A., 279, 446–473.
Longuet-Higgins, M. S., 1968. The eigenfunctions of Laplace's tidal equations over a sphere. Proc. Roy. Soc. Lond. A., 262, 511–607.
Lorenz, E. N., 1955. Available potential energy and the maintenance of the general circulation. Tellus., 7, 157–167.
Lorenz, E. N., 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
Lorenz, E. N., 1967. The Nature and the Theory of the General Circulation of the Atmosphere. WMO Publications, Vol. 218, World Meteorological Organization.
Lozier, S., Owens, W. B. & Curry, R. G., 1996. The climatology of the North Atlantic. Prog. Oceanog., 36, 1–44.
Ludlam, F. H., 1966. Cumulus and cumulonimbus convection. Tellus., 18, 687–698.
Lumpkin, R. & Speer, K., 2007. Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.
Luyten, J. R., Pedlosky, J. & Stommel, H., 1983. The ventilated thermocline. J. Phys. Oceanogr., 13, 292–309.
Madden, R. A. & Julian, P. R., 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
Madden, R. A. & Julian, P. R., 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.
Majda, A. J. & Klein, R., 2003. Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393–408.
Majda, A. J. & Stechmann, S. N., 2009. The skeleton of tropical intraseasonal oscillations. Proc. Nat. Acad. Sci., 106, 8417–8422.
Maltrud, M. E. & Vallis, G. K., 1991. Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech., 228, 321–342.
Manabe, S. & Stouffer, R. J., 1988. Two stable equilibria of a coupled ocean–atmosphere model. J. Climate., 1, 841–866.
Manabe, S. & Strickler, R. F., 1964. Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.
Manabe, S. & Wetherald, R. T., 1980. On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci., 37, 99–118.
Mapes, B. E., 1997. Equilibrium vs. activation control of large-scale variations of tropical deep convection. In R. K, Smith, Ed., The Physics and Parameterization of Moist Atmospheric Convection., pp. 321–358. Springer.
Mapes, B. E., 1998. The large-scale part of tropical mesoscale convective system circulations: A linear vertical spectral band model. J. Meteor. Soc. Japan., 76, 29–55.
Mapes, B. E., 2000. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.
Marcus, P. S., 1993. Jupiter's Great Red Spot and other vortices. Ann. Rev. Astron. Astrophys., 31, 523–573.
Margules, M., 1903. Über die Energie der Stürme (On the energy of storms). Jahrb. Kais.-kön Zent. für Met. und Geodynamik, Vienna., 26 pp. Engl. transl.: C. Abbe, Smithson. Misc. Collect., no. 51, pp. 533-595, Smithsonian Institution, Washington D. C., 1910.
Marotzke, J., 1989. Instabilities and multiple steady states of the thermohaline circulation. In D. L. T, Anderson & J, Willebrand, Eds., Oceanic Circulation Models: Combining Data and Dynamics., pp. 501–511. NATO ASI Series, Kluwer.
Marshall, D. P., Maddison, J. R. & Berloff, P. S., 2012. A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539–557.
Marshall, D. P., Williams, R. G. & Lee, M.-M., 1999. The relation between eddy-induced transport and isopycnic gradients of potential vorticity. J. Phys. Oceanogr., 29, 1571–1578.
Marshall, J. & Plumb, R. A., 2008. Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, 344 pp.
Marshall, J. & Speer, K., 2012. Closure of the meridional overturning circulation through southern ocean upwelling. Nature Geosciences., 5, 171–180.
Marshall, J. C., 1981. On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11, 257–271.
Marshall, J. C. & Nurser, A. J. G., 1992. Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22, 583–595.
Marshall, J. C. & Radko, T., 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 22, 2341–2354.
Marshall, J. C. & Schott, F., 1999. Open-ocean convection: observations, theory, and models. Rev. Geophys., 37, 1–64.
Matsuno, T., 1966. Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan., 44, 25–43.
Matsuno, T., 1971. A dynamical model of the sudden stratospheric warming. J. Atmos. Sci., 28, 1479–1494.
Maze, G. & Marshall, J., 2011. Diagnosing the observed seasonal cycle of Atlantic subtropical mode water using potential vorticity and its attendant theorems. J. Phys. Oceanogr., 41, 1986–1999.
McCarthy, M. C. & Talley, L. D., 1999. Three-dimensional isoneutral potential vorticity structure in the Indian Ocean. J. Geophys. Res. (Oceans)., 104, 13251–13267.
McCreary, J. P., 1981. A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Roy. Soc. Lond A., A298, 603–635.
McCreary, J. P., 1985. Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech., 17, 359–407.
McCreary, J. P. & Lu, P., 1994. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J. Phys. Oceanogr., 24, 466–497.
McDougall, T. J., 1987. Neutral surfaces. J. Phys. Oceanogr., 17, 1950–1964.
McDougall, T. J., 1998. Three-dimensional residual mean theory. In E. P, Chassignet & J, Verron, Eds., Ocea. Modeling and Parameterization., pp. 269–302. Kluwer Academic.
McDougall, T. J., 2003. Potential enthalphy: a conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945–963.
McIntosh, P. C. & McDougall, T. J., 1996. Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 1655–1660.
McIntyre, M. E. & Norton, W. A., 1990. Dissipative wave–mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech., 212, 403–435.
McIntyre, M. E. & Norton, W. A., 2000. Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 1214–1235.
McIntyre, M. E. & Shepherd, T. G., 1987. An exact local conservation theorem for finite-amplitude disturbances to nonparallel shear flows, with remarks on Hamiltonian structure and on Arnol'd's stability theorems. J. Fluid Mech., 181, 527–565.
McKee, W. D., 1973. The wind-driven equatorial circulation in a homogeneous ocean. Deep-Sea Res., 20, 889–899.
McPhaden, M. J., Timmermann, A., Widlansky, M. J., Balmaseda, M. A. & Stockdale, T. N., 2015. The curious case of the El Niño that never happened: A perspective from 40 years of progress in climate research and forecasting. Bull. Am. Meteor. Soc., 96, 1647–1665.
McWilliams, J. C., 1984. The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21–43.
Mihaljan, J. M., 1962. A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophysical J., 136, 1126–1133.
Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J., 2008. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res., Part I., 55, 50–72.
Moffatt, H. K., 1983. Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Progress Phys., 46, 621–664.
Monin, A. S. & Yaglom, A. M., 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, Vols. 1 and 2. MIT Press and Dover Publications, 1680 pp.
Morel, P. & Larcheveque, M., 1974. Relative dispersion of constant-level balloons in the 200 mb general circulation. J. Atmos. Sci., 31, 2189–2196.
Mundt, M., Vallis, G. K. & Wang, J., 1997. Balanced models for the large- and meso-scale circulation. J. Phys. Oceanogr., 27, 1133–1152.
Munk, W. H., 1950. On the wind-driven ocean circulation. J. Meteorol., 7, 79–93.
Munk, W. H., 1966. Abyssal recipes. Deep-Sea Res., 13, 707–730.
Munk, W. H. & Palmén, E., 1951. Note on dynamics of the Antarctic Circumpolar Current. Tellus., 3, 53–55.
Munk, W. H. & Wunsch, C., 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1976–2009.
Namias, J., 1959. Recent seasonal interaction between North Pacific waters and the overlying atmospheric circulation. J. Geophys. Res., 64, 631–646.
Neelin, J. D., 1988. A simple model for surface stress and low-level flow in the tropical atmosphere driven by prescribed heating. Quart. J. Roy. Meteor. Soc., 114, 747–770.
Neelin, J. D. & Zeng, N., 2000. A quasi-equilibrium tropical circulation model—formulation. J. Atmos. Sci., 57, 1741–1766.
Newell, A. C., 1969. Rossby wave packet interactions. J. Fluid Mech., 35, 255–271.
Newman, P. A., Coy, L., Pawson, S. & Lait, L. R., 2016. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 8791–8797. doi:10.1002/2016GL070373.
Nicholls, S., 1985. Aircraft observations of the Ekman layer during the joint air-sea interaction experiment. Quart. J. Roy. Meteor. Soc., 111, 391–426.
Nikurashin, M. & Vallis, G. K., 2011. A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485–502.
Nikurashin, M. & Vallis, G. K., 2012. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 1652–1667.
Nof, D., 2003. The Southern Ocean's grip on the northward meridional flow. In Progress in Oceanography., Vol. 56, pp. 223–247. Pergamon.
Novikov, E. A., 1959. Contributions to the problem of the predictability of synoptic processes. Izv. An. SSS. Ser. Geophys., 11, 1721. Eng. transl.: Am. Geophys. U. Transl.,.1209-1211.
Nycander, J., 2011. Energy conversion, mixing energy, and neutral surfaces with a nonlinear equation of state. J. Phys. Oceanogr., 41, 28–41.
Nycander, J. & Roquet, F., 2015. The nonlinear equation of state of sea water and the global water mass distribution. Geophys. Res. Lett., 42, 7714–7721. In press.
Oberbeck, A., 1879. Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge vor Temperaturdifferenzen (On the thermal conduction of liquids taking into account flows due to temperature differences). Ann. Phys. Chem., Neue Folge., 7, 271–292.
Oberbeck, A., 1888. Über die Bewegungserscheinungen der Atmosphäre (On the phenomena of motion in the atmosphere). Sitzb. K. Preuss. Akad. Wiss., 7, 383–395 and 1129–1138. Engl trans.: in B, Saltzman, Ed., Theory of Thermal Convection., Dover, 162–183.
Obukhov, A. M., 1941. Energy distribution in the spectrum of turbulent flow. Izv. Akad. Nauk. SSR, Ser. Geogr. Geofiz., 5, 453–466.
Obukhov, A. M., 1949. Structure of the temperature field in turbulent flows. Izv. Akad. Nauk. SSR, Ser. Geogr. Geofiz., 13, 58–63.
Obukhov, A. M., 1962. On the dynamics of a stratified liquid. Dokl. Akad. Nauk SSSR., 145, 1239–1242. Engl. transl.: Soviet Physics–Dokl..7, 682–684.
Oetzel, K. & Vallis, G. K., 1997. Strain, vortices, and the enstrophy inertial range in two-dimensional turbulence. Phys. Fluids., 9, 2991–3004.
O'Gorman, P. A., Lamquin, N., Schneider, T. & Singh, M. S., 2011. The relative humidity in an isentropic advection–condensation model: Limited poleward influence and properties of subtropical minima. J. Atmos. Sci., 68, 3079–3093.
O'Gorman, P. A. & Pullin, D. I., 2005. Effect of Schmidt number of the velocity-scaler cospectrum in isotropic turbulence with a mean scalar gradient. J. Fluid Mech., 532, 111–140.
Ogura, Y. & Phillips, N. A., 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.
Olbers, D., 1998. Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the Circumpolar Current”. J. Phys. Oceanogr., 28, 1647–1654.
Olbers, D., Borowski, D., Völker, C. & Wolff, J.-O., 2004. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarctic Science., 16, 439–470.
Olbers, D., Willebrand, J. & Eden, C., 2012. Ocean Dynamics. Springer, 704 pp.
Ollitrault, M., Gabillet, C. & Colin de Verdière, A., 2005. Open ocean regimes of relative dispersion. J. Fluid. Mech., 533, 381–407.
Onsager, L., 1931. Reciprocal relations in irreversible processes. II. Phys. Rev., 38, 2265–2279.
Onsager, L., 1949. Statistical hydrodynamics. Nuovo Cim. (Suppl.)., 6, 279–287.
Ooyama, K.., 1963. A dynamical model for the study of tropical cyclone development. New York University, 26pp, unpublished manuscript.
Ooyama, K. V., 1982. Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan., 60, 369–380.
Orlanski, I. & Sheldon, J. P., 1995. Stages in the energetics of baroclinic systems. Tellus A., 47, 605–628.
Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. et al., 2016. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science., 353, 1424–1427.
Paldor, N., Rubin, S. & Mariono, A. J., 2007. A consistent theory for linear waves of the shallow-water equations on a rotating plane in midlatitudes. J. Atmos. Sci., 37, 115–128.
Paldor, N. & Sigalov, A., 2011. An invariant theory of the linearized shallow water equations with rotation and its application to a sphere and a plane. Dyn. Atmos. Oceans., 51, 26–44.
Palmer, T. N., 1981. Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed Eulerian-mean formalism. J. Atmos. Sci., 38, 844–855.
Palmer, Ts. N., 1997. A nonlinear dynamical perspective on climate prediction. J. Climate., 12, 575–591.
Palmer, T. N., 2009. Edward Lorenz, 1917–2008. Biogr. Mems Fell. R. Soc., 55, 139–155.
Paparella, F. & Young, W. R., 2002. Horizontal convection is non-turbulent. J. Fluid Mech., 466, 205–214.
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N. & Baldwin, M. P., 2005. The quasi-biennial oscillation: Analysis using ERA-40 data. J. Geophys. Res., 110, D08105.
Pauluis, O., 2007. Sources and sinks of available potential energy in a moist atmosphere. J. Atmos. Sci., 64, 2627–2641.
Pauluis, O., 2008. Thermodynamic consistency of the anelastic approximation for a moist atmosphere. J. Atmos. Sci., 65, 2719–2729.
Pedlosky, J., 1964. The stability of currents in the atmosphere and ocean. Part I. J. Atmos. Sci., 21, 201–219.
Pedlosky, J., 1987a. Geophysical Fluid Dynamics. 2nd edn. Springer-Verlag, 710 pp.
Pedlosky, J., 1987b. An inertial theory of the equatorial undercurrent. J. Phys. Oceanogr., 17, 1978–1985.
Pedlosky, J., 1996. Ocean Circulation Theory. Springer-Verlag, 453 pp.
Pedlosky, J., 2003. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer-Verlag, 260 pp.
Peixoto, J. P. & Oort, A. H., 1992. Physics of Climate. American Institute of Physics, 520 pp.
Peltier, W. R. & Stuhne, G., 2002. The upscale turbulence cascade: shear layers, cyclones and gas giant bands. In R. P, Pearce, Ed., Meteorology at the Millennium, pp. 43–61. Academic Press.
Persson, A., 1998. How do we understand the Coriolis force? Bull. Am. Meteor. Soc., 79, 1373–1385.
Philander, S. G., 1990. El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.
Phillips, N. A., 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273–286.
Phillips, N. A., 1956. The general circulation of the atmosphere: a numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123–164.
Phillips, N. A., 1963. Geostrophic motion. Rev. Geophys., 1, 123–176.
Phillips, N. A., 1966. The equations of motion for a shallow rotating atmosphere and the traditional approximation. J. Atmos. Sci., 23, 626–630.
Phillips, N. A., 1973. Principles of large-scale numerical weather prediction. In P, Morel, Ed., Dynamic Meteorology, pp. 1–96. Riedel.
Phillips, O., 1972. Turbulence in a strongly stratified fluid—is it unstable? In Deep Sea Research and Oceanographic Abstracts, Vol. 19 (1972), pp. 79–81. Elsevier.
Pierini, S. & Vulpiani, A., 1981. Nonlinear stability analysis in multi-layer quasigeostrophic system. J. Phys. A, 14, L203–L207.
Pierrehumbert, R. T., 2010. Principles of Planetary Climate. Cambridge University Press, 652 pp.
Pierrehumbert, R. T., Brogniez, H. & Roca, R., 2007. On the relative humidity of the atmosphere. In T, Schneider & A, Sobel, Eds., The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges, pp. 143–185. Princeton University Press.
Pierrehumbert, R. T. & Swanson, K. L., 1995. Baroclinic instability. Ann. Rev. Fluid Mech., 27, 419–467.
Plumb, R., 1981. Instability of the distorted polar night vortex: A theory of stratospheric warmings. J. Atmos. Sci., 38, 2514–2531.
Plumb, R. & McEwan, A., 1978. The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of. the Quasi-Biennial Oscillation. J. Atmos. Sci., 35, 1827–1839.
Plumb, R. A., 1977. The interaction of two internal waves with the mean flow: Implications for the theory of the Quasi-Biennial Oscillation. J. Atmos. Sci., 34, 1847–1858.
Plumb, R. A., 1979. Eddy fluxes of conserved quantities by small-amplitude waves. J. Atmos. Sci., 36, 1699– 1704.
Plumb, R. A., 1984. The quasi-biennial oscillation. In J. R, Holton & T, Matsuno, Eds., Dynamics of the Middle Atmosphere, pp. 217–251. Terra Scientific Publishing.
Plumb, R. A., 1990. A nonacceleration theorem for transient quasi-geostrophic eddies on a threedimensional time-mean flow. J. Atmos. Sci., 47, 1825–1836.
Plumb, R. A., 2002. Stratospheric transport. J. Meteor. Soc. Japan, 80, 793–809.
Plumb, R. A. & Bell, R. C., 1982. An analysis of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335–352.
Poincaré, H., 1893. Théorie des Tourbillons (Theory of Vortices [literally, Swirls]). Georges Carré, Éditeur. Reprinted by Éditions Jacques Gabay, 1990, 211 pp.
Poincaré, H., 1908. Science and Method. T, Nelson and Sons. Engl. transl.: F, Maitland. Reprinted in The Value of Science: Essential Writings of Henri Poincaré, Ed. S. J, Gould, Random House, 584 pp.
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmidt, R. W., 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.
Pope, S. B., 2000. Turbulent Flows. Cambridge University Press, 754 pp.
Price, J. F., Weller, R. A. & Schudlich, R. R., 1987. Wind-driven ocean currents and Ekman transport. Science, 238, 1534–1538.
Proudman, J., 1916. On the motion of solids in liquids. Proc. Roy. Soc. Lond. A, 92, 408–424.
Queney, P., 1948. The problem of air flow over mountains: A summary of theoretical results. Bull. Am. Meteor. Soc., 29, 16–26.
Quinn, W. H., 1974. Monitoring and predicting El Niño invasions. J. Appl. Meteor., 13, 825–830.
Quon, C. & Ghil, M., 1992. Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech., 245, 449–484.
Randall, D. A., 2015. An Introduction to the Global Circulation of the Atmosphere. Princeton University Press, 456 pp.
Randel, W. J., Wu, F., Swinbank, R., Nash, J. & O'Neill, A., 1999. Global QBO circulation derived from UKMO stratospheric analyse. J. Atmos. Sci., 56, 457–474.
Rayleigh, Lord, 1880. On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., 11, 57–70.
Rayleigh, Lord, 1894. The Theory of Sound, Volume II. 2nd edn. Macmillan, 522 pp. Reprinted by Dover Publications, 1945.
Rayleigh, Lord, 1912. On the propagation of waves through a stratified medium, with special reference to the question of reflection. Proc. Roy. Soc. Lond. A, 86, 207–226.
Raymond, D. J., 1995. Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52, 3945–3959.
Raymond, D. J., 1997. Boundary layer quasi-equilibrium. In R. K, Smith, Ed., The Physics and Parameterization of Moist Atmospheric Convection, pp. 387–397. Springer.
Raymond, D. J. & Fuchs, Ž., 2009. Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 3031–3046.
Read, P. L., 2001. Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surveys Geophys., 33, 265–317.
Reed, R. J., 1960. The structure and dynamics of the 26-month oscillation. Paper presented at the 40th anniversary meeting of the Am. Meter. Soc., Boston.
Reed, R. J., Campbell, W. J., Rasmussen, L. A. & Rogers, D. G., 1961. Evidence of a downward-propagating annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66, 813–818.
Reif, F., 1965. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, 651 pp.
Rhines, P. B., 1975. Waves and turbulence on a -plane. J. Fluid. Mech., 69, 417–443.
Rhines, P. B., 1977. The dynamics of unsteady currents. In E. A, Goldberg, I. N, McCane, J. J, O'Brien, & J. H, Steele, Eds., The Sea, Vol. 6, pp. 189–318. J. Wiley and Sons.
Rhines, P. B. & Holland, W. R., 1979. A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289–325.
Rhines, P. B. & Young, W. R., 1982a. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–367.
Rhines, P. B. & Young, W. R., 1982b. A theory of wind-driven circulation. I. Mid-ocean gyres. J. Mar. Res. (Suppl), 40, 559–596.
Richardson, L. F., 1920. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. Lond. A, 97, 354–373.
Richardson, L. F., 1922. Weather Prediction by Numerical Process. Cambridge University Press, 236 pp. Reprinted by Dover Publications.
Richardson, L. F., 1926. Atmospheric diffusion on a distance-neighbour graph. Proc. Roy. Soc. Lond. A, 110, 709–737.
Richardson, P. L., 1983. Eddy kinetic-energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 4355–4367.
Riehl, H. & Fultz, D., 1957. Jet stream and long waves in a steady rotating-dishpan experiment: structure of the circulation. Quart. J. Roy. Meteor. Soc., 82, 215–231.
Rintoul, S. R., Hughes, C. & Olbers, D., 2001. The Antarctic Circumpolar Current system. In G, Siedler, J, Church, & J, Gould, Eds., Ocean Circulation and Climate, pp. 271–302. Academic Press.
Ripa, P., 1981. On the theory of nonlinear wave–wave interactions among geophysical waves. J. Fluid Mech., 103, 87–115.
Robinson, A. R., 1966. An investigation into the wind as the cause of the equatorial undercurrent. J. Mar. Res., 24, 179–204.
Robinson, A. R., Ed., 1984. Eddies in Marine Science. Springer-Verlag, 609 pp.
Robinson, A. R. & McWilliams, J. C., 1974. The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281–294.
Robinson, A. R. & Stommel, H., 1959. The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295–308.
Rooth, C., 1982. Hydrology and ocean circulation. Prog. Oceanogr., 11, 131–149.
Roquet, F., Madec, G., Brodeau, L. & Nycander, J., 2015. Defining a simplified yet ‘realistic’ equation of state for seawater. J. Phys. Oceanogr., 45, 2564–2579.
Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M., 2015. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Oce. Model., 90, 29–43.
Rossby, C.-G., 1936. Dynamics of steady ocean currents in the light of experimental fluid dynamics. Papers Phys. Oceanog. Meteor., 5, 1–43.
Rossby, C.-G., 1938. On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res., 5, 239–263.
Rossby, C.-G., 1939. Relations between variation in the intensity of the zonal circulation and the displacements of the semi-permanent centers of action. J. Marine Res., 2, 38–55.
Rossby, C.-G., 1940. Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66,suppl., 68–87.
Rossby, C.-G., 1949. On the nature of the general circulation of the lower atmosphere. In G. P, Kuiper, Ed., The Atmospheres of the Earth and Planets, pp. 16–48. University of Chicago Press.
Rossby, H. T., 1965. On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res., 12, 9–16.
Ruddick, B., McDougall, T. & Turner, J., 1989. The formation of layers in a uniformly stirred density gradient. Deep-Sea Res., 36, 597–609.
Rudnick, D. L. & Weller, R. A., 1993. Observations of superinertial and near-inertial wind-driven flow. J. Phys. Oceanogr., 23, 2351–2359.
Ruelle, D. & Takens, F., 1971. On the nature of turbulence. Commun. Math. Phys., 20, 167–192.
Salmon, R., 1980. Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 10, 25–52.
Salmon, R., 1983. Practical use of Hamilton's principle. J. Fluid Mech., 132, 431–444.
Salmon, R., 1990. The thermocline as an internal boundary layer. J. Mar. Res., 48, 437–469.
Salmon, R., 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.
Saltzman, B., 1962. Finite amplitude free convection as an initial value problem. J. Atmos. Sci., 19, 329–341.
Samelson, R. M., 1999a. Geostrophic circulation in a rectangular basin with a circumpolar connection. J. Phys. Oceanogr., 29, 3175–3184.
Samelson, R. M., 1999b. Internal boundary layer scaling in ‘two-layer’ solutions of the thermocline equations. J. Phys. Oceanogr., 29, 2099–2102.
Samelson, R. M., 2004. Simple mechanistic models of middepth meridional overturning. J. Phys. Oceanogr., 34, 2096–2103.
Samelson, R. M., 2011. The Theory of Large-Scale Ocean Circulation. Cambridge University Press, 193 pp.
Samelson, R. M. & Tziperman, E., 2001. Instability of the chaotic ENSO: the growth-phase predictability barrier. J. Atmos. Sci., 58, 3613–3625.
Samelson, R. M. & Vallis, G. K., 1997. Large-scale circulation with small diapycnal diffusion: the twothermocline limit. J. Mar. Res., 55, 223–275.
Sandström, J. W., 1908. Dynamische Versuche mit Meerwasser (Dynamical experiments with seawater). Annal. Hydrogr. Marit. Meteorol., 36, 6–23.
Sandström, J. W., 1916. Meteorologische Studien im Schwedischen Hochgebirge (Meteorological studies in the Swedish high mountains). Goteborgs Kungl. Vetenskaps-och Vitterhets-Samhalles, Handingar, 27, 1–48.
Sarachik, E. S. & Cane, M. A., 2010. The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, 369 pp.
Sarkisyan, A. & Ivanov, I., 1971. Joint effect of baroclinicity and relief as an important factor in the dynamics of sea currents. Izv. Akad. Nauk Atmos. Ocean. Phys., 7, 116–124.
Scaife, A., Butchart, N., Warner, C. D. & Swinbank, R., 2002. Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 1473–1489.
Scaife, A. & James, I. N., 2000. Response of the stratosphere to interannual variability of tropospheric planetary waves. Quart. J. Roy. Meteor. Soc., 126, 275–297.
Schär, C., 1993. A generalization of Bernoulli's theorem. J. Atmos. Sci., 50, 1437–1443.
Schmidtko, S., Johnson, G. C. & Lyman, J. M., 2013. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. (Oceans), 118, 4, 1658–1672.
Schmitz, W. J., 1995. On the interbasin-scale thermohaline circulation. Rev. Geophysics, 33, 151–173.
Schneider, E. K., 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part II: nonlinear calculations. J. Atmos. Sci., 34, 280–297.
Schneider, T., Held, I. & Garner, S. T., 2003. Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60, 1024–1040.
Schneider, T., O'Gorman, P. A. & Levine, X. J., 2010. Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001.
Schneider, T. & Sobel, A., Eds., 2007. The Global Circulation of the Atmosphere. Princeton University Press.
Schneider, T. & Walker, C. C., 2006. Self-organization of atmospheric macroturbulence into critical states of weak nonlinearity. J. Atmos. Sci., 63, 1569–1586.
Schoeberl, M. R., 1978. Stratospheric warmings: observations and theory. Revs. Geophys. Space Phys., 16, 521–538.
Schubert, W. H., Hausman, S. A., Garcia, M., Ooyama, K. V. & Kuo, H.-C., 2001. Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148–3157.
Schubert, W. H. & Masarik, M. T., 2006. Potential vorticity aspects of the MJO. Dyn. Atmos. Oceans, 42, 127–151.
Schubert, W. H., Ruprecht, E., Hertenstein, R., Nieto Ferreira, R. et al., 2004. English translations of twentyone of Ertel's papers on geophysical fluid dynamics. Meteor. Z., 13, 527–576.
Scinocca, J. F. & Shepherd, T. G., 1992. Nonlinear wave-activity conservation laws and Hamiltonian structure for the two-dimensional anelastic equations. J. Atmos. Sci., 49, 5–28.
Scorer, R. S. & Ludlam, F. H., 1951. Bubble theory of penetrative convection. Q. J. Mech. Appl. Maths, 3, 107–112.
Scott, R. B., 2001. Evolution of energy and enstrophy containing scales in decaying, two-dimensional turbulence with friction. Phys. Fluids, 13, 2739–2742.
Scott, R. K. & Dritschel, D. G., 2012. The structure of zonal jets in geostrophic turbulence. J. Fluid Mech., 711, 576–598.
Scott, R. K. & Haynes, P. H., 1998. Internal interannual variability of the extratropical stratospheric circulation: The low latitude flywheel. Quart. J. Roy. Meteor. Soc., 124, 2149–2173.
Scott, R. K. & Haynes, P. H., 2000. Internal vacillations in stratosphere-only models. J. Atmos. Sci., 57, 2333– 2350.
Shapiro, M. & Grønas, S., Eds., 1999. The Life Cycles of Extratropical Cyclones. American Meteorological Society, 359 pp.
Shepherd, T. G., 1983. Mean motions induced by baroclinic instability in a jet. Geophys. Astrophys. Fluid Dyn., 27, 35–72.
Shepherd, T. G., 1987. A spectral view of nonlinear fluxes and stationary-transient interaction in the atmosphere. J. Atmos. Sci., 44, 1166–1179.
Shepherd, T. G., 1990. Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32, 287–338.
Shepherd, T. G., 1993. A unified theory of available potential energy. Atmosphere–Ocean, 31, 1–26.
Sherwood, S. C., Roca, R., Weckwerth, T. M. & Andronova, N. G., 2010. Tropospheric water vapor, convection and climate. Rev. Geophys., 48, RG2001.
Shutts, G. J., 1983. Propagation of eddies in diffluent jet streams: eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc., 109, 737–761.
Silberstein, L., 1896. O tworzeniu sie wirow, w plynie doskonalym (On the creation of eddies in an ideal fluid). W Krakaowie Nakladem Akademii Umiejetnosci (Proc. Cracow Acad. Sci.), 31, 325–335.
Simmonds, J. G. & Mann, J. E., 1998. A First Look at Perturbation Theory. Dover Publications, 139 pp.
Simmons, A. & Hoskins, B., 1978. The life-cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.
Sjoberg, J. P. & Birner, T., 2012. Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 3420–3432.
Smagorinsky, J., 1953. The dynamical influences of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342–366.
Smagorinsky, J., 1969. Problems and promises of deterministic extended range forecasting. Bull. Am. Meteor. Soc., 50, 286–311.
Smith, K. S., Boccaletti, G., Henning, C. C., Marinov, I. et al., 2002. Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469, 13–48.
Smith, K. S. & Vallis, G. K., 1998. Linear wave and instability properties of extended range geostrophic models. J. Atmos. Sci., 56, 1579–1593.
Smith, K. S. & Vallis, G. K., 2001. The scales and equilibration of mid-ocean eddies: freely evolving flow. J. Phys. Oceanogr., 31, 554–571.
Smith, K. S. & Vallis, G. K., 2002. The scales and equilibration of mid-ocean eddies: forced-dissipative flow. J. Phys. Oceanogr., 32, 1669–1721.
Smith, L. M. & Waleffe, F., 1999. Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids, 11, 1608–1622.
Smith, R. B., 1979. The influence of mountains on the atmosphere. In B, Saltzman, Ed., Advances in Geophysics, vol. 21, pp. 87–230. Academic Press.
Smith, R. K., 1997. On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123, 407–418.
Sobel, A. & Maloney, E., 2013. Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187–192.
Sobel, A. H., Nilsson, J. & Polvani, L., 2001. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.
Spall, M. A., 2000. Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res., 58, 97–116.
Spiegel, E. A. & Veronis, G., 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131, 442–447. (Correction: Astrophys. J., 135, 655–656).
Squire, H., 1933. On the stability of three-dimensional disturbances of viscous flow between parallel walls. Proc. Roy. Soc. Lond. A, 142, 621–628.
Srinivasan, K. & Young, W., 2012. Zonostrophic instability. J. Atmos. Sci., 69, 1633–1656.
Stammer, D., 1997. Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769.
Starr, V. P., 1948. An essay on the general circulation of the Earth's atmosphere. J. Meteor., 78, 39–43.
Starr, V. P., 1968. Physics of Negative Viscosity Phenomena. McGraw-Hill, 256 pp.
Stechmann, S. N. & Ogrosky, H. R., 2014. The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett., 41, 9097–9105.
Steers, J. A., 1962. An Introduction to the Study of Map Projections. Univ. of London Press, 288 pp.
Stern, M. E., 1963. Trapping of low frequency oscillations in an equatorial boundary layer. Tellus, 15, 246– 250.
Stevens, D. P. & Ivchenko, V. O., 1997. The zonal momentum balance in an eddy-resolving generalcirculation model of the southern ocean. Quart. J. Roy. Meteor. Soc., 123, 929–951.
Stewart, G. R., 1941. Storm. Random House, 349 pp.
Stewartson, K., 1977. The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn., 9, 185–200.
Stips, A., 2005. Dissipation measurement: theory. In H. Z, Baumert, J, Simpson, & J, Sündermann, Eds., Marine Turbulence. Cambridge University Press.
Stommel, H., 1958. The abyssal circulation. Deep-Sea Res., 5, 80–82.
Stommel, H., 1960. Wind-drift near the equator. Deep-Sea Res., 6, 298–302.
Stommel, H., 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.
Stommel, H. & Arons, A. B., 1960. On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140–154.
Stommel, H., Arons, A. B. & Faller, A. J., 1958. Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10, 179–187.
Stommel, H. & Moore, D. W., 1989. An Introduction to the Coriolis Force. Columbia University Press, 297 pp.
Stommel, H. & Webster, J., 1963. Some properties of the thermocline equations in a subtropical gyre. J. Mar. Res., 44, 695–711.
Stone, P. H., 1972. A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405–418.
Stone, P. H., 1978. Baroclinic adjustment. J. Atmos. Sci., 35, 561–571.
Stone, P. H. & Nemet, B., 1996. Baroclinic adjustment: a comparison between theory, observations, and models. J. Atmos. Sci., 53, 1663–1674.
Straub, D. N., 1993. On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776–782.
Straub, D. N., 1999. On thermobaric production of potential vorticity in the ocean. Tellus A, 51, 314–325.
Suarez, M. & Schopf, P., 1988. A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 323–3287.
Sukhatme, J. & Young, W. R., 2011. The advection–condensation model and water-vapour probability density functions. Quart. J. Roy. Meteor. Soc., 137, 1561–1572.
Sukoriansky, S., Dikovskaya, N. & Galperin, B., 2007. On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 3312–3327.
Sutcliffe, R. C., 1939. Cyclonic and anticylonic development. Quart. J. Roy. Meteor. Soc., 65, 518–524.
Sutcliffe, R. C., 1947. A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370–383.
Sutherland, B., 2010. Internal Gravity Waves. Cambridge University Press, 394 pp.
Swallow, J. C. & Worthington, V., 1961. An observation of a deep countercurrent in the western North Atlantic. Deep-Sea Res., 8, 1–19.
Tailleux, R., 2016. Neutrality versus materiality: A thermodynamic theory of neutral surfaces. Fluids, 1, 32.
Takahashi, M., 1996. Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23, 661–664.
Talley, L., 1988. Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18, 89–106.
Talley, L. D., Pickard, G., Emery, W. J. & Swift, J. H., 2011. Descriptive Physical Oceanography: An Introduction. Academic press, 555 pp.
Taylor, G. I., 1921a. Diffusion by continuous movements. Proc. London Math. Soc., 2 (20), 196–211.
Taylor, G. I., 1921b. Experiments with rotating fluids. Proc. Roy. Soc. Lond. A, 100, 114–121.
Tennekes, H. & Lumley, J. L., 1972. A First Course in Turbulence. The MIT Press, 330 pp.
Tesserenc De Bort, L. P., 1902. Variations de la température de l'air libre dans la zone comprise 8 km et 13 km d'altitude (Variations in the temperature of the free air in the zone between 8 km and 13 km of altitude). C. R. Hebd. Séances Acad. Sci., 134, 987–989.
Thompson, A. F., Stewart, A. L. & Bischoff, T., 2016. A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 2583–2604.
Thompson, A. F. & Young, W. R., 2006. Scaling baroclinic eddy fluxes: vortices and energy balance. J. Phys. Oceanogr., 36, 720–738.
Thompson, P. D., 1957. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295.
Thompson, R. O. R. Y., 1971. Why there is an intense eastward current in the North Atlantic but not in the South Atlantic. J. Phys. Oceanogr., 1, 235–237.
Thompson, R. O. R. Y., 1980. A prograde jet driven by Rossby waves. J. Atmos. Sci., 37, 1216–1226.
Thomson, J., 1892. Bakerian lecture. On the grand currents of atmospheric circulation. Phil. Trans. Roy. Soc. Lond. A, 183, 653–684.
Thomson, W. (Lord Kelvin), 1869. On vortex motion. Trans. Roy. Soc. Edinburgh, 25, 217–260.
Thomson, W. (Lord Kelvin), 1871. Hydrokinetic solutions and observations. Phil. Mag. and J. Science, 42, 362–377.
Thomson, W. (Lord Kelvin), 1879. On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh, 10, 92–100.
Thorncroft, C. D., Hoskins, B. J. & McIntyre, M. E., 1993. Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17–55.
Thorpe, A. J., Volkert, H. & Ziemianski, M. J., 2003. The Bjerknes' circulation theorem: a historical perspective. Bull. Am. Meteor. Soc., 84, 471–480.
Thual, O. & McWilliams, J. C., 1992. The catastrophe structure of thermohaline convection in a twodimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64, 67–95.
Thuburn, J., 2017. Use of the Gibbs thermodynamic potential to express the equation of state in atmospheric models. Quart. J. Roy. Meteor. Soc.. submitted.
Thuburn, J. & Craig, G. C., 1997. GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869–882.
Thuburn, J. & Craig, G. C., 2000. Stratospheric influence on tropopause height: the radiative constraint. J. Atmos. Sci., 57, 17–28.
Tobias, S. & Marston, J., 2013. Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett., 110, 10, 104502.
Toggweiler, J. R. & Samuels, B., 1995. Effect of Drake Passage on the global thermohaline circulation. Deep- Sea Res., 42, 477–500.
Toggweiler, J. R. & Samuels, B., 1998. On the ocean's large-scale circulation in the limit of no vertical mixing. J. Phys. Oceanogr., 28, 1832–1852.
Toole, J. M., Polzin, K. L. & Schmitt, R. W., 1994. Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 1120–1123.
Tort, M. & Dubos, T., 2014. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Quart. J. Roy. Meteor. Soc., 140, 684, 2388–2392.
Tréguier, A. M., Held, I. M. & Larichev, V. D., 1997. Parameterization of quasi-geostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 29, 567–580.
Trenberth, K. E., 1997. The definition of El Niño. Bull. Am. Meteor. Soc., 78, 2771–2777.
Trenberth, K. E. & Caron, J. M., 2001. Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–3443.
Tritton, D. J., 1988. Physical Fluid Dynamics. Oxford University Press, 519 pp.
Truesdell, C., 1951. Proof that Ertel's vorticity theorem holds in average for any medium suffering no tangential acceleration on the boundary. Geofis Pura Appl., 19, 167–169.
Truesdell, C., 1954. The Kinematics of Vorticity. Indiana University Press, 232 pp.
Truesdell, C., 1969. Rational Thermodynamics. McGraw Hill, 208 pp.
Tsang, Y.-K. & Vanneste, J., 2016. Advection-condensation of water vapor in a model of coherent stirring. Submitted to Proc. Roy. Soc. A.
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R. et al., 2001. Variability in the El Niño Southern Oscillation through a glacial-interglacial cycle. Science, 291, 1511–1517.
Tung, K. K., 1979. A theory of stationary long waves. Part III: quasi-normal modes in a singular wave guide. Mon. Wea. Rev., 107, 751–774.
Tziperman, E., Stone, L., Cane, M. A. & Jarosh, H., 1994. El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264, 72–73.
Valdes, P. J. & Hoskins, B. J., 1988. Baroclinic instability of the zonally averaged flow with boundary layer damping. J. Atmos. Sci., 45, 1584–1593.
Vallis, G. K., 1982. A statistical dynamical climate model with a simple hydrology cycle. Tellus, 34, 211–227.
Vallis, G. K., 1985. Instability and flow over topography. Geophys. Astrophys. Fluid Dyn., 34, 1–38.
Vallis, G. K., 1988a. Conceptual models of El Niño and the Southern Oscillation. J. Geophys. Res., 93, 13979–13991.
Vallis, G. K., 1988b. Numerical studies of eddy transport properties in eddy-resolving and parameterized models. Quart. J. Roy. Meteor. Soc., 114, 183–204.
Vallis, G. K., 1996. Potential vorticity and balanced equations of motion for rotating and stratified flows. Quart. J. Roy. Meteor. Soc., 122, 291–322.
Vallis, G. K., 2000. Large-scale circulation and production of stratification: effects of wind, geometry and diffusion. J. Phys. Oceanogr., 30, 933–954.
Vallis, G. K. & Maltrud, M. E., 1993. Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 1346–1362.
Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J., 2015. The response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 1479–1501.
Vanneste, J. & Shepherd, T. G., 1998. On the group-velocity property for wave-activity conservation laws. J. Atmos. Sci., 55, 1063–1068.
Verkley, W. T. M. & van der Velde, I. R., 2010. Balanced dynamics in the tropics. Quart. J. Roy. Meteor. Soc., 136, 41–49.
Veronis, G., 1960. An approximate theoretical analysis of the equatorial undercurrent. Deep-Sea Res., 6, 318–327.
Veronis, G., 1966a. Wind-driven ocean circulation – Part 1: Linear theory and perturbation analysis. Deep- Sea Res., 13, 17–29.
Veronis, G., 1966b. Wind-driven ocean circulation – Part 2: Numerical solutions of the non-linear problem. Deep-Sea Res., 13, 30–55.
Veronis, G., 1969. On theoretical models of the thermocline circulation. Deep-Sea Res., 31Suppl., 301–323.
Veryard, R. G. & Ebdon, R. A., 1961. Fluctuations in tropical stratospheric winds. Meteor. Mag, 90, 125–143.
Visbeck, M., Marshall, J., Haine, T. & Spall, M., 1997. Specification of eddy transfer coefficients in coarseresolution ocean circulation models. J. Phys. Oceanogr., 27, 381–402.
Von Neumann, J., 1955. Methods in the physical sciences. In L. G, Leary, Ed., The Unity of Knowledge. Doubleday.
Walker, C. & Schneider, T., 2005. Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32, L06813. doi:10.1029/2004GL022304.
Wallace, J. M., 1973. General circulation of the tropical lower stratosphere. Rev. Geophys., 11, 191–222.
Wallace, J. M., 1983. The climatological mean stationary waves: observational evidence. In B, Hoskins & R. P, Pearce, Eds., Large-Scale Dynamical Processes in the Atmosphere, pp. 27–63. Academic Press.
Wallace, J. M. & Hobbs, P. V., 2006. Atmospheric Science: An Introductory Survey. 2nd edn. Elsevier, 483 pp.
Wallace, J. M. & Holton, J. R., 1968. A diagnostic numerical model of the quasi-biennial oscillation. J. Atmos. Sci., 25, 280–292.
Warn, T., Bokhove, O., Shepherd, T. G. & Vallis, G. K., 1995. Rossby number expansions, slaving principles, and balance dynamics.Quart. J. Roy. Meteor. Soc., 121, 723–739.
Warn, T. & Warn, H., 1976. On the development of a Rossby wave critical level. J. Atmos. Sci., 33, 2021–2024.
Warren, B. A., 1981. Deep circulation of the world ocean. In B. A, Warren & C, Wunsch, Eds., Evolution of Physical Oceanography, pp. 6–41. The MIT Press.
Warren, B. A., 1999. Approximating the energy transport across oceanic sections. J. Geophys. Res., 104, 7915–7920.
Warren, B. A., 2006. The first law of thermodynamics in a salty ocean. Progress in Oceanography, 70, 2, 149–167.
Warren, B. A., LaCasce, J. H. & Robbins, P. E., 1996. On the obscurantist physics of form drag in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 2297–2301.
Wasow, W., 1944. Asymptotic solution of boundary value problems for the differential equation Duke Math J., 11, 405–415.
Watson, A., Vallis, G. K. & Nikurashin, M., 2015. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nature Geosciences, 8, 861–864. doi:10.1038/ngeo2538.
Webb, D. J. & Suginohara, N., 2001. Vertical mixing in the ocean. Nature, 409, 37.
Weinstock, R., 1952. Calculus of Variations. McGraw-Hill. Reprinted by Dover Publications, 1980, 328 pp.
Welander, P., 1959. An advective model of the ocean thermocline. Tellus, 11, 309–318.
Welander, P., 1968. Wind-driven circulation in one- and two-layer oceans of variable depth. Tellus, 20, 1–15.
Welander, P., 1971a. Some exact solutions to the equations describing an ideal-fluid thermocline. J. Mar. Res., 29, 60–68.
Welander, P., 1971b. The thermocline problem. Phil. Trans. Roy. Soc. Lond. A, 270, 415–421.
Welander, P., 1973. Lateral friction in the ocean as an effect of potential vorticity mixing. Geophys. Fluid Dyn., 5, 101–120.
Welander, P., 1986. Thermohaline effects in the ocean circulation and related simple models. In J, Willebrand & D. L. T, Anderson, Eds., Large-scale Transport Processes in Oceans and Atmospheres, pp. 163–200. Reidel.
Wentzel, G., 1926. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik (A generalization of the quantum conditions for the purposes of wave mechanics). Zeit. fur Physic A, 38, 518–529.
Wheeler, M. & Kiladis, G. N., 1999. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.
White, A. A., 1977. Modified quasi-geostrophic equations using geometric height as vertical co-ordinate. Quart. J. Roy. Meteor. Soc., 103, 383–396.
White, A. A., 2002. A view of the equations of meteorological dynamics and various approximations. In J, Norbury & I, Roulstone, Eds., Large-Scale Atmosphere-Ocean Dynamics I, pp. 1–100. Cambridge University Press.
White, A. A., 2003. The primitive equations. In J, Holton, J, Pyle, & J, Curry, Eds., Encyclopedia of Atmospheric Science, pp. 694–702. Academic Press.
White, A. A., Hoskins, B. J., Roulstone, I. & Staniforth, A., 2005. Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quart. J. Roy. Meteor. Soc., 131, 609, 2081–2107.
Whitehead, J. A., 1975. Mean flow generated by circulation on a beta-plane: An analogy with the moving flame experiment. Tellus, 27, 358–364.
Whitehead, J. A., 1995. Thermohaline ocean processes and models. Ann. Rev. Fluid Mech., 27, 89–113.
Whitham, G. B., 1974. Linear and Nonlinear Waves. Wiley-Interscience, 656 pp.
Williams, G. P., 1978. Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 1399–1426.
Wittenberg, A. T., 2009. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702. doi:10.1029/2009GL038710.
Wolfe, C. L. & Cessi, P., 2010. What sets the middepth stratification of eddying ocean models? J. Phys. Oceanogr., 40, 1520–1538.
Wolfe, C. L. & Cessi, P., 2011. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 1795–1810.
World Meteorological Organization, 1957. Definition of the tropopause. WMO Bulletin, 6, 136.
Wunsch, C., 2002. What is the thermohaline circulation? Science, 298, 1179–1180.
Wunsch, C., 2015. Modern Observational Physical Oceanography. Princeton University Press, 481 pp.
Wunsch, C. & Ferrari, R., 2004. Vertical mixing, energy, and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36, 281–314.
Wunsch, C. & Roemmich, D., 1985. Is the North Atlantic in Sverdrup balance? J. Phys. Oceanogr., 15, 1876–1880.
Wyrtki, K., 1952. Der Einfluss des Windes auf den mittleren Wasserstand Der Nordsee und ihren Wasserhausalt (the influence of the wind on the mean sea level and water budget of the north sea). Dtsch. Hydrogr. Z., 5, 21–27.
Wyrtki, K., 1975. El Niño—The dynamic response of the equatorial Pacific ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.
Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 7129–7132.
Wyrtki, K., Magaard, L. & Hager, J., 1976. Eddy energy in oceans. J. Geophys. Res., 81, 2641–2646.
Xu, X., Rhines, P. B., Chassignet, E. P. & Schmitz, W. J., 2015. Spreading of Denmark Strait overflow water in the western subpolar North Atlantic: insights from eddy-resolving simulations with a passive tracer. J. Phys. Oceanogr., 45, 2913–2932.
Yaglom, A. M., 1994. A. N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research. Ann. Rev. Fluid Mech., 26, 1–22.
Yanai, M. & Maruyama, T., 1966. Stratospheric wave disturbances in the tropical stratosphere. J. Meteor. Soc. Japan, 44, 291–294.
Yoden, S., 1987. Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 1723–1733.
Yoden, S., 1990. An illustrative model of seasonal and interannual variations of the stratospheric circulation. J. Atmos. Sci., 47, 1845–1853.
Young, W. R., 2010. Dynamic enthalpy, conservative temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394–400.
Young, W. R., 2012. An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692–707.
Young, W. R. & Rhines, P. B., 1982. A theory of the wind-driven circulation II. Gyres with western boundary layers. J. Mar. Res., 40, 849–872.
Zebiak, S. E. & Cane, M. A., 1987. A model El Niño Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.
Zeng, N., Neelin, J. D. & Chou, C., 2000. A quasi-equilibrium tropical circulation model – implementation and simulation. J. Atmos. Sci., 57, 1767–1796.
Zhang, C., 2005. Madden–Julian oscillation. Rev. Geophys., 43, 1–36.
Zhang, R. & Vallis, G. K., 2007. The role of the bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 2053–2080.
Zurita-Gotor, P. & Lindzen, R., 2007. Theories of baroclinic adjustment and eddy equilibration. In T, Schneider & A, Sobel, Eds., The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges. Princeton University Press.
Zurita-Gotor, P. & Vallis, G. K., 2009. Equilibration of baroclinic turbulence in primitive equations and quasi-geostrophic models. J. Atmos. Sci., 66, 837–863.
Zurita-Gotor, P. & Vallis, G. K., 2011. Dynamics of mid-latitude tropopause height in an idealized model. J. Atmos. Sci., 68, 823–838.