Skip to main content
Atmospheric Evolution on Inhabited and Lifeless Worlds
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Lehmer, Owen R. Catling, David C. and Zahnle, Kevin J. 2017. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets. The Astrophysical Journal, Vol. 839, Issue. 1, p. 32.

    Lehmer, Owen R. and Catling, David C. 2017. Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation. The Astrophysical Journal, Vol. 845, Issue. 2, p. 130.

    Zahnle, Kevin J. and Catling, David C. 2017. The Cosmic Shoreline: The Evidence that Escape Determines which Planets Have Atmospheres, and what this May Mean for Proxima Centauri B. The Astrophysical Journal, Vol. 843, Issue. 2, p. 122.

    Ehlmann, B. L. Anderson, F. S. Andrews-Hanna, J. Catling, D. C. Christensen, P. R. Cohen, B. A. Dressing, C. D. Edwards, C. S. Elkins-Tanton, L. T. Farley, K. A. Fassett, C. I. Fischer, W. W. Fraeman, A. A. Golombek, M. P. Hamilton, V. E. Hayes, A. G. Herd, C. D. K. Horgan, B. Hu, R. Jakosky, B. M. Johnson, J. R. Kasting, J. F. Kerber, L. Kinch, K. M. Kite, E. S. Knutson, H. A. Lunine, J. I. Mahaffy, P. R. Mangold, N. McCubbin, F. M. Mustard, J. F. Niles, P. B. Quantin-Nataf, C. Rice, M. S. Stack, K. M. Stevenson, D. J. Stewart, S. T. Toplis, M. J. Usui, T. Weiss, B. P. Werner, S. C. Wordsworth, R. D. Wray, J. J. Yingst, R. A. Yung, Y. L. and Zahnle, K. J. 2016. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. Journal of Geophysical Research: Planets, Vol. 121, Issue. 10, p. 1927.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Atmospheric Evolution on Inhabited and Lifeless Worlds
    • Online ISBN: 9781139020558
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
  • Buy the print book

Book description

As the search for Earth-like exoplanets gathers pace, in order to understand them, we need comprehensive theories for how planetary atmospheres form and evolve. Written by two well-known planetary scientists, this text explains the physical and chemical principles of atmospheric evolution and planetary atmospheres, in the context of how atmospheric composition and climate determine a planet's habitability. The authors survey our current understanding of the atmospheric evolution and climate on Earth, on other rocky planets within our Solar System, and on planets far beyond. Incorporating a rigorous mathematical treatment, they cover the concepts and equations governing a range of topics, including atmospheric chemistry, thermodynamics, radiative transfer, and atmospheric dynamics, and provide an integrated view of planetary atmospheres and their evolution. This interdisciplinary text is an invaluable one-stop resource for graduate-level students and researchers working across the fields of atmospheric science, geochemistry, planetary science, astrobiology, and astronomy.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
Abbot D. S., et al. (2012). Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction. Astrophys. J. 756, 178.
Abbot D. S. and Pierrehumbert R. T. (2010). Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res. 115, D03104, doi: 10.1029/2009JD012007.
Abbot D. S., et al. (2011). The Jormungand global climate state and implications for Neoproterozoic glaciations. J. Geophys. Res. 116, D18103, doi:10.1029/2011JD015927.
Abe Y. (2011). Protoatmospheres and surface environment of protoplanets. Earth Moon Planets 108, 914.
Abe Y., et al. (2011). Habitable zone limits for dry planets. Astrobiology 11, 443460.
Abe Y. and Matsui T. (1988). Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot proto-ocean on Earth. J. Atmos. Sci. 45, 30813101.
Abelson P. H. (1966). Chemical events on the primitive Earth. Proc. Nat. Acad. Sci. 55, 1365.
Achterberg R. K., et al. (2008). Titan’s middle-atmospheric temperatures and dynamics observed by the Cassini Composite Infrared Spectrometer. Icarus 194, 263277.
Achterberg R. K., et al. (2011). Temporal variations of Titan’s middle-atmospheric temperatures from 2004 to 2009 observed by Cassini/CIRS. Icarus 211, 686698.
Ackiss S. E. and Wray J. (2014). Occurrences of possible hydrated sulfates in the southern high latitudes of Mars. Icarus 243, 311324.
Acuna M. H., et al. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790793.
Adams E. Y. (2006). Titan’s thermal structure and the formation of a nitrogen atmosphere. University of Michigan, Ph.D. thesis, Ann Arbor, MI.
Agee C. B., et al. (2013). Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science 339, 780785.
Agnor C. and Asphaug E. (2004). Accretion efficiency during planetary collisions. Astrophys. J. 613, L157L160.
Agnor C. B. and Hamilton D. P. (2006). Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192194.
Agol E., et al. (2010). The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Ap. J. 721, 18611877.
Agol E., et al. (2005). On detecting terrestrial planets with timing of giant planet transits. Mon. Not. R. Astron. Soc. 359, 567579.
Aharonson O., et al. (2009). An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2, 851854.
Aharonson O., et al. (2002). Drainage basins and channel incision on Mars. P. Natl. Acad. Sci. USA 99, 17801783.
Ahrens T. J. (1993). Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21, 525555.
Alexander B., et al. (2003). East Antarctic ice core sulfur isotope measurements over a complete glacial–interglacial cycle. J. Geophys. Res. 108, 4786, doi:10.1029/2003JD003513.
Alexander R. D., et al. (2006). Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties. Mon. Not. R. Astron. Soc. 369, 229239.
Alfimova N. A., et al. (2011). Mobility of cerium in the 2.8–2.1 Ga exogenous environments of the Baltic Shield: data on weathering profiles and sedimentary carbonates. Lithol. Miner. Resour. 46, 397408.
Alibert Y. and Mousis O. (2007). Formation of Titan in Saturn’s subnebula: constraints from Huygens probe measurements. Astron. Astrophys. 465, 10511060.
Allard P. (1997). Endogenous magma degassing and storage at Mount Etna. Geophys. Res. Lett. 24, 22192222.
Allegre C. J., et al. (1987). Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earths mantle. Earth Planet. Sci. Lett. 81, 127150.
Allen M. and Frederick J. E. (1982). Effective photo-dissociation cross sections for molecular oxygen and nitric oxide in the Schumann–Runge bands. J. Atmos. Sci. 39, 20662075.
Allen P. A. and Etienne J. L. (2008). Sedimentary challenge to Snowball Earth. Nature Geosc. 1, 817825.
Allwood A. C., et al. (2009). Controls on development and diversity of Early Archean stromatolites. P. Natl. Acad. Sci. USA 106, 95489555.
Allwood A. C., et al. (2006). Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714718.
ALMA-Partnership, et al. (2015). The 2014 ALMA Long Baseline Campaign: First Results from High Angular Resolution Observations toward the HL Tau Region. Astrophys. J. Lett. 808, L3, doi:10.1088/2041-8205/808/1/L3.
Alt J. C. (1995). Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23, 585588.
Altabet M. A. and Francois R. (1994). Sedimentary nitrogen isotopic ratio as a recorder for surface ccean nitrate utilization. Global Biogeochemical Cycles 8, 103116.
Altermann W. and Schopf J. W. (1995). Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary Implications. Precambrian Res. 75, 6590.
Altwegg K. et al. (2015). 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, doi: 10.1126/science.1261952.
Amelin Y., et al. (2010). U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343350.
Anbar A. D., et al. (2007). A whiff of oxygen before the Great Oxidation Event? Science 317, 19031906.
Anbar A. D. and Knoll A. H. (2002). Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 11371142.
Anbar A. D. and Rouxel O. (2007). Metal stable isotopes in paleoceanography. Annu. Rev. Earth Planet. Sci. 35, 717746.
Anders E. and Grevesse N. (1989). Abundances of the elements – meteoritic and solar. Geochim. Cosmochim. Acta 53, 197214.
Anderson D. E. (1974). Mariner 6, 7, and 9 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman alpha data. J. Geophys. Res. 79, 15131518.
Anderson D. E. and Hord C. W. (1971). Mariner 6 and Mariner 7 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data. J. Geophys. Res. 76, 66666673.
Anderson F. S., et al. (1999). Assessing the Martian surface distribution of aeolian sand using a Mars general circulation model. J. Geophys. Res. 104, 18 99119 002.
Anderson G. M. (2005). Thermodynamics of Natural Systems. New York: Cambridge University Press.
Anderson G. M. and Crerar D. A. (1993). Thermodynamics in Geochemistry: The Equilibrium Model. New York: Oxford University Press.
Andre M. J. (2011). Modelling 18O2 and 16O2 unidirectional fluxes in plants: I. Regulation of pre-industrial atmosphere. Biosystems 103, 239251.
Andrews D. G. (2010). An Introduction to Atmospheric Physics. New York: Cambridge University Press.
Andrews D. G., et al. (1987). Middle Atmosphere Dynamics. Orlando: Academic Press.
Andrews-Hanna J. C., et al. (2007). Meridiani Planum and the global hydrology of Mars. Nature 446, 163166.
Andrews-Hanna J. C., et al. (2010). Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. Journal of Geophysical Research-Planets 115.
Anglada-Escude G., et al. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437440.
Ansan V., et al. (2011). Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus 211, 273304.
Archer C. and Vance D. (2006). Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulfate reduction. Geology 34, 153156.
Archer D. (2005). Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. 110.
Armstrong B. H. (1968). Theory of diffusivity factor for atmospheric radiation. J. Quant. Spectros. Radiat. Transfer 8, 15771599.
Armstrong J. C. and Leovy C. B. (2005). Long term wind erosion on Mars. Icarus 176, 5774.
Armstrong J. C., et al. (2004). A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255271.
Arnold G. L., et al. (2004). Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304, 8790.
Arnold L., et al. (2002). A test for the search for life on extrasolar planets-Looking for the terrestrial vegetation signature in the Earthshine spectrum. Astron. Astrophys. 392, 231237.
Artemieva N. and Lunine J. I. (2005). Impact cratering on Titan - II. Global melt, escaping ejecta, and aqueous alteration of surface organics. Icarus 175, 522533.
Arthur M. A. (2000). Volcanic contributions to the carbon and sulfur geochemical cycles and global change. In: Encyclopedia of Volcanoes, ed. Sigurdsson H., Academic Press, pp. 10451056.
Arthur M. A., et al. (1994). Varve-calibrated records of carbonate and organic carbon accumulation over the last 2000 years in the Black Sea. Glob. Biogeochem. Cycles 8, 195217.
Arvidson R. E., et al. (2014). Ancient aqueous environments at Endeavour Crater. Mars. Science 343, doi:10.1126/science.1248097.
Asael D., et al. (2013). Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem. Geol. 362, 193210.
Aston F. W. (1924). The rarity of the inert gases on Earth. Nature 114, 786.
Atkins P. W. and Friedman R. S. (2005). Molecular Quantum Mechanics. New York: Oxford University Press.
Atkinson D. H., et al. (1997). Deep winds on Jupiter as measured by the Galileo probe. Nature 388, 649650.
Atreya S. K. (1986). Atmospheres and Ionospheres of the Outer Planets and their Satellites. Heidelberg: Springer-Verlag.
Atreya S. K. (2010). Atmospheric moons Galileo would have loved. Proc. IAU 6, 130140. doi:10.1017/S1743921310007349.
Atreya S. K., et al. (2006). Titan’s methane cycle. Planet. Space Sci. 54, 11771187.
Atreya S. K., et al. (1978). Evolution of a nitrogen atmosphere on Titan. Science 201, 611613.
Atreya S. K., et al. (2009). Volatile origin and cycles: Nitrogen and methane. In: Titan from Cassini-Huygens, ed. Brown R. H., et al., New York: Springer, pp. 7799.
Atreya S. K., et al. (2003). Composition and origin of the atmosphere of Jupiter - an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105112.
Atreya S. K., et al. (1991). Photochemistry and vertical mixing. In: Uranus, ed. Bergstralh J. T., et al., Tucson, AZ: Univ. of Arizona Press, pp. 110146.
Atreya S. K., et al. (2013). Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Lett. 40, 56055609.
Atreya S. K., et al. (1999). A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 12431262.
Aulbach S. and Stagno V. (2016). Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751754.
Awramik S. M. and Barghoorn E. S. (1977). Gunflint Microbiota. Precambrian Res. 5, 121142.
Axford W. I. (1968). The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 68556859.
Bahcall J. N., et al. (2001). Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Ap. J. 555, 9901012.
Bailey J. (2009). A comparison of water vapor line parameters for modeling the Venus deep atmosphere. Icarus 201, 444453.
Baker N. L. and Leovy C. B. (1987). Zonal winds near Venus cloud top level: a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69, 202220.
Baker V. R. (1990). Spring sapping and valley network development, with case studies by R. C. Kochel, J. E. Laity, and A. D. Howard. In: Higgins C. G., Coates D. R., ed., Groundwater Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms, Geol. Soc. Am. Spec. Pap., Vol. 252, pp. 235265.
Baker V. R. (2001). Water and the martian landscape. Nature 412, 228236.
Baker V. R. (2006). Geomorphological evidence for water on Mars. Elements 2, 139143.
Baker V. R., et al. (2015). Fluvial geomorphology on Earth-like planetary surfaces: A review. Geomorphology 245, 149182.
Baland R.-M., et al. (2014). Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 2941.
Balme M. and Greeley R. (2006). Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 doi:10.1029/2005RG000188.
Bandfield J. L. (2002). Global mineral distributions on Mars. J. Geophys. Res. 107.
Bandfield J. L., et al. (2003). Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 10841087.
Banks P. M. and Kockarts G. (1973). Aeronomy: Part B. New York: Academic Press.
Bannon P. R., et al. (1997). Does the surface pressure equal the weight per unit area of a hydrostatic atmosphere? Bull. Am. Met. Soc. 78, 26372642.
Bao H. M., et al. (2009). Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 323, 119122.
Bao H. M., et al. (2008). Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504506.
Barabash S., et al. (2007). The loss of ions from Venus through the plasma wake. Nature 450, 650653.
Baraffe I., et al. (1998). Evolutionary models for solar metallicity low-mass stars: Mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 337, 403412.
Baraffe O., et al. (2002). Evolutionary models for low-mass stars and brown dwarfs: Uncertainties and limits at very young ages. Astron. Astrophys. 382, 563572.
Barakat A. R. and Lemaire J. (1990). Monte Carlo study of the escape of a minor species. Phys. Rev. A 42, 32913302.
Barnes R., et al. (2009). Tidal limits to planetary habitability. Astrophys. J. Lett. 700, L30L33.
Barnes R., et al. (2013). Tidal Venuses: Triggering a climate catastrophe via tidal heating. Astrobiology 13, 225250.
Barnes R., et al. (2010). CoRoT-7b: Super-Earth or Super-Io? Astrophys. J. Lett. 709, L95L98.
Barnhart C. J., et al. (2009). Long-term precipitation and late-stage valley network formation: Landform simulations of Parana Basin, Mars. J. Geophys. Res. 114.
Barr A. C. and Canup R. M. (2010). Origin of the Ganymede-Callisto dichotomy by impacts during the late heavy bombardment. Nat. Geosci. 3, 164167.
Barr A. C. and Citron R. I. (2011). Scaling of melt production in hypervelocity impacts from high-resolution numerical simulations. Icarus 211, 913916.
Barth C. A. (1974). Atmosphere of Mars. Annu. Rev. Earth Planet. Sci. 2, 333367.
Barth C. A., et al. (1973). Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science 179, 795796.
Barth C. A., et al. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus 17, 457468.
Bartlett D. H. (2002). Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595, 367381.
Batalha N., et al. (2015). Testing the early Mars H2–CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337349.
Batalha N. M. (2014). Exploring exoplanet populations with NASA’s Kepler Mission. P. Natl. Acad. Sci. USA 111, 1264712654.
Batalha N. M., et al. (2013). Planetary candidates observed by Kepler. Iii. Analysis of the first 16 months of data. Astrophys. J. Supp. S. 204.
Bau M., et al. (1997). Sources of rare-earth elements and iron in Paleoproterozoic iron-formations from the Transvaal Supergroup, South Africa: Evidence from neodymium isotopes. J. Geol. 105, 121129.
Baum S. K. and Crowley T. J. (2001). GCM response to late precambrian (similar to 590 Ma) ice-covered continents. Geophysical Research Letters 28, 583586.
Bean J. L., et al. (2010). A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468, 669672.
Beaugé C., et al. (2008). Planetary masses and orbital parameters from radial velocity measurements. In: Extrasolar Planets: Formation, Detection and Dynamics, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 125.
Beaumont V. and Robert F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry? Precambrian Res. 96, 6382.
Beck P., et al. (2015). A Noachian source region for the “Black Beauty” meteorite, and a source lithology for Mars surface hydrated dust? Earth Planet. Sc. Lett. 427, 104111.
Becker R. H. and Clayton R. N. (1972). Carbon isotopic evidence for origin of a Banded Iron Formation in Western Australia. Geochim. Cosmochim. Acta 36, 577.
Becker R. H. and Pepin R. O. (1984). The case for a martian origin of the Shergottites: Nitrogen and noble gases in EETA79001. Earth Planet. Sc. Lett. 69, 225242.
Beer J. (2000). Long-term indirect indices of solar variability. Space Science Reviews 94, 5366.
Beerling D. J. and Royer D. L. (2011). Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418420.
Béghin C., et al. (2010). Titan’s native ocean revealed beneath some 45 km of ice by a Schumann-like resonance. C. R. Geosci. 342, 425433.
Bekker A. and Holland H. D. (2012). Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sc. Lett. 317, 295304.
Bekker A., et al. (2004). Dating the rise of atmospheric oxygen. Nature 427, 117120.
Bekker A., et al. (2008). Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271, 278291.
Bekker A., et al. (2006). Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precam. Res. 148, 145180.
Bekker A., et al. (2010). Iron Formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467508.
Belcher C. M. and McElwain J. C. (2008). Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 11971200.
Belcher C. M., et al. (2010). Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. P. Natl. Acad. Sci. USA 107, 22 44822 453.
Bell D. R. and Anbar A. D. (2013). Oxygen titration of continental lithosphere and the rise of atmospheric O2. American Geophysic Union Fall Mtg., p. V41E-05.
Bell E. A., et al. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. P. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1517557112.
Bell J. M., et al. (2010a). Simulating the one-dimensional structure of Titan’s upper atmosphere: 1. Formulation of the Titan Global Ionosphere-Thermosphere Model and benchmark simulations. J. Geophys. Res. 115, E12002, doi:10.1029/2010JE003636.
Bell J. M., et al. (2011). Simulating the one-dimensional structure of Titan’s upper atmosphere: 3. Mechanisms determining methane escape. J. Geophys. Res. 116.
Bell J. M., et al. (2010b). Simulating the one-dimensional structure of Titan’s upper atmosphere: 2. Alternative scenarios for methane escape. J. Geophys. Res. 115.
Bell J. M., et al. (2014). Developing a self-consistent description of Titan’s upper atmosphere without hydrodynamic escape. J. Geophys. Res. 119, 49574972.
Belton M. J. S., et al. (1991). Images from Galileo of the Venus cloud deck. Science 253, 15311536.
Belton M. J. S., et al. (1992). The Galileo Solid-State Imaging experiment. Space Sci. Rev. 60, 413455.
Belyaev D. A., et al. (2012). Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217, 740751.
Ben-Jaffel L. (2007). Exoplanet HD 209458b: Inflated hydrogen atmosphere but no sign of evaporation. Astrophysical Journal Letters 671, L61L64.
Ben-Jaffel L. (2008). Spectral, spatial, and time properties of the hydrogen nebula around exoplanet HD 209458b. Astrophys. J. 688, 13521360.
Benedict G. F., et al. (1999). Interferometric astrometry of Proxima Centauri and Barnard’s star using Hubble Space Telescope Fine Guidance Sensor 3: Detection limits for substellar companions. Astron. J. 118, 10861100.
Bengtson S. (1994). The advent of animal skeletons. In: Early Life on Earth, ed. Bengtson S., New York: Columbia University Press, pp. 412425.
Benner S. A. (2009). Life, the Universe…and the Scientific Method. Gainesville, FL: FfAME Press.
Benner S. A. (2010). Defining life. Astrobiology 10, 10211030.
Benner S. A., et al. (2004). Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8, 672689.
Bent H. A. (1965). The Second Law: An Introduction to Classical and Statistical Thermodynamics. New York: Oxford University Press.
Benton M. J. and Ayala F. J. (2003). Dating the tree of life. Science 300, 16981700.
Bergin E. A., et al. (2015). Tracing the ingredients for a habitable Earth from interstellar space through planet formation. P. Natl. Acad. Sci. USA 112, 89658970.
Bergman N. M., et al. (2004). COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397437.
Berkner L. V. and Marshall L. C. (1965). On the origin and rise of oxygen concentration in the Earth’s atmosphere. J. Atmos. Sci. 22, 225261.
Berkner L. V. and Marshall L. L. (1964). The history of oxygenic concentration in the Earth’s atmosphere. Disc. Faraday Soc. 34, 122141.
Berkner L. V. and Marshall L. L. (1966). Limitation on oxygen concentration in a primitive planetary atmosphere. J. Atmos. Sci. 23, 133143.
Berkner L. V. and Marshall L. L. (1967). The rise of oxygen in the Earth’s atmosphere with notes on the martian atmosphere. Adv. Geophys. 12, 309331.
Bernal J. D. (1951). The Physical Basis of Life. London: Routledge and Paul.
Berndt M. E., et al. (1996). Reduction of CO2 during serpentinization of olivine at 300 ºC and 500 bar. Geology 24, 351354.
Berner R. A. (1982). Burial of organic-carbon and pyrite sulfur in the modern ocean - Its geochemical and environmental significance. Am. J. Sci. 282, 451473.
Berner R. A. (2004). The Phanerozoic Carbon Cycle: CO2 and O2. Oxford: Oxford University Press.
Berner R. A. (2006a). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 56535664.
Berner R. A. (2006b). Geological nitrogen cycle and atmospheric N2 over Phanerozoic time. Geology 34, 413415.
Berner R. A. (2009). Phanerozoic atmospheric oxygen: new results using the Geocarbsulf Model. Am. J. Sci. 309, 603606.
Berner R. A., et al. (2003). Phanerozoic atmospheric oxygen. Ann. Rev. Earth Planet. Sci. 31, 105134.
Berner R. A. and Canfield D. E. (1989). A new model for atmospheric oxygen over Phanerozoic time. Amer. J. Sci. 289, 333361.
Berner R. A., et al. (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Amer. J. Sci. 283, 641683.
Berner R. A. and Maasch K. A. (1996). Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim. Cosmochim. Acta 60, 16331637.
Berner R. A. and Raiswell R. (1983). Burial of organic-carbon and pyrite sulfur in sediments over Phanerozoic time – A new theory. Geochim. Cosmochim. Acta 47, 855862.
Berresheim H. and Jaeschke W. (1983). The contribution of volcanoes to the global atmospheric sulfur budget. J. Geophys. Res. 88, 37323740.
Berta Z. K., et al. (2012). Transit detection in the MEarth survey of nearby M dwarfs: Bridging the clean-first, search-later divide. Astronom. J. 144, 145.
Berta-Thompson Z. K., et al. (2015). A rocky planet transiting a nearby low-mass star. Nature 527, 204207.
Bertaux J. L. (1975). Observed variations of the exospheric hydrogen density with the exospheric temperature. J. Geophys. Res. 80, 639642.
Bertaux J. L., et al. (1978). Lyman-alpha observations of Venera-9 and Venera-10 .1. Nonthermal hydrogen population in exosphere of Venus. Planet. Space Sci. 26, 817831.
Bertaux J. L., et al. (1982). Altitude profile of H in the atmosphere of Venus from Lyman alpha observations of Venera 11 and Venera 12 and origin of the hot exospheric component. Icarus 52, 221244.
Bertaux J. L., et al. (1996). VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure). J. Geophys. Res. 101, 12 70912 745.
Bessell M. S. (2005). Standard photometric systems. Annu. Rev. Astron. Astrophys. 43, 293336.
Bethe H. A. (1939). Energy production in stars. Phys. Rev. 55, 01030103.
Betts J. N. and Holland H. D. (1991). The oxygen-content of ocean bottom waters, the burial efficiency of organic-carbon, and the regulation of atmospheric oxygen. Global Planet. Change 97, 518.
Bézard B., et al. (1990). The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508511.
Bezard B., et al. (2009). Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J. Geophys. Res. 114.
Bezard B., et al. (2014). The composition of Titan’s atmosphere. In: Titan: Surface, Atmosphere and Magnetosphere, ed. Muller-Wodarg I., et al., New York: Cambridge University Press, pp. 158189.
Bibring J. P., et al. (2007). Coupled ferric oxides and sulfates on the Martian surface. Science 317, 12061210.
Bibring J. P., et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 15761581.
Bibring J. P., et al. (2006). Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400404.
Bickle M. J. (1986). Implications of melting for stabilization of the lithosphere and heat loss in the Archean. Earth Planet. Sci. Lett. 80, 314324.
Biemann K. and Bada J. (2011). Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-Gonzalez et al. J. Geophys. Res. 116, E12001.
Birch F. (1964). Density and composition of mantle and core. J. Geophys. Res. 69, 43774388.
Bird G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. New York: Oxford University Press.
Bird M. K., et al. (2005). The vertical profile of winds on Titan. Nature 438, 800802.
Bishop J. L., et al. (2009). Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res. 114, E00D09, doi:10.1029/2009JE003352.
Biver N., et al. (2012). Ammonia and other parent molecules in comet 10P/Tempel 2 from Herschel/HIFI and ground-based radio observations. Astron. Astrophys, 539.
Bjerrum C. J. and Canfield D. E. (2002). Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159162.
Bjerrum C. J. and Canfield D. E. (2004). New insights into the burial history of organic carbon on the early Earth. Geochem. Geophys. Geosys. 5, Q08001, doi:10.1029/2004GC000713.
Bjerrum C. J. and Canfield D. E. (2011). Towards a quantitative understanding of the late Neoproterozoic carbon cycle. P. Natl. Acad. Sci. USA 108, 55425547.
Blake G. A. and Bergin E. A. (2015). Prebiotic chemistry on the rocks. Nature 520, 161162.
Blake R. E., et al. (2010). Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–U89.
Blank C. E. and Sanchez-Baracaldo P. (2010). Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8, 123.
Bockelee-Morvan D., et al. (2008). Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes. Astrophys. J. Lett. 679, L49L52.
Bogard D. D. (1995). Impact ages of meteorites: A synthesis. Meteoritics 30, 244268.
Bogard D. D. (1997). A reappraisal of the Martian Ar-36/Ar-38 ratio. J. Geophys. Res. 102, 16531661.
Bogard D. D., et al. (2001). Martian volatiles: Isotopic composition, origin, and evolution. Space Sci. Rev. 96, 425458.
Bogard D. D. and Garrison D. H. (1998). Relative abundances of argon, krypton, and xenon in the Martian atmosphere as measured in Martian meteorites. Geochim. Cosmochim. Acta 62, 18291835.
Bogard D. D. and Johnson P. (1983). Martian gases in an Antarctic meteorite. Science 221, 651654.
Bogard D. D. and Park J. (2008). Ar-39–Ar-40 dating of the Zagami Martian shergottite and implications for magma origin of excess Ar-40. Meteorit. Planet. Sci. 43, 11131126.
Bohren C. F. and Albrecht B. A. (1998). Atmospheric Thermodynamics. New York: Oxford University Press.
Bohren C. F. and Fraser A. B. (1985). Colors of the sky. Phys. Teach. 23, 267272.
Bondi H. (1952). On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195204.
Bonfils X., et al. (2013). The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample. Astron. Astrophys. 549, A109, doi: 10.1051/0004-6361/201014704.
Bonnefoy M., et al. (2011). High angular resolution detection of β Pictoris b at 2.18 μm. Astron. Astrophys, 528.
Boone R. H., et al. (2006). Metallicity in the solar neighborhood out to 60 pc. New Astronomy Reviews 50, 526529.
Boothroyd A. I., et al. (1991). Our Sun II. Early mass loss of 0.1 Mo and the case of the missing lithium. Ap. J. 377, 318329.
Bordoni S. and Schneider T. (2008). Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci. 1, 515519.
Bordoni S. and Schneider T. (2010). Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci. 67, 16431654.
Borg L. and Drake M. J. (2005). A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res. 110, E12S03, doi: 10.1029/2005JE002402.
Borucki W. J. and Chameides W. L. (1984). Lightning: Estimates of the rates of energy dissipation and nitrogen fixation. Rev. Geophys. 22, 363372.
Borucki W. J., et al. (2011). Characteristics of planetary candidates observed by Kepler. I. Analysis of the first four months of data. Astrophys. J. 736, 19, doi: 10.1088/0004-637X/736/1/19.
Bosak T., et al. (2009). Morphological record of oxygenic photosynthesis in conical stromatolites. P. Natl. Acad. Sci. USA 106, 10 93910 943.
Boss A. P. (2005). Evolution of the solar nebula. VII. Formation and survival of protoplanets formed by disk instability. Astrophys. J. 629, 535548.
Boss A. P. (2006). Gas giant protoplanets formed by disk instability in binary star systems. Astrophys. J. 641, 11481161.
Boss A. P. (2008). Flux-limited diffusion approximation models of giant planet formation by disk instability. Astrophys. J. 677, 607615.
Boss A. P. (2012). Giant planet formation by disc instability: flux-limited radiative diffusion and protostellar wobbles. Mon. Not. R. Astron. Soc. 419, 19301936.
Boss A. P. and Ciesla F. J. (2014). The solar nebula. In: Treatise on Geochemistry, ed. Holland H. D., Turekian K. K., New York: Elsevier, pp. 123.
Bottke W. F., et al. (1995). Collisional lifetimes and impact statistics of near-Earth asteroids. In: Hazards Due to Comets and Asteroids, ed. Gehrels T., Tucson: University of Arizona Press, pp. 337357.
Bottke W. F., et al. (2015). Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321323.
Bottke W. F., et al. (2012). An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 7881.
Bougher S. W., et al. (2000). Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res. 105, 17 66917 692.
Bougher S. W., et al. (2009). Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophysical Research Letters 36.
Boussau B., et al. (2008). Parallel adaptations to high temperatures in the Archaean eon. Nature 456, 942–U74.
Bouvier A., et al. (2009). Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet. Sc. Lett. 280, 285295.
Bowring S. A., et al. (2007). Geochronologic constraints on the chronostratigraphic framework of the neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307, 10971145.
Boyd E. S., et al. (2011). A late methanogen origin for molybdenum-dependent nitrogenase. Geobiology 9, 221232.
Boyd E. S. and Peters J. W. (2013). New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4.
Boyle R. A., et al. (2007). Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism. Geobiology 5, 337349.
Boynton W. V., et al. (2009). Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 6164.
Brain D. A. and Jakosky B. M. (1998). Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering. J. Geophys. Res. 103, 22 68922 694.
Brantley S. L. and Koepenick K. W. (1995). Measured carbon dioxide emissions from Oldoinyo-Lengai and the skewed distribution of passive volcanic fluxes. Geology 23, 933936.
Brasier M., et al. (2004). Earth’s oldest (similar to 3.5 Ga) fossils and the ‘Early Eden hypothesis’: Questioning the evidence. Orig. Life Evol. Biosph. 34, 257269.
Brasier M. D., et al. (2015). Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. P. Natl. Acad. Sci. USA 112, 48594864.
Brasier M. D., et al. (2002). Questioning the evidence for the Earth’s oldest fossils. Nature 416, 7681.
Brasier M. D., et al. (2005). Critical testing of Earth’s oldest putative fossil assemblage from the similar to 3.5 Ga Apex Chert, Chinaman Creek, western Australia. Precam. Res. 140, 55102.
Brasier M. D. and Lindsay J. F. (1998). A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology 26, 555558.
Brasier M. D., et al. (2011). Pumice as a remarkable substrate for the origin of life. Astrobiology 11, 725735.
Brass G. W. (1980). Stability of brines on Mars. Icarus 42, 2028.
Brasseur G. and Solomon S. (2005). Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Dordrecht: Springer.
Braterman P. S., et al. (1983). Photooxidation of hydrated Fe+2 – significance for banded iron formations. Nature 303, 163164.
Breuer D. and Spohn T. (2003). Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. 108.
Brewer A. W. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. Roy. Meteor. Soc. 75, 351363.
Bridges J. C., et al. (2001). Alteration assemblages in martian meteorites: Implications for near-surface processes. Space Science Reviews 96, 365392.
Bridges J. C. and Warren P. H. (2006). The SNC meteorites: basaltic igneous processes on Mars. J. Geol. Soc. London 163, 229251.
Bridges N. T., et al. (2004). Insights on rock abrasion and ventifact formation from laboratory and field analog studies with applications to Mars. Planet. Space Sci. 52, 199213.
Brinkman R. T. (1969). Dissociation of water vapor and evolution of oxygen in the terrestrial atmosphere. J. Geophys. Res. 74, 53555368.
Brinkmann R. T. (1970). Departure from Jeans escape rate for H and He in the Earth’s atmosphere. Planet. Space Sci. 18, 449478.
Brinkmann R. T. (1971). More comments on the validity of Jeans escape rate. Planet. Space Sci. 19, 791794.
Bristow T. F., et al. (2011). A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature (advance online publication).
Bristow T. F. and Kennedy M. J. (2008). Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology 36, 863866.
Brocks J. J., et al. (2003). A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim. Cosmochim. Acta 67, 43214335.
Brocks J. J., et al. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285, 10331036.
Broda E. (1975). Beginning of photosynthesis. Origins Life Evol. Biosph. 6, 247251.
Broda E. (1977). Evolution of photosynthesis. Precambrian Res. 4, 117132.
Broecker W. S. (2015). The collision that changed the world. Elem. Sci. Anth. 3, 000061, doi: 10.12952/journal.elementa.000061.
Broecker W. S. and Peng T. H. (1982). Tracers in the Sea. Palisades, New York: Lamont Doherty Geol. Obs.
Brown G. N. and Ziegler W. T. (1979). Vapor pressure and heats of sublimation of liquids and solids of interest in cryogenics below 1-atm pressure. In: Advances in Cryogenic Engineering, ed. Timmerhaus K., Snyder H. A., New York: Plenum Press, pp. 662670.
Brown M. E. (1997). A search for a sodium atmosphere around Ganymede. Icarus 126, 236238.
Brown M. E. (2001). Potassium in Europa’s atmosphere. Icarus 151, 190195.
Brown M. E. (2012). The compositions of Kuiper Belt Objects. Ann. Rev. Earth Planet. Sci. 40, 467495.
Brown M. E. and Calvin W. M. (2000). Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science 287, 107109.
Brown M. E. and Hill R. E. (1996). Discovery of an extended sodium atmosphere around Europa. Nature 380, 229231.
Brown M. E. and Schaller E. L. (2007). The mass of dwarf planet Eris. Science 316, 15851585.
Brown R. H., et al. (1991). Triton’s global heat budget. Science 251, 14651467.
Brown R. H., et al. (1990). Energy-Sources for Tritons Geyser-Like Plumes. Science 250, 431435.
Brown R. H., et al. (2009). Titan from Cassini-Huygens. New York: Springer.
Brown T. M., et al. (2001). Hubble Space Telescope time-series photometry of the transiting planet of HD 209458. Astrophysical Journal 552, 699709.
Brunner B., et al. (2013). Nitrogen isotope effects induced by anammox bacteria. P. Natl. Acad. Sci. USA 110, 18 99418 999.
Buchhave L. A., et al. (2014). Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509, 593595.
Buchhave L. A., et al. (2012). An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375377.
Budd G. E. (2008). The earliest fossil record of the animals and its significance. Phil. Trans. R. Soc. Lond. B 363, 14251434.
Budyko M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611619.
Buick R. (1992). The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 7477.
Buick R. (2007a). Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97100.
Buick R. (2007b). The earliest records of life on Earth. In: Planets and Life: The Emerging Science of Astrobiology, ed. Sullivan W. T., Baross J., Cambridge: Cambridge University Press, pp. 237264.
Buick R. (2008). When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. Lond. B 363, 27312743.
Buick R., et al. (1981). Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an early Archean chert-barite unit from North Pole, Western Australia. Alcheringa 5, 161181.
Buick R., et al. (1995a). Abiological origin of described stromatolites older than 3.2 Ga – Comment. Geology 23, 191191.
Buick R., et al. (1995b). Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chem. Geol. 123, 153171.
Buie M. W. and Grundy W. M. (2000). The distribution and physical state of H2O on Charon. Icarus 148, 324339.
Bullock M. A. and Grinspoon D. H. (1996). The stability of climate on Venus. J. Geophys. Res. 101, 75217529.
Bullock M. A. and Grinspoon D. H. (2001). The recent evolution of climate on Venus. Icarus 150, 1937.
Bullock M. A. and Moore J. M. (2007). Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34.
Bunch T. E. and Chang S. (1980). Carbonaceous chondrites .2. Carbonaceous chondrite phyllosilicates and light-element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 15431577.
Burgasser A. J., et al. (2002). The spectra of T dwarfs. I. Near-infrared data and spectral classification. Astrophys. J. 564, 421451.
Burgisser A. and Scaillet B. (2007). Redox evolution of a degassing magma rising to the surface. Nature 445, 194197.
Burke K., et al. (1976). In: Dominance Of Horizontal Movements, Arc, And Microcontinental Collisions During The Late Permobile Regime, New York: Wiley, pp. 113130.
Burns S. J. and Matter A. (1993). Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geol. Helv. 86, 595607.
Burr D. M., et al. (2010). Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates. J. Geophys. Res. 115.
Burrows A. (2005). A theoretical look at the direct detection of giant planets outside the Solar System. Nature 433, 261268.
Burrows A., et al. (2001). The theory of brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73, 719765.
Burton M. R., et al. (2013). Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323354.
Busigny V., et al. (2013). Nitrogen cycle in the Late Archean ferruginous ocean. Chem. Geol. 362, 115130.
Busse F. H. (1976). Simple model of convection in Jovian atmosphere. Icarus 29, 255260.
Busse F. H. (1983). A model of mean zonal flows in the major planets. Geophys. Astro. Fluid. 23, 153174.
Butler S. and Peltier W. (2002). Thermal evolution of Earth: Models with time-dependent layering of mantle convection which satisfy the Urey ratio constraint. J. Geophys. Res. 107, 3-13-15.
Butterfield N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386404.
Butterfield N. J. (2009). Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 17.
Butterfield N. J. (2011). Animals and the invention of the Phanerozoic Earth system. Trends Ecol. Evol. 26, 8187.
Butterfield N. J. (2015). Proterozoic photosynthesis – a critical review. Palaeontology 58, 953972.
Byrne S., et al. (2009). Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 16741676.
Caballero R. and Huber M. (2013). State-dependent climate sensitivity in past warm climates and its implications for future climate projections. P. Natl. Acad. Sci. USA 110, 14 16214 167.
Cabane M., et al. (1993). Fractal aggregates in Titan atmosphere. Planet. Space Sci. 41, 257267.
Cairns-Smith A. G. (1978). Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276, 807808.
Caldeira K. (1995). Long-term control of atmospheric carbon dioxide: Low temperature seafloor alteration or terrestrial silicate rock weathering. Am. J. Sci. 295, 10771114.
Caldeira K., et al. (1993). Cooling in the Late Cenozoic. Nature 361, 123124.
Caldeira K. and Kasting J. F. (1992a). The life span of the biosphere revisited. Nature 360, 721723.
Caldeira K. and Kasting J. F. (1992b). Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359, 226228.
Came R. E., et al. (2007). Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449, 198202.
Cameron A. C. (2016). Extrasolar planetary transists. In: Methods of Detecting Exoplanets: 1st Advanced School on Exoplanetary Science, ed. Bozza V. et al. Springer, Cham, pp. 89131.
Cameron V., et al. (2009). A biomarker based on the stable isotopes of nickel. P. Natl. Acad. Sci. USA 106, 10 94410 948.
Campbell A. J., et al. (2011). Refugium for surface life on Snowball Earth in a nearly-enclosed sea? A first simple model for sea-glacier invasion. Geophys. Res. Lett. 38.
Campbell B., et al. (2008). SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia. J. Geophys. Res. 113, 110.
Campbell I. H. and Allen C. M. (2008). Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geosci. 1, 554558.
Campbell I. H. and Squire R. J. (2010). The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochim. Cosmochim. Acta 74, 41874206.
Campbell I. H. and Taylor S. R. (1993). No water, no granites no continents, no oceans. Geophys. Res. Lett. 10, 10611064.
Canfield D. E. (1998). A new model for Proterozoic ocean chemistry. Nature 396, 450453.
Canfield D. E. (2004). The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839861.
Canfield D. E. (2005). The early history of atmospheric oxygen: homage to Robert M. Garrels. Ann. Rev. Earth Planet. Sci. 33, 136.
Canfield D. E. (2014). Proterozoic atmospheric oxygen. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., New York: Elsevier, pp. 197216.
Canfield D. E. and Farquhar J. (2009). Animal evolution, bioturbation, and the sulfate concentration of the oceans. P. Natl. Acad. Sci. USA 106, 81238127.
Canfield D. E., et al. (2010). The evolution and future of Earth’s nitrogen cycle. Science 330, 192196.
Canfield D. E., et al. (2005). Aquatic Geomicrobiology. San Diego, CA: Elsevier Academic Press.
Canfield D. E., et al. (2013). Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. P. Natl. Acad. Sci. USA 110, 16 73616 741.
Canfield D. E., et al. (2007). Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 9295.
Canfield D. E. and Raiswell R. (1999). The evolution of the sulfur cycle. Amer. J. Sci. 299, 697723.
Canfield D. E., et al. (2006). Early anaerobic metabolisms. Phil. Trans. R. Soc. Lond. B 361, 18191834.
Canfield D. E. and Teske A. (1996). Late-Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur isotope studies. Nature 382, 127132.
Canil D. (1997). Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842845.
Canil D. (2002). Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 7590.
Cannat M., et al. (2010). Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. Geophysical Monograph Series, Vol. 188, pp. 241264.
Cantor B., et al. (2002). Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res. 107, doi:10.1029/2001JE001588.
Cantor B. A., et al. (2001). Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 2365323687.
Canup R. M. (2005). A giant impact origin of Pluto–Charon. Science 307, 546550.
Canuto V. M., et al. (1982). UV radiation from the young Sun and oxygen levels in the pre-biological paleoatmosphere. Nature 296, 816820.
Canuto V. M., et al. (1983). The young Sun and the atmosphere and photochemistry of the early Earth. Nature 305, 281286.
Carlson R. W. (1999). A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. Science 283, 820821.
Carmichael I. S. E. (2002). The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105-99 degrees W) Mexico. Contrib. Mineral. Petr. 143. 641663.
Carr M. H. (1986). Mars: a water-rich planet. Icarus 68, 187216.
Carr M. H. (1990). D/H on Mars: Effects of floods, volcanism, impacts and polar processes. Icarus 87, 210–27.
Carr M. H. (1996). Water on Mars. New York: Oxford University Press.
Carr M. H. (2006). The Surface of Mars. Cambridge: Cambridge University Press.
Carr M. H. and Clow G. D. (1981). Martian channels and valleys – Their characteristics, distribution, and age. Icarus 48, 91117.
Carr M. H. and Head J. W. (2003). Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042.
Carr M. H. and Head J. W. (2010). Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185203.
Carr M. H. and Head J. W. (2015). Martian surface/near-surface water inventory: Sources, sinks, and changes with time. Geophys. Res. Lett. 42, 726732.
Carr M. H. and Malin M. C. (2000). Meter-scale characteristics of martian channels and valleys. Icarus 146, 366386.
Carr R. H., et al. (1985). Martian atmospheric carbon-dioxide and weathering products in SNC meteorites. Nature 314, 248250.
Carrier B. L. and Kounaves S. P. (2015). The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 37393745.
Carroll B. W. and Ostlie D. A. (2007). An Introduction to Modern Astrophysics. San Francisco: Pearson Addison-Wesley.
Carter J., et al. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research-Planets 118, 831858.
Casciotti K. L. (2009). Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 20612076.
Cassan A., et al. (2012). One or more bound planets per Milky Way star from microlensing observations. Nature 481, 167169.
Cassanelli J. P., et al. (2015). Sources of water for the outflow channels on Mars: Implications of the Late Noachian “icy highlands” model for melting and groundwater recharge on the Tharsis rise. Planet. Space Sci. 108, 5465.
Cassata W. S., et al. (2012). Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere. Icarus 221, 461465.
Catling D. and Kasting J. F. (2007). Planetary atmospheres and life. In: Planets and Life: The Emerging Science of Astrobiology, ed. Sullivan W. T. and Baross J. A., Cambridge: Cambridge University Press, pp. 91116.
Catling D. C. (2004). Planetary science: On Earth, as it is on Mars? Nature 429, 707708.
Catling D. C. (2013). Astrobiology: A Very Short Introduction. Oxford: Oxford University Press.
Catling D. C. (2014). The Great Oxidation Event Transition. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., 2nd edn. New York: Elsevier, pp. 191233.
Catling D. C. (2015). Planetary Atmospheres. In: Treatise on Geophysics, ed. Schubert G., 2nd edn. Oxford: Elsevier, pp. 429472.
Catling D. C. and Claire M. W. (2005). How Earth’s atmosphere evolved to an oxic state: A status report. Earth Planet. Sci. Lett. 237, 120.
Catling D. C., et al. (2004). Understanding the evolution of atmospheric redox state from the Archaean to the Proterozoic. In: Field Forum on Processes on the Early Earth, ed. Reimold W. U. and Hofmann A., Kaapvaal Craton, S. Africa: University of Witwatersrand, pp. 1719.
Catling D. C., et al. (2007). Anaerobic methanotrophy and the rise of atmospheric oxygen. Phil. Trans. R. Soc. Lond. A 365, 18671888.
Catling D. C., et al. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115, E00E11.
Catling D. C., et al. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5, 415438.
Catling D. C., et al. (2012). Does the Vastitas Borealis Formation contain oceanic or volcanic deposits? Third Int. Conf. on Early Mars, 7031.
Catling D. C., et al. (2006). Light-toned layered deposits in Juventae Chasma, Mars. Icarus 181, 2651.
Catling D. C. and Zahnle K. J. (2013). An impact erosion stability limit controlling the existence of atmospheres on exoplanets and solar system bodies. 44th Lunar Planet. Sci. Conf. 2665.
Catling D. C., et al. (2001). Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839843.
Catling D. C., et al. (2002). What caused the second rise of O2 in the late Proterozoic? Methane, sulfate, and irreversible oxidation. Astrobiology 2, 569 (Abstract).
Catling D. C. and Zahnle K. L. (2009). The Planetary Air Leak. Sci. Am. 300, 3643.
Cavosie A. J., et al. (2005). Magmatic delta O-18 in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663681.
Chaffin M. S., et al. (2014). Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett. 41, 314320.
Chaloner W. G. (1989). Fossil charcoal as an indicator of paleoatmospheric oxygen level. J. Geol. Soc. London 146, 171174.
Chamberlain J. W. (1963). Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901960.
Chamberlain J. W. and Campbell F. J. (1967). Rate of evaporation of a non-Maxwellian atmosphere. Ap. J. 149, 687705.
Chamberlain J. W. and Hunten D. M. (1987). Theory of Planetary Atmospheres. Orlando: Academic Press.
Chamberlain J. W. and Smith G. R. (1971). Rate of evaporation of a non-Maxwellian atmosphere. Planet. Space Sci. 19, 675684.
Chambers J. E. (2007). On the stability of a planet between Mars and the asteroid belt: Implications for the Planet V hypothesis. Icarus 189, 386400.
Chambers J. E. (2009). Planetary migration: What does it mean for planet formation? Annu. Rev. Earth. Pl. Sc. 37, 321344.
Chambers J. E. (2014). Planet Formation. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., New York: Elsevier, pp. 5572.
Chambers J. E., et al. (1996). The stability of multi-planet systems. Icarus 119, 261268.
Chambers L. H., et al. (2002). Examination of new CERES data for evidence of tropical Iris feedback. Journal of Climate 15, 37193726.
Chameides W. and Walker J. C. G. (1975). Possible variation of ozone in troposphere during course of geologic time. Am. J. Sci. 275, 737752.
Chameides W. L., et al. (1977). NOx production in lightning. J. Atmos. Sci. 34, 143149.
Chameides W. L. and Walker J. C. G. (1981). Rates of fixation by lightning of carbon and nitrogen in possible primitive terrestrial atmospheres. Origins of Life 11, 291302.
Chandrasekhar S. (1960). Radiative Transfer. New York: Dover Publications.
Chang S., et al. (1983). Prebiotic organic syntheses and the origin of life. In: Earth’s Earliest Biosphere: Its Origin and Evolution, ed. Schopf J. W., Princeton, New Jersey: Princeton University Press, pp. 5392.
Chapman G. A., et al. (2012). Comparison of TSI from SORCE TIM with SFO Ground-Based Photometry. Sol. Phys. 276, 3541.
Chapman M. G., et al. (2003). Possible Juventae Chasma subice volcanic eruptions and Maja Valles ice outburst floods on Mars: Implications of Mars Global Surveyor crater densities, geomorphology, and topography. J. Geophys. Res. 108, 5113.
Chapman M. G., et al. (2010a). Noachian–Hesperian geologic history of the Echus Chasma and Kasei Valles system on Mars: New data and interpretations. Earth Planet. Sc. Lett. 294, 256271.
Chapman M. G., et al. (2010b). Amazonian geologic history of the Echus Chasma and Kasei Valles system on Mars: New data and interpretations. Earth Planet. Sc. Lett. 294, 238255.
Chapman S. and Cowling T. G. (1939). The Mathematical Theory Of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion In Gases. Cambridge: Cambridge University Press.
Chapman S., et al. (1990). The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion In Gases (3rd edition). Cambridge: Cambridge University Press.
Chapman S. and Lindzen R. S. (1970). Atmospheric Tides: Thermal and Gravitational. New York: Gordon and Breach.
Charbonneau D., et al. (2000). Detection of planetary transits across a sun-like star. Ap. J. 529, L45L49.
Charbonneau D., et al. (2002). Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377384.
Charlson R. J., et al. (1987). Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655661.
Charnay B., et al. (2015). Methane storms as a driver of Titan’s dune orientation. Nat. Geosci. 8, 362366.
Charnay B., et al. (2014). Titan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus 241, 269279.
Charnay B., et al. (2013). Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J. Geophys. Res. 118, 10 41410 431.
Chatterjee S. and Tan J. C. (2014). Inside-out Planet Formation. Astrophys. J. 780.
Chaufray J., et al. (2008). Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195, 598613.
Chaufray J. Y., et al. (2012). Hydrogen density in the dayside venusian exosphere derived from Lyman-alpha observations by SPICAV on Venus Express. Icarus 217, 767778.
Chen G. Q. and Ahrens T. J. (1997). Erosion of terrestrial planet atmosphere by surface motion after a large impact. Physics of the Earth and Planetary Interiors 100, 2126.
Chen X., et al. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat. Commun. 6.
Cheng M., et al. (2015). Mo marine geochemistry and reconstruction of ancient ocean redox states. Sci. China Earth Sci., 1–11.
Cho J. Y. K. and Polvani L. M. (1996). The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335337.
Choi J., et al. (2013). Precise Doppler monitoring of Barnard’s Star. Astrophys. J. 764, 131, doi: 10.1088/0004-637X/764/2/131.
Christensen P. R. (2003). Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature 422, 4548.
Christensen P. R. (2006). Water at the poles and in permafrost regions of Mars. Elements 2, 151155.
Christensen P. R., et al. (2001). Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 23 87323 885.
Christensen P. R., et al. (2004). Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover. Science 305, 837842.
Christopher J. B., et al. (2015). Terrestrial planet occurrence rates for the Kepler GK dwarf sample. Astrophys. J. 809, 8, doi: 10.1088/0004-637X/809/1/8.
Chumakov N. M. (2008). A problem of total glaciations on the Earth in the Late Precambrian. Stratigr. Geo. Correl. 16, 107119.
Chyba C. and Sagan C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125132.
Chyba C. F. (1987). The cometary contribution to the oceans of primitive Earth. Nature 330, 632635.
Chyba C. F. (1990). Extraterrestrial amino acids and terrestrial life. Nature 348, 113114.
Chyba C. F. and Phillips C. B. (2007). Europa. In: Planets and Life: The Emerging Science of Astrobiology, ed. Sullivan W. T. and Baross J. A., Cambridge: Cambridge University Press.
Chyba C. F., et al. (1990). Cometary delivery of organic molecules to the early Earth. Science 249, 366373.
Cicerone R. (1989). Analysis of sources and sinks of atmospheric nitrous oxide (N2O). J. Geophys. Res. 94, 18 26518 271.
Clack J. A. (2000). The origin of the tetrapods. In: Amphibian Biology, ed. Heatwole H. and Carroll R. L., Chipping Norton, Australia: Surrey Beatty, pp. 9791029.
Claire M., et al. (2006). Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239269.
Claire M. W. (2008). Quantitative modeling of the rise in atmospheric oxygen. University of Washington, Ph.D., Seattle.
Claire M. W., et al. (2014). Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 141, 365380.
Claire M. W., et al. (2012). The evolution of solar flux from 2 nm to 160 microns: Quantitative estimates for planetary studies. Astrophys. J. 757, 95 doi:10.1088/0004-637X/757/1/95.
Clancy R., et al. (2004). A measurement of the 362 GHz absorption line of Mars atmospheric H2O2. Icarus 168, 116121.
Clark B. C. (1993). Geochemical components in Martian soil. Geochim. Cosmochim. Acta 57, 45754581.
Clark B. C., et al. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sc. Lett. 240, 7394.
Clark I. D. (1971). Chemical kinetics of CO2 atmospheres. J. Atmos. Sci. 28, 847858.
Clarke J. T., et al. (2009). HST observations of the extended hydrogen corona of Mars. Bull. Am. Astron. Soc. 41, 49.11 (abstract).
Clarke J. T., et al. (2014). A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett. 41, 80138020.
Clayton R. N. (2002). Solar System : Self-shielding in the solar nebula. Nature 415, 860861.
Cleaves H. J., et al. (2008). A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins Life Evol. Biosph. 38, 105115.
Clifford S. M. and Parker T. J. (2001). The evolution of the martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 4079.
Cloud P. (1976). Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiol. 2, 351387.
Cloud P. E. (1968). Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth’s volatile envelope. Science 160, 729736.
Clough S. A. and Iacono M. J. (1995). Line-by-line calculation of atmospheric fluxes and cooling rates. 1. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J. Geophys. Res. 100, 16 51916 535.
Clough S. A., et al. (1992). Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res. 97, 15 76115 785.
Coates A. J., et al. (2007). Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34.
Coates A. J., et al. (2009). Heavy negative ions in Titan’s ionosphere: Altitude and latitude dependence. Planet. Space Sci. 57, 18661871.
Cohen B. A., et al. (2000). Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 17541756.
Cohen P. A., et al. (2009). Large spinose microfossils in Ediacaran rocks as resting stages of early animals. P. Natl. Acad. Sci. U.S.A. 106, 65196524.
Colaprete A., et al. (2005). Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics. Nature 435, 184188.
Colaprete A. and Toon O. B. (2003). Carbon dioxide clouds in an early dense Martian atmosphere. J. Geophys. Res. 108, 5025, doi:10.1029/2002JE001967.
Colburn D., et al. (1989). Diurnal variations in optical depth at Mars. Icarus 79, 159–89.
Colman A. S. and Holland H. D. (2000). The global diagenetic flux of phosphorus from marine sediments to the oceans: Redox sensitivity and the control of atmospheric oxygen levels. In: Marine Authigenesis: From Global to Microbial, ed. C. R. Glenn, et al.: SEPM Special Pub. No. 66.
Comas-Solá J. (1908). Observationes des satellites principauz de Jupiter et de Titan. Astron. Nachr. 179.
Compston W. and Pidgeon R. T. (1986). Jack Hills, Evidence of more very old detrital zircons in Western Australia. Nature 321, 766769.
Condon D., et al. (2005). U–Pb ages from the neoproterozoic Doushantuo Formation, China. Science 308, 9598.
Condon D. J., et al. (2002). Neoproterozoic glacial-rainout intervals: Observations and implications. Geology 30, 3538.
Connelly J. N., et al., Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta, in press, doi:10.1016/j.gca.2016.10.044.
Conrad R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609640.
Coogan L. A. and Dosso S. E. (2015). Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sc. Lett. 415, 3846.
Coogan L. A. and Gillis K. M. (2013). Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate–carbonate weathering cycle and long-term climate regulation. Geochem. Geophys. Geosys. 14, 17711786.
Cook J. C., et al. (2007). Near-infrared spectroscopy of Charon: Possible evidence for cryovolcanism on Kuiper Belt objects. Astrophys. J. 663, 14061419.
Cook K. H. (2004). Hadley circulation dynamics. In: The Hadley Circulation: Past, Present and Future, ed. Diaz H. F. and Bradley R. S., Dordrecht: Kluwer, pp. 6183.
Cooney C. L. (1975). Thermophilic anaerobic digestion of solid waste for fuel gas production. J. Biotech. Bioengineer. 17, 11191135.
Cooper J. F., et al. (2001). Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149, 133159.
Cope M. J. and Chaloner W. G. (1980). Fossil charcoal as evidence of past atmospheric composition. Nature 283, 647649.
Cordier D., et al. (2009). An estimate of the chemical composition of Titan’s lakes. Ap. J. 707, L128L131.
Cordier D., et al. (2012). Titan’s lakes chemical composition: Sources of uncertainties and variability. Planet. Space Sci. 61, 99107.
Corliss J. B., et al. (1981). An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Ocean Acta, 59–69.
Cornell R. M. and Schwertmann U. (1996). The iron oxides : structure, properties, reactions, occurrences and uses. Weinheim ; Cambridge: VCH.
Correia A. C. M. and Laskar J. (2001). The four final rotation states of Venus. Nature 411, 767770.
Correia A. C. M. and Laskar J. (2003). Long-term evolution of the spin of Venus II. Numerical simulations. Icarus 163, 2445.
Correia A. C. M., et al. (2003). Long-term evolution of the spin of Venus I. Theory. Icarus 163, 123.
Costard F., et al. (2002). Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 295, 110113.
Coughenour C. L., et al. (2009). Tides, tidalites, and secular changes in the Earth-Moon system. Earth Sci. Rev. 97, 5979.
Cowan N. B., et al. (2009). Alien maps of an ocean-bearing world. Astrophys. J. 700, 915923.
Craddock R. A. and Howard A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107, 5111, doi:10.1029/2001JE001505.
Crary F., et al. (2010). Upper limits on carbon group ions near the orbit of Titan: Implications for methane escape from Titan. 38th COSPAR Scientific Assembly, 5.
Cravens T. E., et al. (1997). Photochemical sources of non-thermal neutrals for the exosphere of Titan. Planetary and Space Science 45, 889896.
Crespin A., et al. (2008). Diagnostics of Titan’s stratospheric dynamics using Cassini/CIRS data and the 2-dimensional IPSL circulation model. Icarus 197, 556571.
Crisp D. (1997). Absorption of sunlight by water vapor in cloudy conditions: A partial explanation for the cloud absorption anomaly. Geophys. Res. Lett. 24, 571574.
Croft S. K., et al. (1995). The geology of Triton. In: Neptune and Triton, ed. Cruikshank D. P., Tucson: University of Arizona Press, pp. 879947.
Crossfield I. J. M. (2015). Observations of exoplanet atmospheres. Publ. Astron. Soc. Pac. 127, 941960.
Crow C. A., et al. (2011). Views from EPOXI: colors in our solar system as an analog for extrasolar planets. Astrophys. J. 729, 130.
Crowe S. A., et al. (2013). Atmospheric oxygenation three billion years ago. Nature 501, 535.
Crowell J. C. (1999). Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System. Vol. GSA Memoir 192. Geological Society of America.
Crowley T. J. (2000). CLIMAP SSTs re-revisited. Climate Dyn. 16, 241255.
Crowley T. J., et al. (2001). CO2 levels required for deglaciation of a “Near-Snowball” Earth. Geophys. Res. Lett. 28, 283286.
Crowley T. J. and North G. R. (1991). Paleoclimatology. New York: Oxford University Press.
Cruikshank D. P., et al. (2000). Water ice on Triton. Icarus 147, 309316.
Crutzen P. J. (1976). Possible importance of CSO for sulfate layer of stratosphere. Geophys. Res. Lett. 3, 7376.
Crutzen P. J. (1979). Role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 7, 443472.
Crutzen P. J. and Zimmermann P. H. (1991). The changing photochemistry of the troposphere. Tellus A 43, 136151.
Cui J., et al. (2011). The implications of the H2 variability in Titan’s exosphere. J. Geophys. Res. 116.
Cui J., et al. (2008). Distribution and escape of molecular hydrogen in Titan’s thermosphere and exosphere. J. Geophys. Res. 113, E10004, doi:10.1029/2007JE003032.
Cull S. C., et al. (2010). Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37, L22203.
Cunha D., et al. (2015). Spin evolution of Earth-sized exoplanets, including atmospheric tides and core–mantle friction. Int. J. Astrobiol. 14, 233254.
Cunningham N. J., et al. (2015). Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. Icarus 254, 178189.
Curtis A. R. and Goody R. M. (1956). Thermal radiation in the upper atmosphere. Proc. R. Soc. Lond. A 236, 193206.
Cushing M. C., et al. (2011). The discovery of Y Dwarfs using data from the Wide-Field Infrared Survey Explorer (WISE). Astrophys. J. 743.
Cutter G. A. and Bruland K. W. (1984). The marine biogeochemistry of selenium: a re-evaluation. Limnol. Oceanogr. 29, 11791192.
Cuzzi J. N., et al. (2008). Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 14321447.
Czaja A. D., et al. (2010). Iron and carbon isotope evidence for ecosystem and environmental diversity in the similar to 2.7 to 2.5 Ga Hamersley Province, Western Australia. Earth Planet. Sci. Lett. 292, 170180.
Czaja A. D., et al. (2013). Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sc. Lett. 363, 192203.
Czaja A. D., et al. (2012). Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86, 118137.
D’Hondt S., et al. (2002). Metabolic activity of subsurface life in deep-sea sediments. Science 295, 20672070.
Dahl T. W., et al. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. P. Natl. Acad. Sci. U.S.A. 107, 17 91117 915.
Dai A. and Wang J. (1999). Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci. 56, 38743891.
Daines S. J. and Lenton T. M. (2016). The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 4251.
Dalcanton J., et al. (2015). From Cosmic Birth to Living Earths: The Future of UVOIR Space Astronomy. arXiv preprint arXiv:1507.04779.
Danielache S. O., et al. (2008). High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide: Ultraviolet absorption cross sections and isotope effects. J. Geophys. Res. 113, D17314.
Darling A. and Whipple K. (2015). Geomorphic constraints on the age of the western Grand Canyon. Geosphere 11, 958976.
Dauphas N. (2003). The dual origin of the terrestrial atmosphere. Icarus 165, 326339.
Dauphas N., et al. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Phil. Trans R. Soc. Lond. A 372.
Dauphas N. and Kasting J. F. (2011). Low pCO2 in the pore water, not in the Archean atmosphere. Nature 474, E1, doi:10.1038/nature09960.
Dauphas N. and Pourmand A. (2011). Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–U227.
Dauphas N., et al. (2000). The late asteroidal and cometary bombardment of Earth as recorded in water deuterium to protium ratio. Icarus 148, 508512.
David L. A. and Alm E. J. (2011). Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469, 9396.
Davies G. F. (1980). Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J. Geophys. Res. 85, 25172530.
Davies G. F. (2002). Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochim. Cosmochim. Acta 66, 31253142.
Davies G. F. (2006). Gravitational instability of the early Earth’s upper mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett. 243, 376382.
de Kok R. J., et al. (2014). HCN ice in Titan’s high-altitude southern polar cloud. Nature 514, 65.
de Wit M. J. and Furnes H. (2016). 3,5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt – Paleoarchean crust in cold environments. Sci. Adv. 2, e1500368.
DeBergh C., et al. (1991). Deuterium on Venus – Observations from Earth. Science 251, 547549.
Degens E. T. and Epstein S. (1962). Relationship between O18/O16 ratios in coexisting carbonates, cherts and diatomites. Amer. Assoc. Petrol. Geol. Bull. 46, 534542.
Del Genio A. D., et al. (2009). Saturn atmospheric structure and dynamics. In: Saturn from Cassini-Huygens, ed. Dougherty M., et al., New York: Springer, pp. 113160.
Del Genio A. D. and Suozzo R. J. (1987). A comparative study of rapidly and slowly rotating dynamic regimes in a terrestrial General Circulation Model. J. Atmos. Sci. 44, 973986.
Del Genio A. D. and Zhou W. (1996). Simulations of superrotation on slowly rotating planets: Sensitivity to rotation and initial condition. Icarus 120, 332343.
Delano J. W. (2001). Redox history of the Earth’s interior: implications for the origin of life. Orig. Life Evol. Biosph. 31, 311341.
Delorme P., et al. (2013). Direct-imaging discovery of a 12–14 Jupiter-mass object orbiting a young binary system of very low-mass stars. Astronomy & Astrophysics 553, L5.
Delsemme A. H. (2001). An argument for the cometary origin of the biosphere. Am. Sci. 89, 432442.
Derry L. A., et al. (1992). Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta 56, 13171329.
Derry L. A. (2014). Organic carbon cycling and the lithosphere. In: Treatise on Geochemistry (Second Edition), ed. Holland H. D. and Turekian K. K.. Oxford: Elsevier, pp. 239249.
Des Marais D. J., et al. (1992). Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605609.
DesMarais D. J., et al. (1992). Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605609.
Dessler A. E., et al. (2013). Stratospheric water vapor feedback. P. Natl. Acad. Sci. USA 110, 1808718091.
Dessler A. E., et al. (2008). Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys. Res. Lett. 35, L20704, doi:10.1029/2008GL035333.
Dhuime B., et al. (2012). A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science 335, 13341336.
Di Achille G. and Hynek B. M. (2010). Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience 3, 459463.
Diakonov I., et al. (1994). Thermodynamic properties of iron-oxides and hydroxides .1. Surface and bulk thermodynamic properties of goethite (alpha-FeOOH) up to 500 K. Eur. J. Mineral. 6, 967983.
Dickens A. F., et al. (2004). Reburial of fossil organic carbon in marine sediments. Nature 427, 336339.
Dickey J. O., et al. (1994). Lunar laser ranging – a continuing legacy of the Apollo Program. Science 265, 482490.
Dickson J. L., et al. (2015). Recent climate cycles on Mars: Stratigraphic relationships between multiple generations of gullies and the latitude dependent mantle. Icarus 252, 8394.
Dickson J. L., et al. (2007). Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography. Icarus 188, 315323.
Dieterich S., B., et al. (2012). The Solar Neighborhood. XXVIII. The multiplicity fraction of nearby stars from 5 to 70 AU and the brown dwarf desert around M Dwarfs. Astron. J. 144, 64.
Dima I. M. and Wallace J. M. (2003). On the seasonality of the Hadley cell. J. Atmos. Sci. 60, 15221527.
Diniega S., et al. (2013). A new dry hypothesis for the formation of martian linear gullies. Icarus 225, 526537.
Dobrijevic M., et al. (2014). Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan’s atmosphere. Icarus 228, 324346.
Dobrovolskis A. R. (1980). Atmospheric tides and the rotation of Venus .2. Spin evolution. Icarus 41, 1835.
Dobrovolskis A. R. (2009). Insolation patterns on synchronous exoplanets with obliquity. Icarus 204, 110.
Dobrovolskis A. R. and Ingersoll A. P. (1980). Atmospheric tides and the totation of Venus .1. Tidal theory and the balance of torques. Icarus 41, 117.
Dobson G. M. B. (1956). Origin and distribution of the polyatomic molecules in the atmosphere. Proc. R. Soc. Lond. A 236, 187193.
Dohnanyi J. S. (1972). Interplanetary objects in review: Statistics of their masses and dynamics. Icarus 17, 1.
Dole S. H. (1964). Habitable Planets for Man. New York: Blaisdell Publishing.
Domagal-Goldman S. D., et al. (2011). Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419441.
Domagal-Goldman S. D., et al. (2014). Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys. J. 792, doi: 10.1088/0004-637X/792/2/90.
Donahue T. M. (1995). Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust. Nature 374, 432434.
Donahue T. M., et al. (1982). Venus was wet: A measurement of the ratio of deuterium to hydrogen. Science 216, 630633.
Donahue T. M. and Pollack J. B. (1983). Origin and evolution of the atmosphere of Venus. In: Venus, ed. Hunten D. M., et al., Tucson: University of Arizona Press, pp. 10031036.
Donnadieu Y., et al. (2004). A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428, 303306.
Doolittle W. F. (2009). The practice of classification and the theory of evolution, and what thedemise of Charles Darwin’s tree of life hypothesis means for both of them. Phil. Trans. R. Soc. Lond. B 364, 22212228.
Dos Santos P. C., et al. (2012). Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13, 162.
Dowling T. E. (1995). Dynamics of Jovian atmospheres. Annu. Rev. Fluid Mech. 27, 293334.
Drake M. J. and Righter K. (2002). Determining the composition of the Earth. Nature 416, 3944.
Dreibus G. and Wänke H. (1987). Volatiles on Earth and Mars, A comparison. Icarus 71, 225–40.
Dressing C. D. and Charbonneau D. (2015). The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45.
Driese S. G., et al. (2011). Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res. 189, 117.
Du S. Y., et al. (2011). The kinetics study of the S + S-2 -> S-3 reaction by the chaperone mechanism. Journal of Chemical Physics 134.
Dudley R. (1998). Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J. Exp. Biol. 201, 10431050.
Dundas C. M., et al. (2014). HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res. 119, 109127.
Dundas C. M., et al. (2012). Seasonal activity and morphological changes in martian gulllies. Icarus, doi:10.1016/j.icarus.2012.04.005.
Dundas C. M., et al. (2015). Long-term monitoring of martian gully formation and evolution with MRO/HiRISE. Icarus 251, 244263.
Dundas C. M. and Keszthelyi L. P. (2014). Emplacement and erosive effects of lava in south Kasei Valles, Mars. J. Volcanol. Geoth. Res. 282, 92102.
Dutkiewicz A., et al. (2006). Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event. Geology 34, 437440.
Duxbury N. S. and Brown R. H. (1997). The role of an internal heat source for the eruptive plumes on Triton. Icarus 125, 8393.
Dworkin L. P., et al. (2001). Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. P. Natl. Acad. Sci. USA 98, 815819.
Dyudina U. A., et al. (2010). Detection of visible lightning on Saturn. Geophys. Res. Lett. 37, doi:10.1029/2010GL043188.
Edgett K. S. (2005). The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters. Mars 1, 558.
Edgett K. S. and Malin M. C. (2002). Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29.
Edson A., et al. (2011). Atmospheric circulations of terrestrial planets orbiting low mass stars,. Icarus 212, 113.
Edwards C. S. and Ehlmann B. L. (2015). Carbon sequestration on Mars. Geology, doi:10.1130/G36983.1.
Egami F. (1974). Inorganic types of fermentation and anaerobic respirations in evolution of energy-yielding metabolism. Origins Life Evol. Biosph. 5, 405413.
Egami F. (1976). Comment on position of nitrate respiration in metabolic evolution. Origins Life Evol. Biosph. 7, 7172.
Ehlmann B. (2010). Diverse aqueous environments during Mars’ first billion years: The emerging view from orbital visible-near infrared spectroscopy. Geochem. News 142.
Ehlmann B., et al. (2011). Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 5360.
Ehlmann B. L., et al. (2013). Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust. Space Sci. Rev. 174, 329364.
Ehlmann B. L. and Edwards C. S. (2014). Mineralogy of the martian surface. Annu. Rev. Earth Pl. Sc. 42, 291315.
Ehlmann B. L., et al. (2008a). Clay minerals in delta deposits and organic preservation potential on Mars. Nature Geoscience 1, 355358.
Ehlmann B. L., et al. (2010). Geologic setting of serpentine deposits on Mars. Geophysical Research Letters 37, L06201, doi:10.1029/2010GL042596.
Ehlmann B. L., et al. (2008b). Orbital identification of carbonate-bearing rocks on Mars. Science 322, 18281832.
Ehlmann B. L., et al. (2009). Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114.
Ehrenreich A. and Widdel F. (1994). Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 45174526.
Eigenbrode J. L. and Freeman K. H. (2006). Late Archean rise of aerobic microbial ecosystems. P. Natl. Acad. Sci. USA 103, 15 75915 764.
Eigenbrode J. L., et al. (2008). Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet. Sci. Lett. 273, 323331.
Eiler J. M. (2007). “Clumped-isotope” geochemistry–The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262, 309327.
Eiler J. M. (2011). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Sci. Rev. 30, 35753588.
El Albani A., et al. (2010). Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100104.
El Albani A., et al. (2014). The 2.1 Ga old Francevillian biota: Biogenicity, taphonomy and biodiversity. PLoS ONE 9, e99438 doi:10.1371/journal.pone.0099438.
Elachi C. and Van Zyl J. (2006). Introduction to the Physics and Techniques of Remote Sensing. Hoboken, N.J.: Wiley.
Elkins-Tanton L. T. (2008). Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sc. Lett. 271, 181191.
Elkins-Tanton L. T. (2012). Magma oceans in the inner Solar System. Ann. Rev. Earth Planet. Sci. 40, 113139.
Elliot J. L., et al. (1998). Global warming on Triton. Nature 393, 765767.
Ellis A. M., et al. (2005). Electronic and Photoelectron Spectroscopy: Fundamentals and Case Studies. New York: Cambridge University Press.
Ellis R. J. (1979). Most abundant protein in the world. Trends Biochem. Sci. 4, 241244.
Elwood-Madden M. E., et al. (2009). How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology 37, 635638.
Embleton B. J. and Williams G. E. (1986). Low paleolatitude of deposition for the late Precambrian periglacial varvitesin South Australia: implications for paleoclimatology. Earth Planet. Sci. Lett. 79, 419430.
Embley T. M. and Williams T. A. (2015). Steps on the road to eukaryotes. Nature 521, 169170.
Encrenaz T., et al. (2004). Hydrogen peroxide on Mars: Evidence for spatial and seasonal variations. Icarus 170, 424429.
Encrenaz T., et al. (2008). Simultaneous mapping of H2O and H2O2 on Mars from infrared high-resolution imaging spectroscopy. Icarus 195, 547556.
Endo Y., et al. (2015). Photoabsorption cross-section measurements of S-32, S-33, S-34, and S-36 sulfur dioxide from 190 to 220 nm. J. Geophys. Res. 120, 25462557.
England G. L., et al. (2002). Paleoenvironmental significance of rounded pyrite in siliclastic sequences of the Late Archean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentol. 49, 11331156.
Eriksson P. G. and Cheney E. S. (1992). Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower Proterozoic sequences of southern Africa. Precamb. Res. 54, 257269.
Erkaev N. V., et al. (2007). Roche lobe effects on the atmospheric loss from “Hot Jupiters”. Astron. Astrophys. 472, 329334.
Erwin D. H., et al. (2011). The Cambrian Conundrum: Early divergence and later ecological success in the early history of animals. Science 334, 10911097.
Erwin J., et al. (2013). Hybrid fluid/kinetic modeling of Pluto’s escaping atmosphere. Icarus 226, 375384.
Esposito L. W. (1984). Sulfur dioxide: Episodic injection shows evidence for active Venus volcanism. Science 223, 10721074.
Etiope G., et al. (2009). Terrestrial methane seeps and mud volcanoes: A global perspective of gas origin. Mar. Petrol. Geol. 26, 333344.
Etiope G. and Klusman R. W. (2002). Geologic emissions of methane to the atmosphere. Chemosphere 49, 777789.
Etiope G., et al. (2008). Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35.
Etiope G. and Lollar B. S. (2013). Abiotic methane on Earth. Rev. Geophys. 51, 276299.
Eugster H. P. and Wones D. R. (1962). Stability relations of the ferruginous biotite, annite. J. Petrol. 3, 82125.
Evans D. A., et al. (1997). Low-latitude glaciation in the Proterozoic era. Nature 386, 262266.
Evans K. A., et al. (2012). Oxidation state of subarc mantle. Geology 40, 783786.
Fahr H. J. (1976). Reduced hydrogen temperatures in the transition region between thermosphere and exosphere. Ann. Geophys. 32, 277282.
Fahr H. J. and Weidner B. (1977). Gas evaporation from collision determined from planetary exospheres. Mon. Not. R. Astron. Soc. 180, 593612.
Fairen A. G. (2010). A cold and wet Mars. Icarus 208, 165175.
Fairen A. G., et al. (2009). Stability against freezing of aqueous solutions on early Mars. Nature 459, 401404.
Fairen A. G., et al. (2003). Episodic flood inundations of the northern plains of Mars. Icarus 165, 5367.
Fairen A. G., et al. (2004). Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423426.
Fairen A. G., et al. (2002). An origin for the linear magnetic anomalies on Mars through accretion of terranes: Implications for dynamo timing. Icarus 160, 220223.
Falkowski P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological CO2 pump in the oceans. Nature 387, 272275.
Falkowski P. G., et al. (2005). The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 22022204.
Falkowski P. G., et al. (1992). Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic. Science 256, 13111313.
Fallick A. E., et al. (2008). The ancient anoxic biosphere was not as we know it. In: Biosphere Origin and Evolution, ed. Dobretsov N., et al., New York: Springer, pp. 169188.
Fani R., et al. (2000). Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol. Evol. 51, 111.
Fardeau M. L. and Belaich J. P. (1986). Energetics of the growth of Methanococcus-Thermolithotrophicus. Arch. Microbiol. 144, 381385.
Farley K. A. and Neroda E. (1998). Noble gases in the Earth’s mantle. Ann. Rev. Earth Planet. Sci. 26, 189218.
Farley K. A. and Poreda R. J. (1993). Mantle neon and atmospheric contamination. Earth Planet. Sc. Lett. 114, 325339.
Farman J. C., et al. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207210.
Farmer C. B. and Houghton J. T. (1966). Collision-induced absorption in Earth’s atmosphere. Nature 209, 1341.
Farquhar J., et al. (2000a). Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756758.
Farquhar J., et al. (2008). Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Faellestrand, Denmark. Geochim. Cosmochim. Acta 72, 28052821.
Farquhar J., et al. (2007). Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth Planet. Sci. Lett. 264, 18.
Farquhar J., et al. (2001). Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: application to the early atmosphere. J. Geophys. Res. 106, 111.
Farquhar J., et al. (2000b). Evidence of atmospheric sulfur in the martian regolith from sulphur isotopes in meteorites. Nature 404, 5052.
Farquhar J. and Wing B. A. (2003). Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 113.
Farquhar J., et al. (2010). Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Econ. Geol. 105, 509533.
Farquhar J., et al. (2011). Geological constraints on the origin of oxygenic photosynthesis. Photosyn. Res. 107, 1136.
Farquhar J., et al. (2014). Geologic and geochemical constraints on Earth’s early atmosphere. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., New York: Elsevier, pp. 91138.
Fassett C. I. and Head J. W. (2005). Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32.
Fassett C. I. and Head J. W. (2008a). The timing of martian valley network activity: Constraints from buffered crater counting. Icarus 195, 6189.
Fassett C. I. and Head J. W. (2008b). Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 3756.
Fassett C. I. and Minton D. A. (2013). Impact bombardment of the terrestrial planets and the early history of the Solar System. Nat. Geosci. 6, 520524.
Fedo C. M. and Whitehouse M. J. (2002). Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296, 14481452.
Fegley B. (2012). Practical Chemical Thermodynamics for Geoscientists. Academic Press.
Fegley B. (2014). Venus. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., New York: Elsevier, pp. 127148.
Fegley B. and Osborne R. (2013). Practical Chemical Thermodynamics for Geoscientists. London: Academic Press.
Fegley B. and Schaefer L. (2010). Cosmochemistry of the Biogenic Elements C, H, N, O, and S. In: Astrobiology: Emergence, Search and Detection of Life, ed. Basuik V. A., Stevenson Ranch, CA: Am. Sci. Publishers, pp. 2349.
Fegley B. and Zolotov M. Y. (2000). Chemistry of sodium, potassium, and chlorine in volcanic gases on Io. Icarus 148, 193210.
Feldman P., et al. (2011). Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214, 394399.
Feldman W. C., et al. (2004). Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006.
Ferraz-Mello S., et al. (2008). Tidal friction in close-in satellites and exoplanets: The Darwin theory revisited. Celestial Mech. Dyn. Ast. 101, 171201.
Ferreira D., et al. (2011). Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate 24, 9921012.
Feulner G. (2012). The faint young Sun problem. Rev. Geophys. 50.
Feynman R. P., et al. (1963). The Feynman Lectures On Physics. Reading, Mass: Addison-Wesley.
Fiebig J., et al. (2009). Excess methane in continental hydrothermal emissions is abiogenic. Geology 37, 495498.
Fike D. A., et al. (2015). Rethinking the ancient sulfur cycle. Annu. Rev. Earth Pl. Sc. 43, 593622.
Fike D. A., et al. (2006). Oxidation of the Ediacaran Ocean. Nature 444, 744747.
Fink U., et al. (1972). Water vapor in the atmosphere of Venus. Icarus 17, 617631.
Finlayson-Pitts J., B. J. and Pitts J. N. (2000). Chemistry of the Upper and Lower Atmosphere : Theory, Experiments, and Applications. San Diego: Academic Press.
Fischer D. A. and Valenti J. (2005). The planet-metallicity correlation. Astrophys. J. 622, 11021117.
Fischer T. P. (2008). Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem. J. 42, 2138.
Fischer W. W., et al. (2014). Archean “whiffs of oxygen” tied to post-depositional processes. Mineral. Mag. 78.
Fishbaugh K. E., et al. (2007). On the origin of gypsum in the Mars north polar region. J. Geophys. Res. 112.
Fisher J. A., et al. (2005). A survey of martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res. 110.
Fishman J. and Crutzen P. J. (1977). Numerical study of tropospheric photochemistry using a one-dimensional model. J. Geophys. Res. 82, 58975906.
Flament N., et al. (2008). A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sc. Lett. 275, 326336.
Flannery D. T. and Walter M. R. (2012). Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Australian Journal of Earth Sciences 59, 111.
Flasar F. M. (1983). Oceans on Titan. Science 221, 5557.
Flasar F. M. (1998). The dynamic meteorology of Titan. Planet. Space Sci. 46, 11251147.
Flasar F. M., et al. (2009). Atmosperic dynamics and meteorology. In: Titan from Cassini–Huygens, ed. Brown R. H., et al., New York: Springer.
Flasar F. M., et al. (1981). Titan’s atmosphere: Temperature and dynamics. Nature 292, 693698.
Fleagle R. G. and Businger J. A. (1980). An Introduction to Atmospheric Physics. New York: Academic Press.
Flowers R. M. and Farley K. A. (2012). Apatite He-4/He-3 and (U-Th)/He Evidence for an Ancient Grand Canyon. Science 338, 16161619.
Forbes J., et al. (2004). Tides in the middle and upper atmospheres of Mars and Venus. Adv. Space Res. 33, 125131.
Forbes J. M. (2002). Wave coupling in terrestrial planetary atmospheres. In: Atmospheres in the Solar System: Comparative Aeronomy ed. Mendillo M., et al., Washington, D. C.: AGU, pp. 171190.
Forget F. and Pierrehumbert R. T. (1997). Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 12731276.
Forget F., et al. (2013). 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus 222, 8199.
Formisano V., et al. (2004). Detection of methane in the atmosphere of Mars. Science 306, 17581761.
Forterre P. (2015). The universal tree of life: An update. Front. Microbiol. 6, Article 717, doi: 10.3389/fmicb.2015.00717.
Fortes A. D. (2000). Exobiological implications of a possible ammonia-water ocean inside Titan. Icarus 146, 444452.
Fossati L., et al. (2013). Absorbing gas around the WASP-12 planetary system. Astrophys. J. Lett. 766, L20 doi:10.1088/2041-8205/766/2/L20.
Fossati L., et al. (2010). Metals in the exosphere of the highly irradiated planet WASP-12b. Astrophys. J. Lett. 714, L222L227.
Fowler D., et al. (2013). The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. Lond. B 368.
Fowler D., et al. (2009). Atmospheric composition change: Ecosystems-atmosphere interactions. Atmos. Env. 43, 51935267.
Fox J. and Hac A. (2009). Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527544.
Fox J. L. (1993). The production and escape of nitrogen atoms on Mars. J. Geophys. Res. 98, 32973310.
Fox J. L. (2007). Comment on the papers “Production of hot nitrogen atoms in the martian thermosphere” by F. Bakalian and “Monte Carlo computations of the escape of atomic nitrogen from Mars” by F. Bakalian and R.E. Hartle. Icarus 192, 296301.
Fox J. L. and Bakalian F. M. (2001). Photochemical escape of atomic carbon from Mars. J. Geophys. Res. 106, 28 78528 795.
Fox J. L. and Hac A. (1997). The 15N/14N isotope fractionation in dissociative recombination of N2+. J. Geophys. Res. 102, 91919204.
Frakes L. A. (1979). Climates Throughout Geologic Time. New York: Elsevier.
Fralick P. and Riding R. (2015). Steep Rock Lake: Sedimentology and geochemistry of an Archean carbonate platform. Earth Sci. Rev. 151, 132175.
Franck S., et al. (2000a). Habitable zone for Earth-like planets in the solar system. Planet. Space Sci. 48, 10991105.
Franck S., et al. (2000b). Reduction of biosphere life span as a consequence of geodynamics. Tellus B 52, 94107.
Franck S., et al. (1999). Modelling the global carbon cycle for the past and future evolution of the earth system. Chem. Geol. 159, 305317.
Francois L. M. and Walker J. C. G. (1992). Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater. Amer. J. Sci. 292, 81135.
Franz H., et al. (2015). Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover. Planet. Space Sci. 109110, 154158.
Franz H. B., et al. (2014). Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars. Nature 508, 364368.
Free A. and Barton N. H. (2007). Do evolution and ecology need the Gaia hypothesis? Trends Ecol. Evol. 22, 611619.
Frei R., et al. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250–U125.
Freissinet C., et al. (2015). Organic molecules in the Sheepbed Mudstone, Gale Crater. Mars. J. Geophys. Res. 120, 495514.
French K. L., et al. (2015). Reappraisal of hydrocarbon biomarkers in Archean rocks. P. Natl. Acad. Sci. USA 112, 59155920.
Frey H. V. (2006a). Impact constraints on the age and origin of the lowlands of Mars. Geophys. Res. Lett. 33, 14.
Frey H. V. (2006b). Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, 111.
Frey H. V., et al. (2002). Ancient lowlands on Mars. Geophys. Res. Lett. 29.
Friedson A. J., et al. (2009). A global climate model of Titan’s atmosphere and surface. Planet. Space Sci. 57, 19311949.
Frierson D. M. W., et al. (2006). A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci. 63, 25482566.
Frierson D. M. W., et al. (2007). Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett. 34, doi:10.1029/2007GL031115.
Frost B. R. (1991). Introduction to oxygen fugacity and its petrologic importance. In: Reviews In Mineralogy, ed. Lindsley D. H., Washington, D.C.: Mineralogical Society of America, pp. 19.
Frost D. J., et al. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409412.
Frost D. J. and McCammon C. A. (2008). The redox state of Earth’s mantle. Ann. Rev. Earth Planet. Sci. 36, 389420.
Fu Q., et al. (2002). Tropical cirrus and water vapor: an effective Earth infrared iris feedback? Atmos. Chem. Phys. 2, 3137.
Fujii Y., et al. (2010). Colors of a second Earth: Estimating the fractional areas of ocean, land, and vegetation of Earth-Like exoplanets. Astrophys. J. 715, 866880.
Fulchignoni M., et al. (2005). In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 785791.
Gaeman J., et al. (2012). Sustainability of a subsurface ocean within Triton’s interior. Icarus 220, 339347.
Gaidos E. (2013). Candidate planets in the habitable zones of Kepler stars. Astrophys. J. 770, 90, doi: 10.1088/0004-637X/770/2/90.
Gaidos E. and Marion G. (2003). Geological and geochemical legacy of a cold early Mars. J. Geophys. Res. 108.
Gaillard F. and Scaillet B. (2009). The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 3443.
Gaillard F., et al. (2011). Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229233.
Gaines S. M., et al. (2009). Echoes of Life: What Fossil Molecules Reveal about Earth History. New York: Oxford University Press.
Galli A., et al. (2006a). Energetic hydrogen and oxygen atoms observed on the nightside of Mars. Space Sci. Rev. 126, 267296.
Galli A., et al. (2006b). The hydrogen exospheric density profile measured with ASPERA-3/NPD. Space Sci. Rev. 126, 447467.
Galtier N., et al. (1999). A non-hyperthermophilic common ancestor to extant life forms. Science, 283, 220221.
Ganguli S. B. (1996). The polar wind. Rev. Geophys. 34, 311348.
Garcia R. R. and Solomon S. (1985). The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. 92, 38503868.
Garcia-Munoz A. (2007). Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 14261455.
Garnier P., et al. (2008). The lower exosphere of Titan: Energetic neutral atoms absorption and imaging. J. Geophys. Res. 113, A10216, doi:10.1029/2008JA013029.
Garrels R. M., et al. (1973). Genesis of Precambrian iron formations and development of atmospheric oxygen. Econ. Geol. 68, 11731179.
Garvin J., et al. (2009). Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 10451048.
Gaucher E. A., et al. (2008). Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451, 704707.
Gaucher E. A., et al. (2003). Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425, 285288.
Gear C. W. (1971). Numerical Initial Value Problems In Ordinary Differential Equations. Englewood Cliffs, N.J.: Prentice-Hall.
Geboy N. J., et al. (2013). Re-Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil. Precambrian Research 238, 199213.
Geminale A., et al. (2011). Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. 59, 137148.
Genda H. and Abe Y. (2003). Survival of a proto-atmosphere through the stage of giant impacts: The mechanical aspects. Icarus 164, 149162.
Genda H. and Abe Y. (2005). Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842844.
Gendrin A., et al. (2005). Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science 307, 15871591.
Gensel P. G. (2008). The Earliest Land Plants. Ann. Rev. Ecol. Evol. Sys. 39, 459477.
Genthner B. R. S. and Bryant M. P. (1982). Growth of eubacterium: Limosum with carbon monoxide as the energy source. Appl. Environ. Microbiol. 43, 7074.
George S. C., et al. (2008). Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for > 2 billion years. Geochim. Cosmochim. Acta 72, 844870.
Gerasimov M. V. and Mukhin L. M. (1984). Studies of the chemical composition of gaseous phase released from laser pulse evaporated rocks and meteorite materials. Proc. Lunar Planet. Sci. Conf. XV, 298–299.
Gerlach T. M. (2011). Volcanic versus anthropogenic carbon dioxide. EOS Trans. AGU 92, 201202.
German C. R. and Seyfried W. E. (2014). Hydrothermal processes. In: Treatise on Geochemistry, 2nd Edn, ed. Holland H. D. and Turekian K. K., New York: Elsevier, pp. 181222.
Ghatan G. J. and Zimbelman J. R. (2006). Paucity of candidate coastal constructional landforms along proposed shorelines on Mars: Implications for a northern lowlands-filling ocean. Icarus 185, 171196.
Gierasch P. J. (1975). Meridional circulation and maintenance of Venus atmospheric rotation. J. Atmos. Sci. 32, 10381044.
Gierasch P. J., et al. (1997). The general circulation of the Venus atmosphere: An assessment. In: Venus II, ed. Bougher S. W., et al., Tucson: University of Arizona Press, pp. 459500.
Giggenbach W. (1997). Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim. Cosmochim. Acta 61, 37633785.
Giggenbach W. F. and Matsuo S. (1991). Evaluation of results from Second and Third IAVCEI Field Workshops on Volcanic Gases. Appl. Geochem. 6, 125141.
Giggenbach W. H. (1996). Chemical composition of volcanic gases. In: Monitoring and Mitigation of Volcano Hazards, ed. Scarpa R. and Tilling R. I., Berlin: Springer-Verlag, pp. 221256.
Gillessen S., et al. (2009). Monitoring stellar orbits around the massive black hole in the galactic center. Astrophys. J. 692, 10751109.
Giorgi F. and Chameides W. L. (1985). The rainout parameterization in a photochemical model. J. Geophys. Res. 90, 78727880.
Gladman B. (1993). Dynamics of systems of 2 close planets. Icarus 106, 247263.
Gladstone G. R., et al. (2016). The atmosphere of Pluto as observed by New Horizons. Science 351, 1280, doi:10.1126/science.aad8866.
Glasspool I. J. and Scott A. C. (2010). Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627630.
Glavin D. P., et al. (2013). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. 118, 19551973.
Glein C. R., et al. (2015). The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202219.
Glein C. R., et al. (2009). The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen. Icarus 204, 637644.
Glein C. R. and Shock E. L. (2013). A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan. Geochim. Cosmochim. Acta 115, 217240.
Glotch T. D., et al. (2010). Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters 37,.
Glotch T. D. and Rogers A. D. (2007). Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. 112, E06001, doi:10.1029/2006JE002863.
Godderis Y., et al. (2007). Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Comptes Rendus Geoscience 339, 212222.
Godderis Y., et al. (2003). The Sturtian ‘snowball’ glaciation: fire and ice. Earth and Planetary Science Letters 211, 112.
Godderis Y. and Veizer J. (2000). Tectonic control of chemical and isotopic composition of ancient oceans: The impact of continental growth. Am. J. Sci. 300, 434461.
Godfrey L. V. and Falkowski P. G. (2009). The cycling and redox state of nitrogen in the Archaean ocean. Nature Geosci., doi: 10.1038/NGEO633.
Gogarten-Boekels M., et al. (1995). The effects of heavy meteorite bombardment on the early evolution: The emergence of the three domains of life. Orig. Life and Evol. Biosph. 25, 251264.
Golabek G. J., et al. (2011). Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215, 346357.
Gold T. (1964). Outgassing processes on the Moon and Venus. In: The Origin and Evolution of Atmospheres and Oceans, ed. Brancazio P. J. and Cameron A. G. W., New York: Wiley, pp. 249256.
Gold T. and Soter S. (1969). Atmospheric tides and resonant rotation of Venus. Icarus 11, 356366.
Gold T. and Soter S. (1971). Atmospheric tides and 4-day circulation on Venus. Icarus 14, 1620.
Goldblatt C., et al. (2009). Nitrogen-enhanced greenhouse warming on early Earth. Nat. Geosci. 2, 891896.
Goldblatt C., et al. (2006). Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683686.
Goldblatt C., et al. (2013). Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661667.
Goldblatt C. and Watson A. J. (2012). The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. R. Soc. Lond. A 370, 41974216.
Goldblatt C. and Zahnle K. J. (2011). Clouds and the faint young Sun paradox. Clim. Past 7, 203220.
Golden D. C., et al. (2008). Hydrothermal synthesis of hematite spherules and jarosite: Implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars. Am. Mineral. 93, 12011214.
Goldreich P. (1966). History of the lunar orbit. Rev. Geophys. 4, 411439.
Goldreich P. and Soter S. (1966). Q in Solar System. Icarus 5, 375389.
Goldspiel J. M. and Squyres S. W. (2000). Groundwater sapping and valley formation on Mars. Icarus 148, 176192.
Golombek M. P., et al. (2006). Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111.
Gomes R., et al. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466469.
Gonzalez G. (1999). Is the Sun anomalous? Astron. Geophys. 40, 2529.
Gonzalez G., et al. (2001). The Galactic Habitable Zone: Galactic chemical evolution. Icarus 152, 185200.
Goodman J. C. (2006). Through thick and thin: Marine and meteoric ice in a “Snowball Earth” climate. Geophys. Res. Lett. 33.
Goodman J. C. and Pierrehumbert R. T. (2003). Glacial flow of floating marine ice in ‘Snowball Earth’. J. Geophys. Res. 108, 3308.
Goody R. M. (1964). Atmospheric Radiation. Oxford: Clarendon Press.
Goody R. M. and Belton M. J. S. (1967). Radiative relaxation times for Mars: a discussion of Martian atmospheric dynamics. Planet. Space Sci. 15, 247–56.
Goody R. M. and Walker J. C. G. (1972). Atmospheres. Englewood Cliffs, NJ: Prentice Hall.
Goody R. M. and Yung Y. L. (1989). Atmospheric Radiation: Theoretical Basis. New York: Oxford University Press.
Gough D. O. (1981). Solar interior structure and luminosity variations. Solar Phys. 74, 2134.
Grad H. (1949). On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331407.
Gradie J. and Tedesco E. (1982). Compositional structure of the asteroid belt. Science 216, 14051407.
Gradstein F. M. (2012). The Geologic Time Scale 2012. Boston: Elsevier.
Graedel T. E. and Crutzen P. J. (1993). Atmospheric Change: An Earth System Perspective. New York: W.H. Freeman.
Graedel T. E., et al. (1991). Early solar mass loss: A potential solution to the weak sun paradox. Geophys. Res. Lett. 18, 18811884.
Graham D. W. (2002). Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Rev. Mineral. Geochem. 47, 247317.
Grandstaff D. E. (1980). Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South-Africa – Implications for oxygen in the Precambrian atmosphere. Precam. Res. 13, 126.
Grant J. A., et al. (2008). HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195198.
Grant J. A. and Wilson S. A. (2011). Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophy. Res. Lett. 38.
Greeley R., et al. (1997). Aeolian processes and features on Venus. In: Venus II, ed. Bougher S. W., et al., Tucson: University of Arizona Press, pp. 547589.
Greeley R., et al. (2005). Fluid lava flows in Gusev crater. Mars. J. Geophys. Res. 110, E05008.
Greeley R. and Iversen J. D. (1985). Wind as a Geological Process on Earth, Mars, Venus, and Titan. New York: Cambridge University Press.
Greenwood J. P., et al. (2008). Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett 35.
Grenfell T. C. and Warren S. G. (1999). Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104, 31 69731 709.
Grevesse N., et al. (2007). The solar chemical composition. Space Sci. Rev. 130, 105114.
Griessmeier J. M., et al. (2005). Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones. Astrobiology 5, 587603.
Griffith C. A. (2009). Storms, polar deposits and the methane cycle in Titan’s atmosphere. Phil. Trans. R. Soc. Lond. A 367, 713728.
Griffith C. A., et al. (2012). Possible tropical lakes on Titan from observations of dark terrain. Nature 486, 237239.
Griffith C. A., et al. (2008). Titan’s tropical storms in an evolving atmosphere. Astrophys. J. Lett. 687, L41L44.
Griffith C. A., et al. (2006). Evidence for a polar ethane cloud on Titan. Science 313, 16201622.
Griffith C. A. and Zahnle K. (1995). Influx of cometary volatiles to planetary Moons: The atmospheres of 1000 possible Titans. J. Geophys. Res. 100, 1690716922.
Grima C., et al. (2009). North polar deposits of Mars: Extreme purity of the water ice. Geophysical Research Letters 36.
Grimm R. E., et al. (2014). Water budgets of martian recurring slope lineae. Icarus 233, 316327.
Grinspoon D. (1987). Was Venus wet? Deuterium reconsidered. Science 238, 17021704.
Grinspoon D. H. (1993). Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428431.
Groller H., et al. (2014). Hot oxygen and carbon escape from the martian atmosphere. Planet. Space Sci. 98, 93105.
Gross J., et al. (2013). Petrography, mineral chemistry, and crystallization history of olivine-phyric shergottite NWA 6234: A new melt composition. Meteoritics & Planetary Science 48, 854871.
Gross S. H. (1972). Exospheric temperature of hydrogen-dominated planetary atmospheres. J. Atmos. Sci. 29, 214218.
Gross S. H. (1974). Atmospheres of Titan and Galilean satellites. J. Atmos. Sci. 31, 14131420.
Grotzinger J. P., et al. (2005). Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters 240, 1172.
Grotzinger J. P., et al. (2015a). Curiosity’s mission of exploration at Gale Crater, Mars. Elements 11, 1926.
Grotzinger J. P., et al. (2011). Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geoscience 4, 285292.
Grotzinger J. P., et al. (2015b). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater. Mars. Science 350, doi: 10.1126/science.aac7575.
Grotzinger J. P. and Knoll A. H. (1999). Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313358.
Grotzinger J. P. and Rothman D. H. (1996). An abiotic model for stromatolite morphogenesis. Nature 383, 423425.
Grotzinger J. P., et al. (2014). A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777, doi: 10.1126/science.1242777.
Gruber N. and Sarmiento J. L. (1997). Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cyc. 11, 235266.
Grundy W. M. and Buie M. W. (2001). Distribution and evolution of CH4, N2, and CO ices on Pluto’s surface: 1995 to 1998. Icarus 153, 248263.
Grundy W. M., et al. (2007). New horizons mapping of Europa and Ganymede. Science 318, 234237.
Guillot T. (1999). Interiors of giant planets inside end outside the solar system. Science 286, 7277.
Guillot T. and Gautier D. (2015). Giant planets. In: Treatise on Geophysics (Second Edition), ed. Schubert G., Oxford: Elsevier, pp. 529557.
Guillot T., et al. (2004). The interior of Jupiter. In: Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal F., et al., New York: Cambridge University Press, pp. 3557.
Gulbis A. A. S., et al. (2006). Charon’s radius and atmospheric constraints from observations of a stellar occultation. Nature 439, 4851.
Gulick V. C. (1998). Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 1936519387.
Gulick V. C. (2001). Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37, 241268.
Gunning H. E. and Strausz O. P. (1966). The reactions of sulfur atoms. In: Advan. Photochem., ed. Noyes W. A., et al., Hoboken, NJ: Wiley, pp. 143194.
Gutowsky H. S. (1976). Halocarbons: Effects on Stratospheric Ozone. National Academy of Sciences.
Guzik J. A., et al. (1987). A comparison between mass-losing and standard solar models. Ap. J. 319, 957965.
Haberle R. M. (2013). Estimating the power of Mars’ greenhouse effect. Icarus 223, 619620.
Haberle R. M., et al. (2017). Early Mars. In: The Atmosphere and Climate of Mars, ed. Haberle R. M. et al., New York: Cambridge University Press.
Haberle R. M., et al. (2008). The effect of ground ice on the Martian seasonal CO2 cycle. Planet. Space Sci. 56, 251255.
Haberle R. M., et al. (1993a). Atmospheric effects on the utility of solar power on Mars In: Resources of Near-Earth Space, ed. Lewis J., Matthews M. S., Tucson: University of Arizona Press, pp. 845885.
Haberle R. M., et al. (2001). On the possibility of liquid water on present-day Mars. J. Geophys. Res. 106, 23 31723 326.
Haberle R. M., et al. (2003). Orbital change experiments with a Mars general circulation model. Icarus 161, 6689.
Haberle R. M., et al. (1993b). Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model. 1. The zonal-mean circulation. J. Geophys. Res. 98, 30933123.
Habicht K. S., et al. (2002). Calibration of sulfate levels in the Archean ocean. Science 298, 23722374.
Hadley G. (1735). Concerning the cause of the general trade-winds. Phil. Trans. R. Soc. 39, 5862.
Haisch K. E., et al. (2001). Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153L156.
Haldane J. B. S. (1928). Possible Worlds and Other Papers. London: Harper & Brothers Publishers.
Haldane J. B. S. (1929). The origin of life. Rationalist Annual 148, 310.
Halevy I. (2013). Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. P. Natl. Acad. Sci. USA 110, 17 64417 649.
Halevy I. and Head J. W. (2014). Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865868.
Halevy I., et al. (2010). Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204207.
Halevy I., et al. (2007). A sulfur dioxide climate feedback on early Mars. Science 318, 19031907.
Hall D. T., et al. (1998). The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499, 475481.
Halliday A. N. (2013). The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146171.
Hallis L. J., et al. (2012). Magmatic water in the martian meteorite Nakhla. Earth Planet. Sc. Lett. 359, 8492.
Hallmann C. and Summons R. E. (2014). Paleobiological clues to early atmospheric evolution. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., 2nd edn, New York: Elsevier, pp. 139155.
Halmer M. M., et al. (2002). The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J. Volcanol. Geotherm. Res. 115, 511528.
Halverson G. P. (2006). A Neoproterozoic chronology. In: Neoproterozoic Geobiology and Paleobiology, ed. Xiao S. and Kaufman A. J., New York: Kluwer, pp. 231271.
Halverson G. P., et al. (2005). Toward a Neoproterozoic composite carbon-isotope record. GSA Bull. 117, 11811207.
Halverson G. P. and Hurtgen M. T. (2007). Ediacaran growth of the marine sulfate reservoir. Earth Planet. Sci. Lett. 263, 3244.
Halverson G. P., et al. (2010). Neoproterozoic chemostratigraphy. Precambrian Research 182, 337350.
Hamano K., et al. (2013). Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607610.
Han T. M. (1988). Origin of magnetite in Precambrian iron-formations of low metamorphic grade. In: Proc. Seventh IAGOD Symposium, ed. Zachrisson E., Stuttgart: E. Schweizerbart, pp. 641656.
Han T. M. and Runnegar B. (1992). Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron-formation, Michigan. Science 257, 232235.
Han T. T., et al. (2011). Global features and trends of the tropopause derived from GPS/CHAMP RO data. Sci. China: Phys. Mech. Astron. 54, 365374.
Hanel R. A. (1981). Fourier spectroscopy on planetary missions including Voyager. Proc. Soc. Photo-Opt. Instrum. Eng. 289, 331344.
Hanel R. A., et al. (1981). Albedo, internal heat, and energy balance of Jupiter: Preliminary results of the Voyager infrared investigation. J. Geophys. Res. 86, 87058712.
Hanel R. A., et al. (1972). Nimbus 4 infrared spectroscopy experiment. 1. Calibrated thermal emission spectra. J. Geophys. Res. 77, 26292641.
Hansen B. M. S. (2009). Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 11311140.
Hansen C. J. and Paige D. A. (1996). Seasonal nitrogen cycles on Pluto. Icarus 120, 247265.
Hansen C. J., et al. (2011). The composition and structure of the Enceladus plume. Geophys. Res. Lett. 38.
Hansen J., et al. (2008). Target atmospheric CO2: Where should humanity aim? Open Access Atmos. Sci. J. 2, 217231.
Hapke B. (2012). Theory of Reflectance and Emittance Spectroscopy. New York: Cambridge University Press.
Hapke B. and Nelson R. (1975). Evidence for an elemental sulfur component of clouds from Venus spectrophotometry. J. Atmos. Sci. 32, 12121218.
Haqq-Misra J. D., et al. (2008). A revised, hazy methane greenhouse for the Archean Earth. Astrobiol. 8, 11271137.
Haqq-Misra J., et al. (2016). Limit cycles can reduce the width of the habitable zone. Astrophys. J. 827, doi:10.3847/0004–637x/827/2/120.
Hardisty D. S., et al. (2014). An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42, 619622.
Harland W. B. and Rudwick M. J. S. (1964). The great infra-cambrian ice age. Sci. Am. 211, 2836.
Harman C. E., et al. (2015). Abiotic O2 levels on planets aroudn F, G, K, and M stars: Possible false positives for life? Astrophys. J., in press.
Harnmeijer J. P. (2009). Squeezing blood from a stone: Inferences into the life and depositional environments of the Early Archaean. University of Washington, PhD thesis, Seattle.
Harper C. L. and Jacobsen S. B. (1996). Noble gases and Earth’s accretion. Science 273, 18141818.
Harries J., et al. (1996). On the distribution of mesospheric molecular hydrogen inferred from HALOE measurements of H2O and CH4. Geophy. Res. Lett. 23, 297300.
Harrison J. F., et al. (2010). Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. Lond. B 277, 19371946.
Harrison T. M. (2009). The Hadean crust: Evidence from > 4 Ga zircons. Ann. Rev. Earth Planet. Sci. 37, 479505.
Hart M. H. (1975). Explanation for absence of extraterrestrials on Earth. Q. J. Roy. Astron. Soc. 16, 128135.
Hart M. H. (1978). The evolution of the atmosphere of the Earth. Icarus 33, 2339.
Hart M. H. (1979). Habitable zones around main sequence stars. Icarus 37, 351357.
Hart M. H. (1982). Atmospheric evolution, the Drake Equation, and DNA: Sparse life in an infinite Universe. In: In Extraterrestrials: Where Are They?, ed. Zuckerman M. H. H. a. B., New York: Pergamon Press, pp. 154164.
Harteck P. and Jensen J. H. D. (1948). Uber Den Sauerstoffgehalt Der Atmosphare (On the oxygen content of the atmosphere). Z. Naturforsch. A 3, 591595.
Hartle R. E. and Grebowsky J. M. (1990). Upward ion flow in ionospheric holes on Venus. J. Geophys. Res. 95, 3137.
Hartle R. E., et al. (2006). Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1. Planet. Space Sci. 54, 12111224.
Hartman H. and McKay C. P. (1995). Oxygenic photosynthesis and the oxidation state of Mars. Planet. Space Sci. 43, 123128.
Hartmann D. L. (1994). Global Physical Climatology. San Diego: Academic Press.
Hartmann L., et al. (2005). IRAC observations of Taurus pre-main-sequence stars. Astrophys. J. 629, 881896.
Hartmann W. K. and Davis D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus 24, 504515.
Hartmann W. K., et al. (2000). The time-dependent intense bombardment of the primordial Earth/Moon system. In: Origin of the Moon and Earth, ed. Canup R. M. and Righter K., Tucson, AZ: University of Arizona Press, pp. 493512.
Hartmann W. K. and Neukum G. (2001). Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165194.
Hartogh P., et al. (2010). Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2. Astron. Astrophys. 521.
Hartogh P., et al. (2011a). Direct detection of the Enceladus water torus with Herschel. Astron. Astrophys. 532, article ID L2.
Hartogh P., et al. (2011b). Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218220.
Hashimoto G. L. and Abe Y. (2005). Climate control on Venus: Comparison of the carbonate and pyrite models. Planet. Space Sci. 53, 839848.
Hashimoto G. L., et al. (2007). The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 112, E05010.
Haskin L. A. (1998). The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. 103, 16791689.
Haswell C. A. (2010). Transiting Exoplanets. Cambridge: Cambridge University Press.
Haswell C. A., et al. (2012). Near-ultraviolet absorption, chromospheric activity, and star-planet interactions in the WASP-12 system. Astrophys. J. 760, 79: doi:10.1088/0004-637X/760/1/79.
Hattori S., et al. (2011). Ultraviolet absorption cross sections of carbonyl sulfide isotopologues (OCS)-S-32, (OCS)-S-33, (OCS)-S-34 and (OCS)-C-13: isotopic fractionation in photolysis and atmospheric implications. Atmos. Chem. Phys. 11, 10 29310 303.
Hauber E., et al. (2013). Asynchronous formation of Hesperian and Amazonian-aged deltas on Mars and implications for climate. J. Geophys. Res. 118, 15291544.
Hauck S. A. and Phillips R. J. (2002). Thermal and crustal evolution of Mars. J. Geophys. Res. 107.
Hawkesworth C., et al. (2009). A matter of preservation. Science 323, 4950.
Hawkesworth C. J., et al. (2010). The generation and evolution of the continental crust. J. Geol. Soc. 167, 229248.
Hayashi C., et al. (1979). Earths melting due to the blanketing effect of the primordial dense atmosphere. Earth. Planet. Sc. Lett. 43, 2228.
Hayashi C., et al. (1985). Formation of the Solar System. In: Protostars and Protoplanets II, ed. Black D. C. and Matthews M. S., Tucson: University of Arizona Press, pp. 11001153.
Hayes A. G. (2016). The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 5783.
Hayes J. M. (1983). Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Earth’s Earliest Biosphere: Its Origin and Evolution, ed. Schopf J. W., Princeton, New Jersey: Princeton University Press, pp. 291301.
Hayes J. M. (1994). Global methanotrophy at the Archean-Preoterozoic transition. In: Early Life on Earth, ed. Bengtson S., New York: Columbia University Press, pp. 220236.
Hayes J. M. and Waldbauer J. R. (2006). The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. Lond. B 361, 931950.
Hays P. B. and Liu V. C. (1965). On loss of gases from a planetary atmosphere. Planet. Space Sci. 13, 11851211.
Head J. W., et al. (2002). Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J. Geophys. Res. 107, 5003.
Head J. W., et al. (2003). Recent ice ages on Mars. Nature 426, 797802.
Hebrard E. and Marty B. (2014). Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation. Earth Planet. Sc. Lett. 385, 4048.
Hecht M. H. (2002). Metastability of liquid water on Mars. Icarus 156, 373386.
Hecht M. H., et al. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix Lander site. Science 325, 6467.
Hedelt P., et al. (2010). Titan’s atomic hydrogen corona. Icarus 210, 424435.
Heimann A., et al. (2010). Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in similar to 2.5 Ga marine environments. Earth Planet. Sci. Lett. 294, 818.
Heimpel M. and Aurnou J. (2007). Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187, 540557.
Heimpel M., et al. (2005). Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193196.
Heising S., et al. (1999). Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch. Microbiol. 172, 116124.
Heising S. and Schink B. (1998). Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiol. 144, 22632269.
Held I. M. (1975). Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci. 32, 14941497.
Held I. M. (2000). General circulation of the atmosphere. In: 2000 Program in Geophysical Fluid Dynamics, ed. Thiffeault J.-L., Woods Hole, MA: Woods Hole Oceanographic Institution, pp. 154 (
Held I. M. and Hou A. Y. (1980). Non-linear axially-symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515533.
Held I. M. and Phillips P. J. (1990). A barotropic model of the Interaction between the Hadley-Cell and a Rossby wave. J. Atmos. Sci. 47, 856869.
Heldmann J. L., et al. (2007). Observations of martian gullies and constraints on potential formation mechanisms II. The northern hemisphere. Icarus 188, 324344.
Heldmann J. L. and Mellon M. T. (2004). Observations of martian gullies and constraints on potential formation mechanisms. Icarus 168, 285304.
Helled R., et al. (2011). Jupiter’s moment of inertia: A possible determination by Juno. Icarus 216, 440448.
Helled R., et al. (2014). Giant planet formation, evolution, and internal structure. In: Protostars and Planets VI, ed. Beuther H., et al., Tucson, AZ: Univ. of Arizona Press, pp. 643665.
Helled R., et al. (2008). Grain sedimentation in a giant gaseous protoplanet. Icarus 195, 863870.
Helling C. and Casewell S. (2014). Atmospheres of brown dwarfs. Astron. Astrophys. Rev. 22, 80.
Hemming N. G. and Honisch B. (2007). Boron isotopes in marine carbonate sediments adn the pH of the ocean. In: Proxies in Late Cenozoic Paleoceanography, ed. de Vernal A., Hillaire-Marcel C., Amsterdam: Elsevier, pp. 717734.
Henderson P. and Henderson G. M. (2009). The Cambridge Handbook of Earth Science Data. New York: Cambridge University Press.
Heng K., et al. (2014). Analytical models of exoplanetary atmospheres. II. Radiative transfer via the two-stream approximation. Astrophys. J. Suppl. S. 215, 4, doi:10.1088/0067-0049/215/1/4.
Henkes G. A., et al. (2014). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochim. Cosmochim. Acta 139, 362382.
Herd C. D. K. (2003). The oxygen fugacity of olivine-phyric martian basalts and the components within the mantle and crust of Mars. Meteorit. Planet. Sci. 38, 17931805.
Herd C. D. K. (2006). Insights into the redox history of the NWA 1068/1110 martian basalt from mineral equilibria and vanadium oxybarometry. Am. Min. 91, 16161627.
Herrick R. R., et al. (1997). Morphology and morphometry of impact craters. In: Venus II: Geology, Geophysics, Atmospghere, and Solar Wind Environment, Tucson: University of Arizona Press, pp. 10151046.
Herwartz D., et al. (2014). Identification of the giant impactor Theia in lunar rocks. Science 344, 11461150.
Herzberg C., et al. (2010). Thermal history of the Earth and its petrological expression. Earth Planet. Sc. Lett. 292, 7988.
Hide R. (1969). Dynamics of atmospheres of major planets with an appendix on viscous boundary layer at rigid bounding surface of an electrically-conducting rotating fluid in presence of a magnetic field. J. Atmos. Sci. 26, 841853.
Hide R. (1970). Equatorial jets in planetary atmospheres. Nature 225, 254255.
Higgs P. G. and Lehman N. (2015). The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 717.
Hillier J. K., et al. (2007). The composition of Saturn’s E ring. Mon. Not. R. Astron. Soc. 377, 15881596.
Hinrichs K. U. (2002). Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? Geochem. Geophys. Geosys. 3, doi:10.1029/2001GC000286.
Hinrichs K. U. and Boetius A. (2002). The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry. In: Ocean Margin Systems, ed. Wefer G., et al., Berlin: Springer-Verlag, pp. 457477.
Hinrichs K. U., et al. (1999). Methane-consuming archaebacteria in marine sediments. Nature 398, 802805.
Hitchcock D. R. and Lovelock J. E. (1967). Life detection by atmospheric analysis. Icarus 7, 149.
Hitzman M. W., et al. (2010). Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Econ. Geol. 105, 627639.
Hoashi M., et al. (2009). Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat. Geosci. 2, 301306.
Hobbs P. V. (2000). Introduction to Atmospheric Chemistry. New York: Cambridge University Press.
Hodges R. R. (1999). An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. 104, 84638471.
Hodges R. R. and Tinsley B. A. (1981). Charge exchange in the Venus ionosphere as the source of exospheric hydrogen. J. Geophys. Res. 86, 76497656.
Hoeppe G. (2007). Why the Sky is Blue? Discovering the Color of Life. Princeton, N.J.: Princeton University Press.
Hoffert M. I. and Covey C. (1992). Deriving global climate sensitivity from paleoclimate reconstructions. Nature 360, 573576.
Hoffman P. F. (2013). The Great Oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chemical Geology 362, 143156.
Hoffman P. F., et al. (1998). A Neoproterozoic Snowball Earth. Science 281, 13421346.
Hoffman P. F. and Li Z. X. (2009). A palaeogeographic context for Neoproterozoic glaciation. Palaeogeogr. Palaeocl. 277, 158172.
Hoffman P. F. and Schrag D. P. (2002). The Snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129155.
Hoffmann H. J. (1976). Precambrian microflora, Belcher Islands, Canada: Significance and systematics. J. Paleontol. 50, 10501073.
Hofgartner J. D., et al. (2014). Transient features in a Titan sea. Nature Geoscience 7, 493496.
Hofgartner J. D. and Lunine J. I. (2013). Does ice float in Titan’s lakes and seas? Icarus 223, 628631.
Hofmann A., et al. (2009). Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436445.
Hofmann H. J., et al. (1999). Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 12561262.
Hoinka K. P. (1998). Statistics of the global tropopause pressure. Mon. Weather Rev. 126, 33033325.
Hoke M. R. T., et al. (2011). Formation timescales of large Martian valley networks. Earth Planet. Sc. Lett. 312, 112.
Holland G., et al. (2009). Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 15221525.
Holland H. D. (1962). Model for the evolution of the Earth’s atmosphere. In: Petrologic Studies: A Volume to Honor A.F. Buddington, ed. Engel A. E. J., et al., New York: Geol. Soc. Am., pp. 447477.
Holland H. D. (1973a). Ocean water, nutrients, and atmospheric oxygen through geologic time. In: Proceedings of Symposium of Hydrogeochemistry and Biogeochemistry, ed. Ingerson E., Washington, DC: The Clark Co., pp. 6881.
Holland H. D. (1973b). Oceans: Possible source of iron in iron-formations. Econ. Geol. 68, 11691172.
Holland H. D. (1978). The Chemistry of the Atmosphere and Oceans. New York: Wiley.
Holland H. D. (1979). Metals in black shales: Reassessment. Econ. Geol. 74, 16761680.
Holland H. D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press.
Holland H. D. (2002). Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 38113826.
Holland H. D. (2006). The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. Lond. B 361, 903915.
Holland H. D. (2009). Why the atmosphere became oxygenated: A proposal. Geochim. Cosmochim. Acta 73, 52415255.
Holland H. D. (2011). Discovering the history of atmospheric oxygen. In: Frontiers in Geochemistry: Contribution of Geochemistry to the Study of the Earth, ed. Harmon R. S. and Parker A., Oxford: Blackwell Publishing Ltd., pp. 4360.
Holland H. D. and Zbinden E. A. (1988). Paleosols and the evolution of the atmosphere: part I. In: Physical and Chemical Weathering in Geochemical Cycles, ed. Lerman A. and Meybeck M., Dordrecht: Reidel, pp. 6182.
Hollingsworth J. L. and Barnes J. R. (1996). Forced stationary planetary waves in Mars’s winter atmosphere. J. Atmos. Sci. 53, 428448.
Hollingsworth J. L., et al. (2007). A simple-physics global circulation model for Venus: Sensitivity assessments of atmospheric superrotation. Geophys. Res. Lett. 34.
Holloway J. R. (2004). Redox reactions in seafloor basalts: possible insights into silicic hydrothermal systems. Chem. Geol. 210, 225230.
Holman M. J. and Murray N. W. (2005). The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 12881291.
Holser W. T., et al. (1988). Geochemical cycles of carbon and sulfur. In: Chemical Cycles in the Evolution of the Earth, ed. Gregor C. B., et al., New York: Wiley, pp. 105173.
Holton J. R. (2004). An Introduction to Dynamic Meteorology. New York: Elsevier Academic Press.
Holton J. R. and Hakim G. J. (2013). An Introduction to Dynamic Meteorology (5th Edition). Amsterdam: Elsevier, Academic Press.
Holzer T. E., et al. (1971). Comparison of kinetic and hydrodynamic models of an expanding ion exosphere. J. Geophys. Res. 76, 2453.
Hood A. V. S. and Wallace M. W. (2014). Marine cements reveal the structure of an anoxic, ferruginous Neoproterozoic ocean. J. Geol. Soc. London 171, 741744.
Hopkins M., et al. (2008). Low heat flow inferred from > 4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493496.
Hopper J. P. and Leverington D. W. (2014). Formation of Hrad Vallis (Mars) by low viscosity lava flows. Geomorphology 207, 96113.
Horandl E. and Hadacek F. (2013). The oxidative damage initiation hypothesis for meiosis. Plant Reprod. 26, 351367.
Horita J. (2005). Some perspectives on isotope biosignatures for early life. Chem. Geol. 218, 171186.
Horita J. and Berndt M. E. (1999). Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 10551057.
Horner J., et al. (2009). Differences between the impact regimes of the terrestrial planets: Implications for primordial D:H ratios. Planet. Space Sci. 57, 13381345.
Horst S. M., et al. (2008). Origin of oxygen species in Titan’s atmosphere. J. Geophys. Res. 113.
Houghton J. T. (2002). The Physics of Atmospheres. New York: Cambridge University Press.
Houghton J. T., et al. (1995). Climate Change, 1994: Radiative Forcing Of Climate Change And An Evaluation Of The IPCC IS92 Emission Scenarios. New York: Cambridge University. Press.
House C. H., et al. (2003a). Geobiological analysis using whole genome-based tree building applied to the Bacteria, Archea, and Eukarya. Geobiology 1, 1526.
House C. H., et al. (2003b). Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org. Geochem. 34, 345356.
Howard A. D. (2007). Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332363.
Howard A. D., et al. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110.
Howard A. W. (2013). Observed properties of extrasolar planets. Science 340, 572576.
Howett C. J. A., et al. (2010). Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements. Icarus 206, 573593.
Hren M. T., et al. (2009). Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205208.
Hsu H. W., et al. (2015). Ongoing hydrothermal activities within Enceladus. Nature 519, 207210.
Hu R. Y., et al. (2012). Photochemistry in terrestrial exoplanet atmospheres. I. Photochemistry model and benchmark cases. Astrophys. J. 761.
Huang S. S. (1959). Occurrence of life in the universe. Amer. Scientist 47, 397402.
Huang S. S. (1960). Life outside the solar system. Scientific American 202, 5563.
Hubbard W. B., et al. (1995). The interior of Neptune. In: Neptune and Triton, ed. Cruikshank D. P., Tucson: Univ. of Arizona Press, pp. 109140.
Hubbard W. B., et al. (1993). The occultation of 28 Sgr by Titan. Astronomy & Astrophysics 269, 541563.
Huber C. and Wachtershauser G. (1997). Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276, 245247.
Huber C. and Wachtershauser G. (1998). Peptides by activation of amino acids with CO on (Ni,Fe) surfaces: implications for the origin of life. Science 281, 670672.
Hulburt E. O. (1953). Explanation of the brightness and color of the sky, particularly the twilight sky. J. Opt. Soc. Am. 43, 113118.
Hulme M. (1995). Estimating global change in precipitation. Weather 50, 3442.
Humayun M., et al. (2013). Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513516.
Hunt B. G. (1979). Effects of past variations of the Earth’s rotation rate on climate. Nature 281, 188191.
Hunten D. M. (1973). The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 14811494.
Hunten D. M. (1975). Estimates of stratospheric pollution by an analytic model. Proc. Nat. Acad. Sci. 72, 4711.
Hunten D. M. (1979a). Capture of Phobos and Deimos by protatmospheric drag. Icarus 37, 113123.
Hunten D. M. (1979b). Possible oxidant sources in the atmosphere and surface of Mars. J Mol. Evol. 14, 7178.
Hunten D. M. (1979c). Possible oxidant sources in the atmosphere and surface of Mars. J. Mol. Evol. 14, 7178.
Hunten D. M. (1990). Kuiper Prize Lecture: Escape of atmospheres, ancient and modern. Icarus 85, 120.
Hunten D. M. (2002). Exospheres and planetary escape. In: Aeronomic systems on planets, moons, and comets, ed. Mendillo M., et al., Washington, D. C.: AGU, pp. 191202.
Hunten D. M. (2006). The sequestration of ethane on Titan in smog particles. Nature 443, 669670.
Hunten D. M. and Donahue T. M. (1976). Hydrogen loss from the terrestrial planets. Ann. Rev. Earth Planet Sci. 4, 265292.
Hunten D. M., et al. (1989). Escape of atmospheres and loss of water. In: Origin And Evolution Of Planetary And Satellite Atmospheres, ed. Atreya S. K., et al., Tucson, AZ: University of Arizona.
Hunten D. M., et al. (1987). Mass fractionation in hydrodynamic escape. Icarus 69, 532549.
Hunten D. M. and Strobel D. F. (1974). Production and escape of terrestrial hydrogen. J. Atmos. Sci. 31, 305317.
Hunten D. M. and Watson A. J. (1982). Stability of Pluto’s atmosphere. Icarus 51, 665667.
Hurtgen M. T., et al. (2005). Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology 33, 4144.
Hurtgen M. T., et al. (2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth Planet. Sci. Lett. 203, 413429.
Hussmann H., et al. (2006). Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258273.
Huston D. L. and Logan G. A. (2004). Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet. Sci. Lett. 220, 4155.
Hutchins K. S. and Jakosky B. M. (1996). Evolution of Martian atmospheric argon: Implications for sources of volatiles. J. Geophys. Res. 101, 1493314949.
Hutchins K. S., et al. (1997). Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon. J. Geophys. Res. 102, 91839189.
Hyde W. T., et al. (2000). Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425429.
Hynek B. M., et al. (2010). Updated global map of martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008, doi:10.1029/2009JE003548.
Hynek B. M. and Phillips R. J. (2008). The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits’ origin. Earth Planet. Sci. Lett. 274, 214220.
Hynek B. M., et al. (2003). Explosive volcanism in the Tharsis region: Global evidence in the Martian geologic record. J. Geophys. Res. 108, 5111, doi:10.1029/2003JE002062.
Iess L., et al. (2012). The tides of Titan. Science 337, 457459.
Iess L., et al. (2010). Gravity field, shape, and moment of inertia of Titan. Science 327, 13671369.
Ignatiev N. I., et al. (1997). Water vapour in the lower atmosphere of Venus: A new analysis of optical spectra measured by entry probes. Adv. Space Res. 19, 11591168.
Iizuka T., et al. (2015). Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth. P. Natl. Acad. Sci. USA 112, 53315336.
Imbrie J. and Imbrie K. P. (1979). Ice Ages: Solving the Mystery. Cambridge, MA: Harvard University Press.
Inaba S. and Ikoma M. (2003). Enhanced collisional growth of a protoplanet that has an atmosphere. Astron. Astrophys. 410, 711723.
Ingersoll A. B. and Cuzzi J. N. (1969). Dynamics of Jupiter’s cloud bands. J. Atmos. Sci. 26, 981985.
Ingersoll A. P. (1969). The runaway greenhouse: A history of water on Venus. J. Atmos. Sci. 26, 11911198.
Ingersoll A. P. (1970). Mars: Occurrence of liquid water. Science 168, 972973.
Ingersoll A. P. (2013). Planetary Climates. Princeton, N.J.: Princeton Uniersity Press.
Ingersoll A. P. and Dobrovolskis A. R. (1978). Venus rotation and atmospheric tides. Nature 275, 3738.
Ingersoll A. P., et al. (2004). Dynamics of Jupiter’s atmosphere. In: Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal F., et al., New York: Cambridge University Press.
Ingersoll A. P. and Ewald S. P. (2011). Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images. Icarus 216, 492506.
Irwin P. (2009). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. Chichester, UK: Springer.
Irwin R. P., et al. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110.
Irwin R. P., et al. (2015). Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83101.
Ishimaru R., et al. (2011). Oxidizing proto-atmosphere on Titan: Constraint from N-2 formation by impact shock. Astrophys. J. Lett. 741.
Isley A. E. (1995). Hydrothermal plumes and the delivery of iron to banded iron-formation. J. Geol. 103, 169185.
Israel G., et al. (2005). Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796799.
Jackson B., et al. (2008a). Tidal heating of terrestrial extrasolar planets and implications for their habitability. Mon. Not. R. Astron. Soc. 391, 237245.
Jackson B., et al. (2008b). Tidal heating of extrasolar planets. Astrophys. J. 681, 16311638.
Jackson B., et al. (2010). The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b. Mon. Not. R. Astron. Soc. 407, 910922.
Jacob D. J. (1999). Introduction to Atmospheric Chemistry. Princeton, N.J.: Princeton University Press.
Jacobsen S. B., et al. (2008). Isotopes as clues to the origin and earliest differentiation history of the Earth. Phil. Trans. R. Soc. Lond. A 366, 41294162.
Jacobson M. Z. (2005). Fundamentals of Atmospheric Modeling (2nd Edn). New York: Cambridge University Press.
Jacovi R. and Bar-Nun A. (2008). Removal of Titan’s noble gases by their trapping in its haze. Icarus 196, 302304.
Jaeger W. L., et al. (2007). Athabasca Valles, Mars: A lava-draped channel system. Science 317, 17091711.
Jaeger W. L., et al. (2010). Emplacement of the youngest flood lava on Mars: A short, turbulent story. Icarus 205, 230243.
Jakosky B. M. and Farmer C. B. (1982). The seasonal and global behaviour of water vapour in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res. 87, 29993019.
Jakosky B. M., et al. (2015). MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350, doi: 10.1126/science.aad0210.
Jakosky B. M. and Jones J. H. (1997). The history of Martian volatiles. Rev. Geophys. 35, 116.
Jakosky B. M. and Mellon M. T. (2004). Water on Mars. Phys. Today 57, 7176.
Jakosky B. M., et al. (1994). Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271288.
Jakosky B. M. and Phillips R. J. (2001). Mars’ volatile and climate history. Nature 412, 237244.
Janssen M. A. (1993). Atmospheric Remote Sensing by Microwave Radiometry. New York: Wiley.
Jansson K. W. and Johansen A. (2014). Formation of pebble-pile planetesimals. Astron. Astrophys. 570.
Jarrard R. D. (2003). Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosys. 4, doi: 10.1029/2002gc000392.
Jaumann R., et al. (2009). Geology and surface processes on Titan. In: Titan from Cassini-Huygens, ed. Brown R. H., et al., New York: Springer, pp. 75140.
Javaux E. J., et al. (2001). Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 6669.
Javaux E. J., et al. (2004). TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121132.
Javoy M., et al. (2010). The chemical composition of the Earth: Enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259268.
Jeans J. H. (1954). The Dynamical Theory of Gases. New York: Dover.
Jenkins G. S. (1993). A general circulation model study of the effects of faster rotation, enhanced CO2 concentrations, and solar forcing: implications for the Faint Young Sun Paradox. J. Geophys. Res. 98, 20 80320 811.
Jenkins G. S. (1996). A sensitivity study of changes in Earth’s rotation rate with an atmospheric general circulation model. Global and Planet. Change 11, 141154.
Jenkins G. S., et al. (1993). Precambrian climate: the effects of land area and Earth’s rotation rate. J. Geophys. Res. 98, 87858791.
Jennings D. E., et al. (2009). Titan’s surface brightness temperatures. Astrophys. J. Lett. 691, L103L105.
Jensen S., et al. (2000). Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28, 143146.
Jerolmack D. J., et al. (2004). A minimum time for the formation of Holden Northeast fan, Mars. Geophys. Res. Lett. 31.
Ji Q., et al. (2002). The earliest known eutherian mammal. Nature 416, 816822.
Jia Y. F. and Kerrich R. (2004). Nitrogen 15-enriched Precambrian kerogen and hydrothermal systems. Geochem. Geophys. Geosys. 5, doi:10.1029/2004GC000716.
Johansen A., et al. (2014). The multifaceted planetesimal formation process. In: Protostars and Planets VI, ed. Beuther H., et al., Tucson, AZ: University of Arizona Press, pp. 571594.
Johansen A., et al. (2015). Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109, doi:10.1126/sciadv.1500109.
Johnson A. P., et al. (2008a). The Miller volcanic spark discharge experiment. Science 322, 404404.
Johnson B. and Goldblatt C. (2015). The nitrogen budget of Earth. Earth Sci. Rev. 148, 150173.
Johnson B. C. and Melosh H. J. (2012). Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485, 7577.
Johnson C. M., et al. (2008b). The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Ann. Rev. Earth Planet. Sci. 36, 457493.
Johnson C. M., et al. (2013a). Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis? Geology 41, 11471150.
Johnson H. E. and Axford W. I. (1969). Production and loss of He3 in Earth’s atmosphere. J. Geophys. Res. 74, 2433.
Johnson J. A., et al. (2010). Giant planet cccurrence in the stellar mass-metallicity plane. Publ. Astron. Soc. Pac. 122, 905915.
Johnson J. E., et al. (2014). O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Bull. Geol. Soc. Am. 126, 813830.
Johnson J. E., et al. (2013b). Manganese-oxidizing photosynthesis before the rise of cyanobacteria. P. Natl. Acad. Sci. USA 110, 11 23811 243.
Johnson J. E., et al. (2013c). Reply to Jones and Crowe: Correcting mistaken views of sedimentary geology, Mn-oxidation rates, and molecular clocks. P. Natl. Acad. Sci. USA 110, E4119E4120.
Johnson R. E., et al. (2009). Composition and detection of Europa’s sputter-induced atmosphere. In: Europa, ed. Pappalardo R. T., et al., Tucson: University of Arizona Press, pp. 507527.
Johnson R. E., et al. (2004). Radiation effects on the surfafces of the Galilean satellites. In: Jupiter: The Planet, Satellites, and Magnetosphere, ed. Bagenal F., et al., New York: Cambridge University Press.
Johnson R. E., et al. (2008c). Exospheres and atmospheric escape. Space Sci. Rev. 139, 355397.
Johnson R. E., et al. (2002). Energy distributions for desorption of sodium and potassium from ice: The Na/K ratio at Europa. Icarus 156, 136142.
Johnson R. E., et al. (2013d). Molecular-kinetic simulations of escape from the ex-planet and exoplanets: Criterion for transonic flow. Astrophys. J. Lett. 768.
Johnson T. M. and Bullen T. (2004). Mass-dependent fractionation of selenium and chromium isotopes in low-temperature environments. Rev. Mineral. Geochem. 55, 289317.
Johnston D. T., et al. (2010). An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 6473.
Johnston D. T., et al. (2005). Active microbial sulfur disproportionation in the Mesoproterozoic. Science 310, 14771479.
Jones C. and Crowe S. A. (2013). No evidence for manganese-oxidizing photosynthesis. P. Natl. Acad. Sci. USA 110, E4118.
Jones T. D. and Lewis J. S. (1987). Estimated impact shock production of N2 and organic compounds on early Titan. Icarus 72, 381393.
Jöns H.-P. (1985). Late sedimentation and late sediments in the northern lowlands on Mars. Lunar Planet. Sci. Conf. XVI, 414–415.
Jorgensen U. G., et al. (2009). The Earth-Moon system during the late heavy bombardment period - Geochemical support for impacts dominated by comets. Icarus 204, 368380.
Joseph J. H., et al. (1976). Delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 33, 24522459.
Joshi M. (2003). Climate model studies of synchronously rotating planets. Astrobiology 3, 415427.
Joshi M. M. and Haberle R. M. (2012). Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone. Astrobiology 12, 38.
Joshi M. M., et al. (1997). Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: Conditions for atmospheric collapse and the implications for habitability. Icarus 129, 450465.
Jouannic G., et al. (2015). Laboratory simulation of debris flows over sand dunes: Insights into gully-formation (Mars). Geomorphology 231, 101115.
Joyce G. F. (1989). RNA evolution and the origins of life. Nature 338, 217224.
Joyce G. F. (1994). Foreward. In: Origins of life : the central concepts, ed. Deamer D. W., Fleischaker G. R., Boston: Jones and Bartlett Publishers, pp. xixii.
Junge C. E., et al. (1975). Model calculations for the terrestrial carbon cycle: Carbon isotope geochemistry and evolution of photosynthetic oxygen. J. Geophys. Res. 80, 45424552.
Kadoya S. and Tajika E. (2014). Conditions for oceans on Earth-Like planets orbiting within the habitable zone: Importance of volcanic CO2 degassing. Astrophys. J. 790, 107.
Kah L. C., et al. (2004). Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834838.
Kah L. C. and Riding R. (2007). Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35, 799802.
Kahn R. A., et al. (1992). The martian dust cycle. In: Mars, ed. Kieffer H. H., et al., Tucson: University of Arizona Press, pp. 10171053.
Kaib N. A. and Chambers J. E. (2015). The fragility of the terrestrial planets during a giant planet instability. Mon. Not. R. Astron. Soc., in press.
Kanzaki Y. and Murakami T. (2015). Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190219.
Kappler A. and Newman D. K. (2004). Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 12171226.
Kargel J. S. and Lewis J. S. (1993). The composition and early evolution of Earth. Icarus 105, 125.
Karhu J. A. and Holland H. D. (1996). Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867870.
Karkoschka E. (1994). Spectrophotometry of the Jovian planets and Titan at 300 nm to 1000-nm wavelength: The Methane Spectrum. Icarus 111, 174192.
Karkoschka E. (1998). Methane, ammonia, and temperature measurements of the Jovian planets and Titan from CCD-spectrophotometry. Icarus 133, 134146.
Karlsson N. B., et al. (2015). Volume of Martian midlatitude glaciers from radar observations and ice flow modeling. Geophys. Res. Lett. 42, 26272633.
Karlstrom K. E., et al. (2014). Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons. Nat. Geosci. 7, 239244.
Karttunen H. (2007). Fundamental astronomy. Berlin: Springer-Verlag.
Kasemann S. A., et al. (2005). Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet. Sc. Lett. 231, 7386.
Kasemann S. A., et al. (2010). Neoproterozoic ice ages, boron isotopes, and ocean acidification: Implications for a snowball Earth. Geology 38, 775778.
Kashefi K. and Lovley D. R. (2003). Extending the upper temperature limit for life. Science 301, 934934.
Kasper M., et al. (2010). EPICS: direct imaging of exoplanets with the E-ELT. SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, pp. 77352E–77352E-9.
Kaspi Y. and Showman A. P. (2015). Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. Astrophys. J. 804, 60, doi:10.1088/0004-637x/804/1/60.
Kasting J. F. (1982). Stability of ammonia in the primitive terrestrial atmosphere. J. Geophys. Res. 87, 30913098.
Kasting J. F. (1985). Photochemical consequences of enhanced CO2 levels in Earth’s early atmosphere. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed. Sundquist E. T. and Broecker W. S., Washington D.C.: American Geophysical Union, pp. 612622.
Kasting J. F. (1987). Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34, 205229.
Kasting J. F. (1988). Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472494.
Kasting J. F. (1990). Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Origins of Life 20, 199231.
Kasting J. F. (1991). CO2 condensation and the climate of early Mars. Icarus 94, 113.
Kasting J. F. (1992). Models relating to Proterozoic atmospheric and oceanic chemistry. In: The Proterozoic Biosphere: A Multidisciplinary Study, ed. Schopf J. W. and Klein C., Cambridge: Cambridge University Press, pp. 11851187.
Kasting J. F. (1993). Earth’s early atmosphere. Science 259, 920926.
Kasting J. F. (1997). Habitable zones around low mass stars and the search for extraterrestrial life. Origins of Life 27, 291307.
Kasting J. F. (2001). The rise of atmospheric oxygen (Perspective). Science 293, 819820.
Kasting J. F. (2010). How to Find a Habitable Planet. Princeton, N.J.: Princeton University Press.
Kasting J. F. (2013). What caused the rise of atmospheric O2? Chem. Geol. 362, 1325.
Kasting J. F. and Ackerman T. P. (1986). Climatic consequences of very high CO2 levels in the Earth’s early atmosphere. Science 234, 13831385.
Kasting J. F. and Brown L. L. (1998). Setting the stage: the early atmosphere as a source of biogenic compounds. In: The Molecular Origins of Life: Assembling the Pieces of the Puzzle, ed. Brack A., New York: Cambridge University. Press, pp. 3556.
Kasting J. F. and Canfield D. E. (2012). The global oxygen cycle. In: Fundamentals of Geobiology, ed. Konhauser K. O., et al., Oxford: Wiley-Blackwell, pp. 93104.
Kasting J. F. and Catling D. (2003). Evolution of a habitable planet. Ann. Rev. Astron. Astrophys. 41, 429463.
Kasting J. F., et al. (2012). Atmospheric oxygenation and volcanism. Nature 487, E1.
Kasting J. F., et al. (2015). Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. Lett. 813, L3, doi: 10.1088/2041-8205/813/1/13.
Kasting J. F. and Donahue T. M. (1980). The evolution of atmospheric ozone. J. Geophys. Res. 85, 32553263.
Kasting J. F., et al. (1993a). Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245257.
Kasting J. F., et al. (1985). Oxidant abundances in rainwater and the evolution of atmospheric oxygen. J. Geophys. Res. 90, 10 49710 510.
Kasting J. F., et al. (2006). Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 8293.
Kasting J. F., et al. (2014). Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. P. Natl. Acad. Sci. USA 111, 12 64112 646.
Kasting J. F., et al. (2001). A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Origins Life Evol. Biosph. 31, 271285.
Kasting J. F. and Pollack J. B. (1983). Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479508.
Kasting J. F., et al. (1984a). Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57, 335355.
Kasting J. F., et al. (1984b). Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early earth. J. Atmos. Chem. 1, 403428.
Kasting J. F., et al. (1989a). Climate evolution on the terrestrial planets. In: Origin and Evolution of Planetary and Satellite Atmospheres, ed. Matthews M. S., Tucson, Arizona: University. of Arizona Press, pp. 423449.
Kasting J. F., et al. (1988). How climate evolved on the terrestrial planets. Scientific Am. 256, 9097.
Kasting J. F. and Walker J. C. G. (1981). Limits on oxygen concentration in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. J. Geophys. Res. 86, 11471158.
Kasting J. F., et al. (1993b). Habitable zones around main sequence stars. Icarus 101, 108128.
Kasting J. F., et al. (1989b). Sulfur, ultraviolet radiation, and the early evolution of life. Origins Life Evol. Biosph. 19, 95108.
Kasting J. F., et al. (1983). Photochemistry of methane in the Earth’s early atmosphere. Precambrian Res. 20, 121148.
Kato S., et al. (1999). The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 62, 109121.
Kato Y., et al. (2009). Hematite formation by oxygenated groundwater more than 2.76 billion years ago. Earth Planet. Sc. Lett. 278, 4049.
Kaufman A. J. (1997). Palaeoclimatology – An ice age in the tropics. Nature 386, 227228.
Kaufman A. J., et al. (2007). Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 19001903.
Kawahara H. and Fujii Y. (2010). Global mapping of Earth-Like exoplanets from scattered light curves. Astrophys. J. 720, 13331350.
Keir R. S. (2010). A note on the fluxes of abiogenic methane and hydrogen from mid-ocean ridges. Geophys. Res. Lett. 37.
Keller C. B. and Schoene B. (2012). Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490495.
Kelley D. S., et al. (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30o N. Nature 412, 145149.
Kelley D. S., et al. (2005). A serpentinite-hosted ecosystem: the Lost City hydrothermal vent field. Science 307, 14281434.
Kelley K. A. and Cottrell E. (2009). Water and the oxidation state of subduction zone magmas. Science 325, 605607.
Kemp A. I. S. and Hawkesworth C. J. (2014). Growth and differentiation of the continental crust from isotope studies of accessory minerals. In: Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K., New York: Elsevier, pp. 379421.
Kendall B., et al. (2009). Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim. Cosmochim. Ac. 73, 25342558.
Kendall B., et al. (2010). Pervasive oxygenation along late Archaean ocean margins. Nature Geosci. 3, 647652.
Kennedy M., et al. (2006). Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 14461449.
Kennedy M., et al. (2008). Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642645.
Kenyon S. J. and Bromley B. C. (2006). Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astron. J. 131, 18371850.
Kerby R., et al. (1983). Single-carbon catabolism in acetogens: Analysis of carbon flow in Acetobacterium-Woodii and Butyribacterium-Methylotrophicum by fermentation and C-13 nuclear magnetic-resonance measurement. J. Bacteriol. 155, 12081218.
Kerby R. and Zeikus J. G. (1983). Growth of Clostridium-Thermoaceticum on H2/CO2 or CO as energy source. Curr. Microbiol. 8, 2730.
Kerr G. B., et al. (2015). The Palaeoproterozoic global carbon cycle: insights from the Loch Maree Group, NW Scotland. J. Geol. Soc., doi:10.1144/jgs2014-042.
Kerrich R., et al. (2006). Secular variations in N-isotopes in terrestrial reservoirs and ore deposits. Geol. Soc. Am. Mem. 198, 81104.
Kerrick D. (2001). Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev. Geophys. 39, 565585.
Kerrick D. M., et al. (1995). Convective hydrothermal CO2 emission from high heat-flow regions. Chem. Geol. 121, 285293.
Kerridge J. F. (1985). Carbon, hydrogen and nitrogen in carbonaceous chondrites – Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 17071714.
Khare B. N. and Sagan C. (1975). Cyclic octatomic sulfur: Possible infrared and visible chromophore in clouds of Jupiter. Science 189, 722723.
Khare B. N., et al. (1984). Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft X-ray to microwave frequencies. Icarus 60, 127137.
Kharecha P., et al. (2005). A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3, 5376.
Khurana K. K., et al. (2009). Electromagnetic induction from Europa’s ocean and deep interior. In: Europa, ed. Pappalardo R. T., et al., Tucson: University of Arizona Press.
Kiang N. Y., et al. (2007a). Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7, 252274.
Kiang N. Y., et al. (2007b). Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 222251.
Kieffer H. H., et al. (1992). The planet Mars from antiquity to present. In: Mars, ed. Kieffer H. H., et al., Tucson: University of Arizona Press, pp. 133.
Kiehl J. T. and Dickinson R. E. (1987). A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early earth surface temperatures. J. Geophys. Res. 92, 29912998.
Kiehl J. T. and Trenberth K. E. (1997). Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 78, 197208.
Kienert H., et al. (2012). Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth. Geophys. Res. Lett. 39, L23710.
Kilner B., et al. (2005). Low-latitude glaciation in the Neoproterozoic of Oman. Geology 33, 413416.
Kim K. M., et al. (2012). Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure 20, 6776.
King P. L. and McSween H. Y. (2005). Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. J. Geophys. Res. 110, 115.
Kirchner J. W. (1989). The Gaia Hypothesis – can it be tested? Reviews of Geophysics 27, 223235.
Kirchner J. W. (2002). The Gaia hypothesis: Fact, theory, and wishful thinking. Climatic Change 52, 391408.
Kirchner J. W. (2003). The Gaia hypothesis: Conjectures and refutations. Climatic Change 58, 2145.
Kirk R. L., et al. (1995). Triton’s plume: Discovery, characteristics and models. In: Neptune and Triton, ed. Cruikshank D. P., Tucson: University of Arizona Press, pp. 807877.
Kirkpatrick J. D., et al. (1999). Dwarfs cooler than “M”: The definition of spectral type “L” using discoveries from the 2-Micron All-Sky Survey (2MASS). Astrophysical Journal 519, 802833.
Kirschke S., et al. (2013). Three decades of global methane sources and sinks. Nat. Geosci. 6, 813823.
Kirschvink J. L. (1992). In: Late Proterozoic low-latitude global glaciation: the snowball Earth, ed. Schopf J. W. and Klein C., Cambridge: Cambridge University Press, pp. 5152.
Kirschvink J. L., et al. (2000). Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. P. Natl. Acad. Sci. USA 97, 14001405.
Kirschvink J. L. and Kopp R. E. (2008). Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Phil. Trans. R. Soc Lond.. 363, 27552765.
Kite E. S., et al. (2013). Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181210.
Kite E. S., et al. (2013). Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181210.
Kite E. S., et al. (2014). Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters. Nature Geoscience 7, 335339.
Kivelson M. G., et al. (2002). The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507522.
Kivelson M. G. and Russell C. T. (1995). Introduction to Space Physics. New York: Cambridge University Press.
Klein C. (2005). Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90, 14731499.
Klein C. and Beukes N. J. (1992). Time distribution, stratigraphy, and sedimentologic setting, and geochemistry of Precambrian iron formations. In: The Proterozoic Biosphere: A Multidisciplinary Study, ed. Schopf J. W. and Klein C., Cambridge: Cambridge University Press, pp. 139146.
Klein C. and Beukes N. J. (1993). Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada. Econ. Geol. Bull. Soc. 88, 542565.
Klein C., et al. (1987). Filamentous microfossils in the Early Proterozoic Transvaal Supergroup: Their morphology, significance, and paleoenvironmental setting. Precambrian Res. 36, 8194.
Klein H. P. (1979). Viking Mission and the Search for Life on Mars. Rev. Geophys. 17, 16551662.
Klein H. P. (1998). The search for life on Mars: What we learned from Viking. J. Geophys. Res. 103, 28 46328 466.
Kleine T. and Rudge J. F. (2011). Chronometry of meteorites and the formation of the Earth and Moon. Elements 7, 4146.
Kleinhans M. G. (2005). Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. J. Geophys. Res. 110.
Kleinhans M. G. (2010). A tale of two planets: geomorphology applied to Mars’ surface, fluvio-deltaic processes and landforms. Earth Surf. Proc. Land. 35, 102117.
Kleinhans M. G., et al. (2010). Palaeoflow reconstruction from fan delta morphology on Mars. Earth Planet. Sc. Lett. 294, 378392.
Klingelhofer G., et al. (2006). Two earth years of Mossbauer studies of the surface of Mars with MIMOS II. Hyperfine Interactions 170, 169177.
Kliore A., et al. (1965). Occultation experiment: Results of first direct measurement of Mars atmosphere and ionosphere. Science 149, 1243.
Kliore A. J., et al. (2002). Ionosphere of Callisto from Galileo radio occultation observations. J. Geophys. Res. 107.
Klose K. B., et al. (1992). Mineral equilibria and the high radar reflectivity of Venus mountaintops. J. Geophys. Res. 97, 16 35316 369.
Knauth L. P. (2005). Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeog., Palaeoclimat., Palaeoecol. 219, 5369.
Knauth L. P. and Epstein S. (1976). Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta 40, 10951108.
Knauth L. P. and Kennedy M. J. (2009). The late Precambrian greening of the Earth. Nature 460, 728732.
Knauth P. and Lowe D. R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull. 115, 566580.
Kneissl T., et al. (2010). Distribution and orientation of northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA data. Earth Planet. Sc. Lett. 294, 357367.
Knoll A. H. (1979). Archean photoautotrophy – some alternatives and limits. Orig. Life Evol. Biosph. 9, 313327.
Knoll A. H. (1992). The early evolution of the eukaryotes: a geological perspective. Science 256, 622627.
Knoll A. H. (2003). Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton, N.J.; Oxford: Princeton University Press.
Knoll A. H. and Carroll S. B. (1999). Early animal evolution: Emerging views from comparative biology and geology. Science 284, 21292137.
Knoll A. H., et al. (2006a). Eukaryotic organisms in Proterozoic oceans. Phil. Tran. R. Soc. Lond. B 361, 10231038.
Knoll A. H., et al. (2004). A new period for the geologic time scale. Science 305, 621622.
Knoll A. H., et al. (2006b). The Ediacaran Period: a new addition to the geologic time scale. Lethaia 39, 1330.
Knollenberg R. G. and Hunten D. M. (1979). Clouds of Venus: Particle-size distribution measurements. Science 203, 792795.
Knutson H. A., et al. (2014). A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b. Nature 505, 6668.
Knutson H. A., et al. (2007). A map of the day–night contrast of the extrasolar planet HD 189733b. Nature 447, 183186.
Koeberl C. (2006). The record of impact processes on the early Earth: A review of the first 2.5 billion years. GSA Special Papers 405, 122.
Kohler I., et al. (2013). Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 4, 1741, doi :10.1038/ncomms2770.
Kohn J. P., et al. (1976). 3-Phase solid-liquid-vapor equilibria of binary-n-alkane systems (ethane-n-octane, ethane-n-decane, ethane-n-dodecane). J. Chem. Eng. Data 21, 360362.
Kok J. F. and Renno N. O. (2009). Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry. Geophys. Res. Lett. 36.
Komabayashi M. (1967). Discrete equilibrium temperatures of a hypothetical planet with the atmosphere and the hydrosphere of one component-two phase system under constant solar radiation. J. Meteor. Soc. Japan 45, 137139.
Komabayashi M. (1968). Conditions for the existence of the atmosphere and oceans. Shizen 23, 2431 (in Japanese).
Komatsu G., et al. (1993). Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars. J. Geophys. Res. 98, 11 10511 121.
Komatsu G., et al. (2004). Interior layered deposits of Valles Marineris, Mars: Analogous subice volcanism related to Baikal rifting, southern Siberia. Planet. Space Sci. 52, 167187.
Komiya T., et al. (1999). Plate tectonics at 3.8-3.7 Ga: Field evidence from the Isua Accretionary Complex, southern West Greenland. J. Geol. 107, 515554.
Konhauser K. (2007). Introduction to Geomicrobiology. Malden, MA: Blackwell Publishing.
Konhauser K. O., et al. (2007a). Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87100.
Konhauser K. O., et al. (2002). Could bacteria have formed the Precambrian banded iron formations? Geology 30, 10791082.
Konhauser K. O., et al. (2007b). Was there really an Archean phosphate crisis? Science 315, 1234.
Konhauser K. O., et al. (2011). Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369.
Konhauser K. O., et al. (2009). Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750754.
Konhauser K. O., et al. (2015). The Archean nickel famine revisited. Astrobiology 15, 804815.
Konn C., et al. (2015). The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the mid-Atlantic Ridge. Astrobiology 15, 381399.
Kopp G. and Lean J. L. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706, doi:10.1029/2010GL045777.
Kopp R. E., et al. (2005). The Paleoproterozoic Snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. P. Natl. Acad. Sci. USA 102, 11 13111 136.
Kopparapu R. K., et al. (2013). Habitable zones around main-sequence stars: New estimates. Astrophys. J. 765, doi: 10.1088/0004-637X/765/2/131.
Kopparapu R. K., et al. (2014). Habitable zones around main-sequence stars: Dependence on planetary mass. Astrophys. J. Lett. 787.
Korenaga J. (2006). Archean geodynamics and the thermal evolution of Earth. In: Archean Geodynamics and Environments, ed. Benn K., Washington DC: American Geophys. Union, pp. 732.
Korenaga J. (2007). Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux. Earth Planet. Sci. Lett. 257, 350358.
Korenaga J. (2008a). Plate tectonics, flood basalts and the evolution of Earth’s oceans. Terra Nova 20, 419439.
Korenaga J. (2008b). Urey ratio and the structure and evolution of Earth’s mantle. Reviews of Geophysics 46.
Korycansky D. G. and Zahnle K. J. (2005). Modeling crater populations on Venus and Titan. Planet. Space Sci. 53, 695710.
Korycansky D. G. and Zahnle K. J. (2011). Titan impacts and escape. Icarus 211, 707721.
Koskinen T. T., et al. (2014). Thermal escape from extrasolar giant planets. Phil. Trans. R. Soc. A 372, 20130089.
Kostiuk T., et al. (2006). Stratospheric global winds on Titan at the time of Huygens descent. J. Geophys. Res. 111, E07S03.
Kouchinsky A., et al. (2012). Chronology of early Cambrian biomineralization. Geol. Mag. 149, 221251.
Kounaves S. P., et al. (2010). Soluble sulfate in the martian soil at the Phoenix landing site. Geophy. Res. Lett. 37, L09201, doi:10.1029/2010GL042613.
Kouvaris L. C. and Flasar F. M. (1991). Phase-equilibrium of methane and nitrogen at low-temperatures – application to Titan. Icarus 91, 112124.
Kraal E. R., et al. (2008). Catalogue of large alluvial fans in martian impact craters. Icarus 194, 101110.
Kral T. A., et al. (1998). Hydrogen consumption by methanogens on the early Earth. Origins of Life and Evol. of the Biosph. 28, 311319.
Krasnopolsky V. (2000). On the deuterium abundance on Mars and some related problems. Icarus 148, 597602.
Krasnopolsky V. A. (1993). Photochemistry of the martian atmosphere (mean conditions). Icarus 101, 313332.
Krasnopolsky V. A. (1999). Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104, 59555962.
Krasnopolsky V. A. (2002). Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: Implications for evolution of water. J. Geophys. Res. 107.
Krasnopolsky V. A. (2006). Photochemistry of the martian atmosphere: Seasonal, latitudinal, and diurnal variations. Icarus 185, 153170.
Krasnopolsky V. A. (2010). The photochemical model of Titan’s atmosphere and ionosphere: A version without hydrodynamic escape. Planet. Space Sci. 58, 15071515.
Krasnopolsky V. A. (2011). Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison. Planet. Space Sci. 59, 952964.
Krasnopolsky V. A. (2012). Search for methane and upper limits to ethane and SO2 on Mars. Icarus 217, 144152.
Krasnopolsky V. A. and Feldman P. D. (2001). Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 19141917.
Krasnopolsky V. A. and Lefevre F. (2013). Chemistry of the atmospheres of Mars, Venus, and Titan. In: Comparative Climatology of Terrestrial Planets, ed. Mackwell S. J., et al., Tucson: University of Arizona Press, pp. 231275.
Krasnopolsky V. A. and Pollack J. B. (1994). H2O–H2SO4 system in Venus’ clouds and OCS, CO, and H2SO4 profiles in Venus’ troposphere. Icarus 109, 5878.
Kraus R. G., et al. (2011). Impacts onto H2O ice: Scaling laws for melting, vaporization, excavation, and final crater size. Icarus 214, 724738.
Kreidberg L., et al. (2014). Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature 505, 6972.
Kreslavsky M. A. and Head J. W. (2002). Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. 107, 5121.
Kreslavsky M. A., et al. (2015). The resurfacing history of Venus: Constraints from buffered crater densities. Icarus 250, 438450.
Kress M. E. and McKay C. P. (2004). Formation of methane in comet impacts: implications for Earth, Mars, and Titan. Icarus 168, 475483.
Krimigis S. M., et al. (2013). Search for the exit: Voyager 1 at heliosphere’s border with the galaxy. Science 341, 144147.
Krissansen-Totton J., et al. (2015). A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Amer. J. Sci. 315, 275316.
Krissansen-Totton J., et al. (2016a). On detecting biospheres from chemical disequilibrium in planetary atmospheres. Astrobiology, 16, 3967.
Krissansen-Totton J., et al. (2016b). Is the Pale Blue Dot unique? Optimized photometric bands for identifying Earth-like exoplanets. Astrophys. J. 871, 31, doi: 10.3847/0004-637X/817/1/31.
Kruijer T. S., et al. (2014). Protracted core formation and rapid accretion of protoplanets. Science 344, 11501154.
Krull-Davatzes A. E., et al. (2010). Evidence for a low-O2 Archean atmosphere from nickel-rich chrome spinels in 3.24 Ga impact spherules, Barberton greenstone belt, South Africa. Earth Planet. Sci. Lett. 296, 319328.
Krupp R., et al. (1994). The Early Precambrian atmosphere and hydrosphere: Thermodynamic constraints from mineral deposits. Econ. Geol. 89, 15811598.
Kuhn W. R. and Atreya S. K. (1979). Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus 37, 207213.
Kuiper G. P. (1944). Titan: A satellite with an atmosphere. Astrophys. J. 100, 378383.
Kuipers G., et al. (2013). Periglacial evidence for a 1.91–1.89 Ga old glacial period at low latitude, Central Sweden. Geol. Today 29, 218221.
Kumar S., et al. (1983). Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55, 369389.
Kump L. R. and Barley M. E. (2007). Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 10331036.
Kump L. R., et al. (2011). Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334, 16941696.
Kump L. R., et al. (2001). The rise of atmospheric oxygen and the “upside-down” Archean mantle. Geol. Geochem. Geophys. (online) 2.
Kump L. R., et al. (2010). The Earth System. Upper Saddle River, NJ: Pearson.
Kump L. R. and Seyfried W. E. (2005). Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sc. Lett. 235, 654662.
Kunzmann M., et al. (2013). Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology 41, 2730.
Kuramoto K. and Matsui T. (1994). Formation of a hot proto-atmosphere on the accreting giant icy satellite: Implications for the origin and evolution of Titan, Ganymede, and Callisto. J. Geophys. Res. 99, 21 18321 200.
Kuramoto K. and Matsui T. (1996). Partitioning of H and C between the mantle and the core during the core formation in the Earth: its implications for the atmospheric evolution and redox state of the early mantle. J. Geophys. Res. 101, 14 90914 932.
Kuramoto K., et al. (2013). Effective hydrodynamic hydrogen escape from an early Earth atmosphere inferred from high-accuracy numerical simulation. Earth Planet. Sci. Lett. 375, 312318.
Kurata F. (1975). Solubility of heavier hydrocarbons in liquid methane. Research Report, RR-14. Gas Processors Association.
Kurokawa H. and Kaltenegger L. (2013). Atmospheric mass-loss and evolution of short-period exoplanets: the examples of CoRoT-7b and Kepler-10b. Mon. Not. R. Astron. Soc. 433, 32393245.
Kurokawa H. and Nakamoto T. (2014). Mass-loss evolution of close-in exoplanets: evaporation of hot Jupiters and the effect on population. Astrophysical Journal 783.
Kurokawa H., et al. (2014). Evolution of water reservoirs on Mars: Constraints from hydrogen isotopes in martian meteorites. Earth Planet. Sc. Lett. 394, 179185.
Kurosawa K. (2015). Impact-driven planetary desiccation: The origin of the dry Venus. Earth Planet. Sci. Lett. 429, 181190.
Kurster M., et al. (2003). The low-level radial velocity variability in Barnard’s star (= GJ 699): Secular acceleration, indications for convective redshift, and planet mass limits. Astron. Astrophys. 403, 10771087.
Kurzweil F., et al. (2013). Atmospheric sulfur rearrangement 2.7 billion years ago: Evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366, 1726.
Kurzweil F., et al. (2015a). Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochim. Cosmochim. Acta 171, 121142.
Kurzweil F., et al. (2015b). Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochim. Cosmochim. Acta 164, 523542.
Kuzuhara M., et al. (2013). Direct imaging of a cold Jovian exoplanet in orbit around the Sun-like star GJ 504. The Astrophysical Journal 774, 11.
Laakso T. A. and Schrag D. P. (2014). Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 8191.
Lacis A. A., et al. (2013). The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. Tellus B 65, 19734,
Lacis A. A., et al. (2010). Atmospheric CO2: Principal control knob governing Earth’s temperature. Science 330, 356359.
Lagrange A. M., et al. (2010). A giant planet imaged in the disk of the young star β pictoris. Science 329, 5759.
Lainey V., et al. (2009). Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957959.
Lake J. A., et al. (1984). Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. P. Natl. Acad. Sci. USA 81, 37863790.
Lalonde S. V. and Konhauser K. O. (2015). Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. P. Natl. Acad. Sci. USA 112, 9951000.
Lamb D. M., et al. (2009). Evidence for eukaryotic diversification in the similar to 1800 million-year-old Changzhougou Formation, North China. Precam. Res. 173, 93104.
Lamb M. P., et al. (2008). Formation of Box Canyon, Idaho, by megaflood: Implications for seepage erosion on Earth and Mars. Science 320, 10671070.
Lamb M. P., et al. (2006). Can springs cut canyons into rock? J. Geophys. Res. 111.
Lambrechts M. and Johansen A. (2012). Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544.
Lammer H. (2013). Origin and Evolution of Planetary Atmospheres: Implications for Habitability. New York: Springer.
Lammer H. and Bauer S. J. (1991). Nonthermal atmospheric escape from Mars and Titan. J. Geophys. Res. 96, 18191825.
Lammer H., et al. (2013). Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113154.
Lammer H., et al. (2008). Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399436.
Lammer H., et al. (2006). Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 14451456.
Lammer H., et al. (2003a). Loss of water from Mars: Implications for the oxidation of the soil. Icarus 165, 925.
Lammer H., et al. (2007). Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185207.
Lammer H., et al. (2009). Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 506, 399410.
Lammer H., et al. (2003b). Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. 598, L121L124.
Land L. S. (1995). Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for Coeval seawater – Comment. Geochim. Cosmochim. Acta 59, 28432844.
Lange M. A. and Ahrens T. J. (1982). The evolution of an impact generated atmosphere. Icarus 51, 96120.
Lange M. A. and Ahrens T. J. (1986). Shock-induced CO2 loss from CaCO3 – Implications for early planetary atmospheres. Earth Planet. Sci. Lett. 77, 409418.
Langevin Y., et al. (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science 307, 15841586.
Lapen T. J., et al. (2010). A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328, 347351.
Lara L. M., et al. (2014). A time-dependent photochemical model for Titan’s atmosphere and the origin of H2O. Astron. Astrophys. 566.
Lasaga A. C., et al. (1971). Primordial oil slick. Science 174, 5355.
Lasaga A. C., et al. (1985). An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed. Sundquist E. T. and Broecker W. S., Washington, DC: American Geophysical Union, pp. 397411.
Laskar J. (2000). On the spacing of planetary systems. Phys. Rev. Lett. 84, 32403243.
Laskar J. and Correia A. C. M. (2004). The rotation of extra-solar planets. In: Extrasolar Planets: Today and Tomorrow, ed. Beaulieu J.-P., et al.: Astronom. Soc. of the Pacific, pp. 401409.
Laskar J., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343364.
Lasue J., et al. (2013). Quantitative assessments of the martian hydrosphere. Space Sci. Rev. 174, 155212.
Lavvas P. P., et al. (2008a). Coupling photochemistry with haze formation in Titan’s atmosphere, part I: Model description. Planet. Space Sci. 56, 2766.
Lavvas P. P., et al. (2008b). Coupling photochemistry with haze formation in Titan’s atmosphere. Part II: Results and validation with Cassini/Huygens data. Planet. Space Sci. 56, 6799.
Le Deit L., et al. (2010). Morphology, stratigraphy, and mineralogical composition of a layered formation covering the plateaus around Valles Marineris, Mars: Implications for its geological history. Icarus 208, 684703.
Le Heron P., et al. (2010). Sea ice−free conditions during the Sturtian glaciation (early Cryogenian), South Australia. Geology 39, 134.
Le Hir G., et al. (2010). Toward the snowball Earth deglaciation. Climate Dynamics 35, 285297.
Lean J. and Rind D. (1998). Climate forcing by changing solar radiation. Journal of Climate 11, 30693094.
Leather J., et al. (2002). Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman. Geology 30, 891894.
LeBlanc F. (2010). An Introduction to Stellar Astrophysics. Chichester, UK: Wiley.
Lebonnois S., et al. (2003). Atomic and molecular hydrogen budget in Titan’s atmosphere. Icarus 161, 474485.
Lebonnois S., et al. (2012). Angular momentum budget in General Circulation Models of superrotating atmospheres: A critical diagnostic. J. Geophys. Res. 117.
Lebonnois S., et al. (2010). Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. 115.
Lecavalier des Etangs A., et al. (2004). Atmospheric escape from hot Jupiters. Astron. Astrophys. 418, L1L4.
Lecavalier Etangs L. D., et al. (2008). Rayleigh scattering in the transit spectrum of HD189733b. Astron. Astrophys. 481, L83L86.
Leconte J., et al. (2013). Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268271.
Leconte J., et al. (2015). Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632635.
Lecuyer C., et al. (1998). The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145, 249261.
Lecuyer C. and Ricard Y. (1999). Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth Planet. Sci. Lett. 165, 197211.
Lecuyer C., et al. (2000). Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Planet. Sc. Lett. 181, 3340.
Lederberg J. (1965). Signs of life: criterion-system of exobiology. Nature 207, 913.
Lee C. T. A., et al. (2005). Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 23132336.
Lee C. T. A., et al. (2010). The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681685.
Lee H., et al. (2016). Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145149.
Lee J. Y., et al. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 45074512.
Lee S. and Kim H. K. (2003). The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci. 60, 14901503.
Lee Y. N. and Schwartz S. E. (1981). Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water. J. Geophys. Res. 86, 11 97111 983.
Lefevre F., et al. (2008). Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971975.
Lefevre F. and Forget F. (2009). Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720723.
Leger A., et al. (1993). Search for primitive life on a distant planet: Relevance of O2 and O3 dectections. Astron. Astrophys. 277, 309313.
Leighton R. B. and Murray B. C. (1966). Behaviour of carbon dioxide and other volatiles on Mars. Science 153, 136144.
Leitzinger M., et al. (2011). Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants? Planet. Space Sci. 59, 14721481.
Lellouch E., et al. (1997). Monitoring of mesospheric structure and dynamics. In: Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. Bougher S. W., et al., Tucson, AZ: University of Arizona Press, pp. 295324.
Lellouch E., et al. (2011a). High resolution spectroscopy of Pluto’s atmosphere: detection of the 2.3 μm CH4 bands and evidence for carbon monoxide. Astron. Astrophys. 530.
Lellouch E., et al. (2011b). The tenuous atmospheres of Pluto and Triton explored by CRIRES on the VLT. ESO Messenger 145, 2023.
Lellouch E., et al. (2003). Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421, 4547.
Lemaire J. F., et al. (2007). History of kinetic polar wind models and early observations. J. Atmos. Sol-Terr. Phys. 69, 19011935.
Lenardic A., et al. (2004). Growth of the hemispheric dichotomy and the cessation of plate tectonics on Mars. J. Geophys. Res. 109, E02003, doi:10.1029/2003JE002172.
Lenton T. M. (1998). Gaia and natural selection. Nature 394, 439447.
Lenton T. M., et al. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7, 257265.
Lenton T. M. and Watson A. J. (2000). Redfield revisited: II. What regulates the oxygen content of the atmosphere? Global Biogeochem. Cyc. 14, 249268.
Leone G. (2014). A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J. Volcanol. Geoth. Res. 277, 18.
Leone G., et al. (2014). Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys. Res. Lett. 41, 2014GL062261.
Leovy C. (1982a). Martian meteorological variability. Adv. Space Res. 2, 1944.
Leovy C. (2001). Weather and climate on Mars. Nature 412, 245249.
Leovy C. B. (1964). Simple models of thermally driven mesospheric circulation. J. Atmos. Sci. 21, 327341.
Leovy C. B. (1973). Rotation of upper-atmosphere of Venus. J. Atmos. Sci. 30, 12181220.
Leovy C. B. (1977). The atmosphere of Mars. Sci. Am. 237, 3443.
Leovy C. B. (1982b). Control of the homopause level. Icarus 50, 311321.
Leovy C. B. (1987). Zonal winds near Venus cloud top level: An analytic model of the equatorial wind speed. Icarus 69, 193201.
Leovy C. B. and Mintz Y. (1969). Numerical simulation of the weather and climate of Mars. Journal of Atmospheric Sciences 26, 1167–90.
Leovy C. B., et al. (1973). Mechanisms for Mars dust storms. J. Atmos. Sci. 30, 749762.
Lepland A., et al. (2013). The earliest phosphorites: Radical change in the phosphorus cycle ruring the Palaeoproterozoic. In: Reading the Archive of Earth’s Oxygenation, ed. Melezhik V. A. e. a., Berlin: Springer, pp. 12751296.
Lepland A., et al. (2005). Questioning the evidence for Earth’s earliest life - Akilia revisited. Geology 33, 7779.
Lepland A., et al. (2011). Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland. Geobiology 9, 29.
Lesniak M. V. and Desch S. J. (2011). Temperature structure of protoplanetary disks undergoing layered accretion. Astrophys. J. 740, 118.
Levenson B. P. (2015). Why Hart found narrow ccospheres: A minor science mystery solved. Astrobiology 15, 327330.
LeVeque R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press.
Leverington D. W. (2004). Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J. Geophys. Res. 109, 114.
Leverington D. W. (2007). Was the Mangala Valles system incised by volcanic flows? J. Geophys. Res. 112, 122.
Leverington D. W. (2011). A volcanic origin for the outflow channels of Mars: Key evidence and major implications. Geomorphology 132, 5175.
Levin L. A. (2002). Deep-ocean life where oxygen is scarce. Am. Sci. 90, 436444.
Levin L. A. (2003). Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41, 145.
Levine J. S., et al. (1979). The evolution and variability of atmospheric ozone over geologic time. Icarus 39, 295309.
Levine X. J. and Schneider T. (2011). Response of the Hadley Circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci. 68, 769783.
Levison H. F. and Dones L. (2014). Comet populations and cometary dynamics. In: Encyclopedia of the Solar System, ed. Spohn T., et al., 3rd edn. Boston: Elsevier, pp. 705719.
Levison H. F., et al. (2001). Could the lunar “Late heavy bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286306.
Levison H. F., et al. (2015). Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322324.
Levy H. (1971). Normal atmosphere – large radical and formaldehyde concentrations predicted. Science 173, 141143.
Levy J. S., et al. (2014). Sequestered glacial ice contribution to the global Martian water budget: Geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. 119, 21882196.
Lew S. K. (1967). The problem of hydrogen escape in the Earth’s upper atmosphere – a reappraisal. University of California, Los Angeles, PhD, Los Angeles, CA.
Lewis G. N. and Randall M. (1923). Thermodynamics and the Free Energy of Chemical Substances. New York: McGraw-Hill.
Lewis J. S. (2004). Physics and Chemistry of the Solar System (2nd Edn). Boston: Elsevier.
Lewis J. S. and Prinn R. G. (1984). Planets and Their Atmospheres: Origin and Evolution. Orlando, Florida: Academic Press.
Lewis S. R., et al. (2007). Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus 192, 327347.
Li C., et al. (2010). A stratified redox model for the Ediacaran ocean. Science 328, 8083.
Li D. W. and Pierrehumbert R. T. (2011). Sea glacier flow and dust transport on Snowball Earth. Geophys. Res. Lett. 38.
Li L. M., et al. (2011). The global energy balance of Titan. Geophy. Res. Lett. 38.
Li W. Q., et al. (2013). An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago. Geochim. Cosmochim. Acta 120, 6579.
Li W. Q., et al. (2012). U-Th-Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt. Earth Planet. Sci. Lett. 319, 197206.
Li Z. X. A. and Lee C. T. A. (2004). The constancy of upper mantle fO(2) through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483493.
Lian Y. and Showman A. P. (2010). Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373393.
Liang M. C., et al. (2006). Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis. P. Natl. Acad. Sci. USA 103, 18 89618 899.
Liang M. C., et al. (2005). Atmosphere of Callisto. Journal of Geophysical Research-Planets 110.
Lichtenberg K. A., et al. (2010). Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res. 115, E00D17, doi:10.1029/2009JE003353.
Lide D. R. (2011). Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.
Limaye S. S. and Rengel M. (2013). Atmospheric circulation and dynamics. In: Towards Understanding the Climate of Venus, ed. Bengtsson L., et al., New York: Springer, pp. 5570.
Lin B., et al. (2002). The iris hypothesis: A negative or positive cloud feedback? Journal of Climate 15, 37.
Lin Y., et al. (2011). Multiple-sulfur isotope effects during photolysis of carbonyl sulfide. Atmos. Chem. Phys. 11, 10 28310 292.
Lindemann T. A. and Dobson G. M. B. (1923). A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc. R. Soc. Lond. A 102, 411437.
Lindsay J. F. and Brasier M. D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 To 1.9 Ga carbonates of Western Australian basins. Precam. Res. 114, 134.
Lindzen R. S. (1971). Atmospheric tides. In: Mathematical Problems in the Geophysical Sciences, No. 2 : Inverse Problems, Dynamo Theory and Tides, ed. Reid W. H., Providance, RI: Amer. Math. Soc., pp. 293362.
Lindzen R. S., et al. (2001). Does the earth have an adaptive infrared iris? Bull. Am. Met. Soc. 82, 417432.
Lindzen R. S. and Hou A. Y. (1988). Hadley circulations for zonally averaged heating centred off the equator. J. Atmos. Sci. 45, 24162447.
Line M. R., et al. (2010). High temperature photochemistry in the atmosphere of HD 189733b. Astrophys. J. 717, 496502.
Lineweaver C. H., et al. (2004). The Galactic habitable zone and the age distribution of complex life in the Milky Way. Science 303, 5962.
Linsky J. L., et al. (2010). Observations of mass loss from the transiting exoplanet HD 209458b*. Astrophys. J. 717, 12911299.
Liou K.-N. (2002). An Introduction to Atmospheric Radiation. Amsterdam; London: Academic Press.
Liss P. S., et al. (1997). Marine sulphur emissions. Phil. Trans. R. Soc. Lond. B 352, 159168.
Liss P. S. and Slater P. G. (1974). Flux of gases across air-sea interface. Nature 247, 181184.
Lissauer J. J. (2007). Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles. Astrophys. J. 660, L149L152.
Little B., et al. (1999). Galileo images of lightning on Jupiter. Icarus 142, 306323.
Liu A. G., et al. (2015). Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Res. 27, 13551380.
Liu A. G., et al. (2010). First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38, 123126.
Liu S. C. and Donahue T. M. (1974). The aeronomy of hydrogen in the atmosphere of the earth. J. Atmos. Sci. 31, 11181136.
Lodders K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 12201247.
Lodders K. (2010a). Atmospheric chemistry of the gas giant planets. Geochem. News 142, 111.
Lodders K. (2010b). Solar system abundances of the elements. In: Principles and Perspectives in Cosmochemistry, ed. Goswami A. and Reddy B. E., Berlin: Springer, pp. 379417.
Lodders K. and Fegley B. (1998). The Planetary Scientist’s Companion. New York: Oxford University Press.
Loeb N. G., et al. (2009). Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate 22, 748766.
Logan G. A., et al. (1995). Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 5356.
Lopez E. D. and Fortney J. J. (2013). The role of core mass in controlling evaporation: The Kepler radius distribution and the Kepler-36 density dichotomy. Astrophysical Journal 776.
Lopez E. D. and Fortney J. J. (2014). Understanding the mass-radius relation for sub-Neptunes: Radius as a proxy for composition. Astrophys. J. 792, 1, doi: 10.1088/0004-637X/792/1/1.
López-Puertas M. and Taylor F. W. (2001). Non-LTE Radiative Transfer in the Atmosphere. London: World Scientific.
Lora J. M., et al. (2015). GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516528.
Lorenz R. D. (2000). The weather on Titan. Science 290, 467468.
Lorenz R. D., et al. (2009). Seasonal change on Titan. In: Titan from Cassini-Huygens, ed. Brown R. H., et al., New York: Springer.
Lorenz R. D., et al. (1997). Photochemically driven collapse of Titan’s atmosphere. Science 275, 642644.
Lorenz R. D., et al. (2008). Titan’s inventory of organic surface materials. Geophys. Res. Lett. 35.
Lorenz R. D., et al. (2006). Titan’s damp ground: Constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteorit. Planet. Sci. 41, 17051714.
Lorenz R. D., et al. (2011). Hypsometry of Titan. Icarus 211, 699706.
Lorius C., et al. (1990). The ice-core record: Climate sensitivity and future greenhouse warming. Nature 347, 139145.
Love G. D., et al. (2009). Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718721.
Lovelock J. (1988). The Ages of Gaia. New York: W.W. Norton.
Lovelock J. E. (1965). A physical basis for life detection experiments. Nature 207, 568570.
Lovelock J. E. (1972). Gaia as seen through atmosphere. Atmos. Environ. 6, 579–&.
Lovelock J. E. (1975). Thermodynamics and the recognition of alien biospheres. Proc. R. Soc. Lond.B 189, 167181.
Lovelock J. E. (1979). Gaia: A New Look at Life on Earth. Oxford: Oxford University Press.
Lovelock J. E. (1989). Geophysiology, the science of Gaia. Rev. Geophys. 27, 215222.
Lovelock J. E. (1991). Gaia: The Practical Science of Planetary Medicine. London: Gaia Books.
Lovelock J. E. and Watson A. J. (1982). The regulation of carbon dioxide and climate: Gaia or Geochemistry. Planet. Space Sci. 30, 795802.
Lovelock J. E. and Whitfield M. (1982). Life span of the biosphere. Nature 296, 561563.
Lowe D. R. and Byerly G. R. (2015). Geologic record of partial ocean evaporation triggered by giant asteroid impacts, 3.29–3.23 billion years ago. Geology 43, 535538.
Lowe D. R., et al. (2014). Recently discovered 3.42-3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42, 747750.
Lu J., et al. (2009). Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett. 36, L03803, doi:10.1029/2008GL036076.
Lucchitta B. K., et al. (1994). Topography of Valles-Marineris - Implications for erosional and structural history. J. Geophys. Res. 99, 37833798.
Luger R. and Barnes R. (2015). Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119143.
Luger R., et al. (2015). Habitable evaporated cores: Transforming mini-Neptunes into Super-Earths in the habitable zones of M dwarfs. Astrobiology 15, 5788.
Lunine J., et al. (2009). The origin and evolution of Titan. In: Titan from Cassini-Huygens, ed. Brown R. H., et al., New York: Springer, pp. 3559.
Lunine J. I. (2010). Titan and habitable planets around M-dwarfs. Faraday Discuss. 147, 405418.
Lunine J. I., et al. (2003). The origin of water on Mars. Icarus 165, 18.
Lunine J. I. and Lorenz R. D. (2009). Rivers, lakes, dunes, and rain: crustal processes in Titan’s methane cycle. Ann. Rev. Earth Planet. Sci. 37, 299320.
Lunine J. I., et al. (1998). Some speculations on Titan’s past, present and future. Planetary and Space Science 46, 10991107.
Lunine J. I. and Nolan M. C. (1992). A massive early atmosphere on Triton. Icarus 100, 221234.
Lunine J. I., et al. (2011). Dynamical models of terrestrial planet formation. Adv. Sci. Lett. 4, 325338.
Lunine J. I., et al. (1983). Ethane ocean on Titan. Science 222, 12291230.
Lupu R. E., et al. (2014). The atmospheres of Earth-like planets after giant impact events. Astrophys. J. 784.
Luth R. W. and Canil D. (1993). Ferric iron in mantle-derived pyroxenes and a new oxybarometer for the mantle. Contrib. Mineral. Petrol. 113, 236248.
Lynd L., et al. (1982). Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium Methylotrophicum. J. Bacteriol. 149, 255263.
Lyons J. R. (2009). Atmospherically-derived mass-independent sulfur isotope signatures, and incorporation into sediments. Chem. Geol. 267, 164174.
Lyons J. R. and Young E. D. (2005). CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317320.
Lyons T. W., et al. (2009). Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study. Ann. Rev. Earth Planet. Sci. 37, 507534.
Lyons T. W., et al. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307315.
Lyons T. W. and Severmann S. (2006). A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 56985722.
Macdonald F. A., et al. (2010). Calibrating the Cryogenian. Science 327, 12411243.
Macdonald F. A., et al. (2013). The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chem. Geol. 362, 250272.
MacGregor A. M. (1927). The problem of the Precambrian atmosphere. S. African J. Sci. 24, 155172.
Machado A. D. (1987). On the origin and age of the Steep Rock Buckshot, Ontario, Canada. Chem. Geol. 60, 337349.
Macintosh B., et al. (2015). Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager. Science 350, 6467.
Macouin M., et al. (2015). Is the Neoproterozoic oxygen burst a supercontinent legacy? Front. Earth Sci. 3, 44, doi:10.3389/feart.2015.00044.
Madeleine J. B., et al. (2011). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res. 116.
Magalhaes J. A., et al. (2002). The stratification of Jupiter’s troposphere at the Galileo probe entry site. Icarus 158, 410433.
Magee B. A., et al. (2009). INMS-derived composition of Titan’s upper atmosphere: Analysis methods and model comparison. Planet. Space Sci. 57, 18951916.
Mahaffy P. R., et al. (2015a). Volatile and Isotopic Imprints of Ancient Mars. Elements 11, 5156.
Mahaffy P. R., et al. (2015b). The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412414.
Maher L. J. and Tinsley B. A. (1977). Atomic hydrogen escape rate due to charge-exchange with hot plasmaspheric ions. J. Geophys. Res. 82, 689695.
Maheshwari A., et al. (2010). Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion A review of occurrences in Brazil, India, and Uruguay. Precam. Res. 182, 274299.
Maindl T. I., et al. (2015). Impact induced surface heating by planetesimals on early Mars. Astron. Astrophys. 574, A22, doi: 10.1051/0004-6361/201424256.
Mak M. (2011). Atmospheric Dynamics. Cambridge ; New York: Cambridge University Press.
Malin M. C., et al. (2008). Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager. Icarus 194, 501512.
Malin M. C. and Edgett K. S. (1999). Oceans or seas in the Martian northern lowlands: High resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 30493052.
Malin M. C. and Edgett K. S. (2000a). Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 23302335.
Malin M. C. and Edgett K. S. (2000b). Sedimentary rocks of early Mars. Science 290, 19271937.
Malin M. C. and Edgett K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 2342923570.
Malin M. C. and Edgett K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 19311934.
Malin M. C., et al. (2010). An overview of the 1985–2006 Mars Orbiter Camera science investigation. Mars 5, 160.
Malin M. C., et al. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 15731577.
Mallmann G. and O’Neill H. S. C. (2009). The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J. Petrol. 50, 17651794.
Maloof A. C., et al. (2010). Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geosci. 3 (9), 653659.
Manabe S. and Strickler R. F. (1964). Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci. 21, 361385.
Manabe S. and Wetherald R. T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241259.
Mancinelli R. L. and McKay C. P. (1988). The evolution of nitrogen cycling. Origins of Life 18, 311325.
Mandt K. E., et al. (2009). Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Planetary and Space Science 57, 19171930.
Manga M., et al. (2012). Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophys. Res. Lett. 39.
Mangold N. and Howard A. D. (2013). Outflow channels with deltaic deposits in Ismenius Lacus, Mars. Icarus 226, 385401.
Mangold N., et al. (2012). The origin and timing of fluvial activity at Eberswalde crater, Mars. Icarus 220, 530551.
Manning C. E., et al. (2006a). Geology, age and origin of supracrustal rocks at Akilia, West Greenland. American Journal of Science 306, 303366.
Manning C. V., et al. (2006b). Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 3859.
Marchi S., et al. (2013). High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303307.
Marchi S., et al. (2014). Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578582.
Marcq E., et al. (2008). A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: Spectroscopic studies using VIRTIS-H. J. Geophys. Res. 113, doi: 10.1029/2008JE003074.
Marcq E., et al. (2006). Remote sensing of Venus’ lower atmosphere from ground-based IR spectroscopy: Latitudinal and vertical distribution of minor species. Planet. Space Sci. 54, 13601370.
Margulis L. and Lovelock J. E. (1974). Biological modulation of the Earth’s atmosphere. Icarus 21, 471489.
Margulis L., et al. (1976). Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264, 620624.
Marinova M. M., et al. (2008). Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 12161219.
Markiewicz W. J., et al. (2014). Glory on Venus cloud tops and the unknown UV absorber. Icarus 234, 200203.
Marley M. S. (2010). The atmospheres of extrasolar planets. EAS Publications Series 41, 411428.
Marley M. S., et al. (2013). Clouds and hazes in exoplanets. In: Comparative Climatology of Terrestrial Planets, ed. Mackwell S. J., et al., Tucson: University of Arizona Press, pp. 367391.
Marounina N., et al. (2015). Evolution of Titan’s atmosphere during the Late Heavy Bombardment. Icarus 257, 324335.
Marrero T. R. and Mason E. A. (1972). Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1, 3118.
Marshall A. O., et al. (2014). Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Res. 25, 284289.
Marshall A. O. and Marshall C. P. (2013). Comment on “Biogenicity of Earth’s earliest fossils: A resolution of the controversy” by J. W. Schopf and A. B. Kudryavtsev, Gondwana Research, Volume 22, Issue 3–4, Pages 761–771. Gondwana Res. 23, 16541655.