References
Aczel, B., Palfi, B., Szollosi, A. et al. (2018). Quantifying support for the null hypothesis in psychology: An empirical investigation. Advances in Methods and Practices in Psychological Science, 1(3):357–366.
Agosta, S., Magnago, D., Tyler, S. et al. (2017). The pivotal role of the right parietal lobe in temporal attention. Journal of Cognitive Neuroscience, 29(5):805–815.
Alnaes, D., Sneve, M. H., Espeseth, T., Pieter, S. H., and Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14:1–20.
Alvarez, G. and Scholl, B. J. (2005). How does attention select and track spatially extended objects? New effects of attentional concentration and amplification. Journal of Experimental Psychology: General, 134(4):461–476.
Alvarez, G. A. and Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8):637–643.
Alvarez, G. A. and Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13):14,1–10.
Alvarez, G. A., Gill, J., and Cavanagh, P. (2012). Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5):9, 1–20.
Alvarez, G. A. and Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences of the United States of America, 106(18):7345–7350.
Alzahabi, R. and Cain, M. S. (2021). Ensemble perception during multiple-object tracking. Attention, Perception, & Psychophysics, 83(3):1263–1274.
Anstis, S. (1990). Imperceptible intersections: The chopstick illusion. In Blake, A. and Troscianko, T., editors, AI and the Eye, 105–117. John Wiley, London.
Awh, E. and Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26(2):834–846.
Battelli, L., Alvarez, G., Carlson, T., and Pascual-Leone, A. (2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 21(10):1946–1955.
Battelli, L., Cavanagh, P., Intriligator, J., Tramo, M. J., and Barton, J. J. S. (2001). Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron, 32(1992):985–995.
Battelli, L., Cavanagh, P., Martini, P., and Barton, J. J. S. (2003). Bilateral deficits of transient visual attention in right parietal patients. Brain: A Journal of Neurology, 126(Pt 10):2164–2174.
Bertoni, S., Franceschini, S., Ronconi, L., Gori, S., and Facoetti, A. (2019). Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia, 130:107–117.
Bettencourt, K. C., Michalka, S. W., and Somers, D. C. (2011). Shared filtering processes link attentional and visual short-term memory capacity limits. Journal of Vision, 11(10):22–22.
Bex, P. J., Dakin, S. C., and Simmers, A. J. (2003). The shape and size of crowding for moving targets. Vision Research, 43(27):2895–2904.
Bill, J., Pailian, H., Gershman, S. J., and Drugowitsch, J. (2020). Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences, 117(39): 24581–24589.
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241):177–178.
Bowers, A. R., Anastasio, R. J., Sheldon, S. S. et al. (2013). Can we improve clinical prediction of at-risk older drivers? Accident Analysis & Prevention, 59: 537–547.
Burt, P. and Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion. Psychological Review, 88(2):171.
Button, K. S., Ioannidis, J. P., Mokrysz, C. et al. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(May): 365–376.
Callahan-Flintoft, C., Holcombe, A. O., and Wyble, B. (2020). A delay in sampling information from temporally autocorrelated visual stimuli. Nature Communications, 11(1):1852.
Carlson, T., Alvarez, G., and Cavanagh, P. (2007). Quadrantic deficit reveals anatomical constraints on selection. Proceedings of the National Academy of Sciences of the United States of America, 104(33):13496–13500.
Chen, W.-Y., Howe, P. D., and Holcombe, A. O. (2013). Resource demands of object tracking and differential allocation of the resource. Attention, Perception & Psychophysics, 75(4):710–725.
Chesney, D. L. and Haladjian, H. H. (2011). Evidence for a shared mechanism used in multiple-object tracking and subitizing. Attention, Perception, & Psychophysics, 73(8):2457–2480.
Chin, J. M., Pickett, J. T., Vazire, S., and Holcombe, A. O. (2021). Questionable research practices and open science in quantitative criminology. Journal of Quantitative Criminology. https://doi.org/10.1007/s10940-021-09525-6. Cohen, M., Pinto, Y., Howe, P. D. L., and Horowitz, T. S. (2011). The what-where trade-off in multiple-identity tracking. Attention, Perception & Psychophysics, 73(5):1422–1434.
Cohen, M. R. and Maunsell, J. H. (2011). Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron, 70(6):1192–1204.
Cotton, P. L. and Smith, A. T. (2007). Contralateral visual hemifield representations in the human pulvinar nucleus. Journal of Neurophysiology, 98(3):1600–1609.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1):87–114.
Crowe, E. M., Howard, C. J., Attwood, A. S., and Kent, C. (2019). Goal-directed unequal attention allocation during multiple object tracking. Attention, Perception, & Psychophysics, 81(5):1312–1326.
Culham, J. C., Cavanagh, P., and Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32(4):737–745.
Davis, G. and Holmes, A. (2005). Reversal of object-based benefits in visual attention. Visual Cognition, 12(5):817–846.
Delvenne, J. (2012). Visual short-term memory and the bilateral field advantage. In Kalivas, G and Petralia, SF, editors, Short-Term Memory: New Research. Nova.
Delvenne, J.-F. (2005). The capacity of visual short-term memory within and between hemifields. Cognition, 96(3):B79–B88.
Dimond, S. and Beaumont, G. (1971). Use of two cerebral hemispheres to increase brain capacity. Nature, 232(5308):270–271.
Doran, M. M. and Hoffman, J. E. (2010). The role of visual attention in multiple object tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72(1):33–52.
Drew, T., Mance, I., Horowitz, T. S., Wolfe, J. M., and Vogel, E. K. (2014). A soft handoff of attention between cerebral hemispheres. Current Biology, 24(10):1133–1137.
Eayrs, J. and Lavie, N. (2018). Establishing individual differences in perceptual capacity. Journal of Experimental Psychology: Human Perception and Performance, 44(8):1240.
Edwards, G., Berestova, A., and Battelli, L. (2021). Behavioral gain following isolation of attention. Scientific Reports, 11(1):19329.
Egly, R., Driver, J., and Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2):161.
Falkner, A. L., Krishna, B. S., and Goldberg, M. E. (2010). Surround suppression sharpens the priority map in the lateral intraparietal area. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(38):12787–12797.
Faubert, J. and Von Grunau, M. (1995). The influence of two spatially distinct primers and attribute priming on motion induction. Vision Research, 35(22):3119–3130.
Fecteau, J. and Munoz, D. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8):382–390.
Fehd, H. M. and Seiffert, A. E. (2008). Eye movements during multiple object tracking: Where do participants look? Cognition, 108(1):201–209.
Fencsik, D. E., Klieger, S. B., and Horowitz, T. S. (2007). The role of location and motion information in the tracking and recovery of moving objects. Perception & Psychophysics, 69(4):567–577.
Feria, C. S. (2013). Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors. Attention, Perception & Psychophysics, 75(1):53–67.
Fodor, J. A. (1983). The Modularity of Mind. MIT Press, Cambridge, MA.
Fortenbaugh, F. C., DeGutis, J., Germine, L. et al. (2015). Sustained attention across the life span in a sample of 10,000: Dissociating ability and strategy. Psychological Science, 26(9):1497–1510.
Fougnie, D. and Marois, R. (2006). Distinct capacity limits for attention and working memory: Evidence from attentive tracking and visual working memory paradigms. Psychological Science, 17(6):526–534.
Francis, G. and Thunell, E. (2022). Excess success in articles on object-based attention. Attention, Perception & Psychophysics, 84: 700–714.
Franconeri, S. L. (2013). The nature and status of visual resources. In Reisberg, D., editor, Oxford Handbook of Cognitive Psychology, volume 8481. Oxford University Press, Oxford.
Franconeri, S. L., Alvarez, G. A., and Cavanagh, P. (2013a). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3):134–141.
Franconeri, S. L., Alvarez, G. A., and Cavanagh, P. (2013b). Resource theory is not a theory: A reply to Holcombe. Online comment on Trends in Cognitive Sciences, 17(3): 134–141.
Franconeri, S. L., Jonathan, S. V., and Scimeca, J. M. (2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21(7):920–925.
Franconeri, S. L., Lin, J. Y., Pylyshyn, Z. W., Fisher, B., and Enns, J. T. (2008). Evidence against a speed limit in multiple-object tracking. Psychonomic Bulletin & Review, 15(4):802–808.
Goodale, M. A. and Milner, A. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1):20–25.
Gurnsey, R., Roddy, G., and Chanab, W. (2011). Crowding is size and eccentricity dependent. Journal of Vision, 11:1–17.
Hagler, D. J.Jr, and Sereno, M. I. (2006). Spatial maps in frontal and prefrontal cortex. Neuroimage, 29(2):567–577.
Harrison, W. J., Ayeni, A. J., and Bex, P. J. (2019). Attentional selection and illusory surface appearance. Scientific Reports, 9(1):2227.
Harrison, W. J. and Rideaux, R. (2019). Voluntary control of illusory contour formation. Attention, Perception, & Psychophysics, 81(5):1522–1531.
Hayhoe, M. M., Bensinger, D. G., and Ballard, D. H. (1998). Task constraints in visual working memory. Vision Research, 38(1):125–137.
Hedge, C., Powell, G., and Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3):1166–1186.
Hemond, C. C., Kanwisher, N. G., and Op de Beeck, H. P. (2007). A preference for contralateral stimuli in human object- and face-selective cortex. PLoS ONE, 2(6):e574.
Hogendoorn, H., Carlson, T. A., and Verstraten, F. A. (2007). The time course of attentive tracking. Journal of Vision, 7(14):2, 1–10.
Holcombe, A. O. (2009). Temporal binding favours the early phase of colour changes, but not of motion changes, yielding the colour-motion asynchrony illusion. Visual Cognition, 17(1–2):232–253.
Holcombe, A. O. (2019). Comment: Capacity limits are caused by a finite resource, not spatial competition, 1–2. https://psyarxiv.com/2tg4n/. DOI: 10.31234/osf.io/2tg4n. Holcombe, A. O., Chen, W., and Howe, P. D. L. (2014). Object tracking: Absence of long-range spatial interference supports resource theories. Journal of Vision, 14(6):1–21.
Holcombe, A. O. and Chen, W.-Y. (2012). Exhausting attentional tracking resources with a single fast-moving object. Cognition, 123(2).
Holcombe, A. O. and Chen, W.-y. (2013). Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three. Journal of Vision, 13(1):1–19.
Holt, J. L. and Delvenne, J.-F. (2015). A bilateral advantage for maintaining objects in visual short term memory. Acta Psychologica, 154:54–61.
Horowitz, T. and Treisman, A. (1994). Attention and apparent motion. Spatial Vision, 8(2):193–220.
Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., a Alvarez, G., and Wolfe, J. M. (2007). Tracking unique objects. Perception & Psychophysics, 69(2):172–184.
Howard, C. J. and Holcombe, A. O. (2008). Tracking the changing features of multiple objects: Progressively poorer perceptual precision and progressively greater perceptual lag. Vision Research, 48(9):1164–1180.
Howe, P. D. and Holcombe, A. O. (2012). Motion information is sometimes used as an aid to the visual tracking of objects. Journal of Vision, 12(13):1–10.
Howe, P. D., Horowitz, T. S., Wolfe, J., and Livingstone, M. S. (2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9(4):1–11.
Howe, P. D., Incledon, N. C., and Little, D. R. (2012). Can attention be confined to just part of a moving object? Revisiting target-distractor merging in multiple object tracking. PloS One, 7(7):e41491.
Howe, P. D. L., Cohen, M. A., and Horowitz, T. S. (2010a). Distinguishing between parallel and serial accounts of multiple object tracking. Journal of Vision, 10:1–13.
Howe, P. D. L. and Ferguson, A. (2015). The identity-location binding problem. Cognitive Science, 39(7):1622–1645.
Howe, P. D. L., Holcombe, A. O., Lapierre, M. D., and Cropper, S. J. (2013). Visually tracking and localizing expanding and contracting objects. Perception, 42(12):1281–1300.
Howe, P. D. L., Pinto, Y., and Horowitz, T. S. (2010b). The coordinate systems used in visual tracking. Vision Research, 50(23):2375–2380.
Huang, L., Mo, L., and Li, Y. (2012). Measuring the interrelations among multiple paradigms of visual attention: An individual differences approach. Journal of Experimental Psychology: Human Perception and Performance, 38(2):414.
Hudson, C., Howe, P. D., and Little, D. R. (2012). Hemifield effects in multiple identity tracking. PloS One, 7(8):e43796.
Hung, G. K., Wilder, J., Curry, R., and Julesz, B. (1995). Simultaneous better than sequential for brief presentations. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 12(3):441–449.
Hyönä, J., Li, J., and Oksama, L. (2019). Eye behavior during multiple object tracking and multiple identity tracking. Vision, 3(3):37.
Intriligator, J. and Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43(3):171–216.
James, W. (1890). The Principles of Psychology, Vol I. Henry Holt, New York, US.
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14: 201–211.
John, L. K., Loewenstein, G., and Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23(5):524–532.
Joo, S. J., White, A. L., Strodtman, D. J., and Yeatman, J. D. (2018). Optimizing text for an individual’s visual system: The contribution of visual crowding to reading difficulties. Cortex, 103:291–301.
Jovicich, J., Peters, R. J., Koch, C. et al. (2001). Brain areas specific for attentional load in a motion-tracking task. Journal of cognitive neuroscience, 13(8):1048–58.
Kahneman, D., Treisman, A., and Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2):175–219.
Kennedy, G. J., Tripathy, S. P., and Barrett, B. T. (2009). Early age-related decline in the effective number of trajectories tracked in adult human vision. Journal of Vision, 9(2):21–21.
Kimchi, R. and Peterson, M. A. (2008). Figure-ground segmentation can occur without attention. Psychological Science, 19(7):660–668.
Kolers, P. A. and Pomerantz, J. R. (1971). Figural change in apparent motion. Journal of Experimental Psychology, 87(1):99.
Korte, W. (1923). über die Gestaltauffassung im indirekten Sehen. Zeitschrift für Psychologie, 93:17–82.
Kubovy, M., Holcombe, A. O., and Wagemans, J. (1998). On the lawfulness of grouping by proximity. Cognitive Psychology, 35(1):71–98.
Li, J., Oksama, L., and Hyönä, J. (2019). Model of Multiple Identity Tracking (MOMIT) 2.0: Resolving the serial vs. parallel controversy in tracking. Cognition, 182:260–274.
Liu, G., Austen, E. L., Booth, K. S. et al. (2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of experimental psychology. Human Perception and Performance, 31(2):235–247.
Liu, T., Jiang, Y., Sun, X., and He, S. (2009). Reduction of the crowding effect in spatially adjacent but cortically remote visual stimuli. Current Biology, 19(2):127–32.
Lo, S.-Y. and Holcombe, A. O. (2014). How do we select multiple features? Transient costs for selecting two colors rather than one, persistent costs for color– location conjunctions. Attention, Perception, & Psychophysics, 76(2):304–321.
Lochner, M. J. and Trick, L. M. (2014). Multiple-object tracking while driving: The multiple-vehicle tracking task. Attention, Perception & Psychophysics, 76: 2326–2345. https://doi.org/10.3758/s13414-014-0694-3. Lovett, A., Bridewell, W., and Bello, P. (2019). Selection enables enhancement: An integrated model of object tracking. Journal of Vision, 19(14):23.
Luck, S. J., Hillyard, S. A., Mangun, G. R., and Gazzaniga, M. S. (1989). Independent hemispheric attentional systems mediate visual search in split-brain patients. Nature, 342(6249):543–545.
Luck, S. J., Hillyard, S. A., Mangun, G. R., and Gazzaniga, M. S. (1994). Independent attentional scanning in the separated hemispheres of split-brain patients. Journal of Cognitive Neuroscience, 6(1):84–91.
Lukavskỳ, J. (2013). Eye movements in repeated multiple object tracking. Journal of Vision, 13(7):1–16.
Lunghi, C., Burr, D. C., and Morrone, C. (2011). Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Current Biology, 21(14):R538–R539.
Luu, T. and Howe, P. D. L. (2015). Extrapolation occurs in multiple object tracking when eye movements are controlled. Attention, Perception, & Psychophysics, 77: 1919–1929. https://doi.org/10.3758/s13414-015-0891-8. Mackenzie, A. K. and Harris, J. M. (2017). A link between attentional function, effective eye movements, and driving ability. Journal of Experimental Psychology: Human Perception and Performance, 43(2):381.
Mackenzie, A. K., Vernon, M. L., Cox, P. R. et al. (2021). The Multiple Object Avoidance (MOA) task measures attention for action: Evidence from driving and sport. Behavior Research Methods, 54: 1508–1529.
Maechler, M. R., Cavanagh, P., and Tse, P. U. (2021). Attentional tracking takes place over perceived rather than veridical positions. Attention, Perception, & Psychophysics, 83: 1455–1462.
Makovski, T. and Jiang, Y. V. (2009). Feature binding in attentive tracking of distinct objects. Visual Cognition, 17(1–2):180–194.
Mareschal, I., Morgan, M. J., and Solomon, J. A. (2010). Attentional modulation of crowding. Vision Research, 50(8):805–809.
Maruya, K., Holcombe, A. O., and Nishida, S. (2013). Rapid encoding of relationships between spatially remote motion signals. Journal of Vision, 13(4):1–20.
Matthews, N. and Welch, L. (2015). Left visual field attentional advantage in judging simultaneity and temporal order. Journal of Vision, 15(2):7.
Merkel, C., Hopf, J.-M., and Schoenfeld, M. A. (2017). Spatio-temporal dynamics of attentional selection stages during multiple object tracking. NeuroImage, 146:484–491.
Merkel, C., Stoppel, C. M., Hillyard, S. A. et al. (2014). Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking. Journal of Cognitive Neuroscience, 26(1):28–40.
Mesulam, M.-M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1387):1325–1346.
Meyerhoff, H. S. and Papenmeier, F. (2020). Individual differences in visual attention: A short, reliable, open-source, and multilingual test of multiple object tracking in PsychoPy. Behavior Research Methods, 52(6):2556–2566.
Meyerhoff, H. S., Papenmeier, F., Jahn, G., and Huff, M. (2015). Distractor locations influence multiple object tracking beyond interobject spacing: Evidence from equidistant distractor displacements. Experimental Psychology, 62(3):170–180.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2):81.
Minami, T., Shinkai, T., and Nakauchi, S. (2019). Hemifield crossings during multiple object tracking affect task performance and steady-state visual evoked potentials. Neuroscience, 409:162–168.
Nakayama, K., He, Z. J., and Shimojo, S. (1995). Visual surface representation: A critical link between lower-level and higher-level vision. Visual Cognition: An Invitation to Cognitive Science, 2:1–70.
Neisser, U. (1963). Decision-time without reaction-time: Experiments in visual scanning. The American Journal of Psychology, 76(3):376.
Ngiam, W. X., Khaw, K. L., Holcombe, A. O., and Goodbourn, P. T. (2019). Visual working memory for letters varies with familiarity but not complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10):1761.
Norman, D. A. and Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7:44–64.
Nummenmaa, L., Oksama, L., Glerean, E., and Hyönä, J. (2017). Cortical circuit for binding object identity and location during multiple-object tracking. Cerebral Cortex, 27(1):162–172.
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3):411.
Oberauer, K. et al. (2018). Benchmarks for models of short-term and working memory. Psychological Bulletin, 144(9):885.
Oksama, L. and Hyönä, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach. Visual Cognition, 11(5):631–671.
Oksama, L. and Hyönä, J. (2016). Position tracking and identity tracking are separate systems: Evidence from eye movements. Cognition, 146:393–409.
Ongchoco, J. D. K. and Scholl, B. J. (2019). How to create objects with your mind: From object-based attention to attention-based objects. Psychological Science, 30(11):1648–1655.
O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology/Revue Canadienne De Psychologie, 46(3):461.
O’Reilly, R. C., Ranganath, C., and Russin, J. L. (2022). The Structure of Systematicity in the Brain. Current Directions in Psychological Science, 31(2): 124–130.
Pailian, H., Carey, S. E., Halberda, J., and Pepperberg, I. M. (2020). Age and species comparisons of visual mental manipulation ability as evidence for its development and evolution. Scientific Reports, 10(1):1–7.
Palmer, J. (1995). Attention in visual search: Distinguishing four causes of a set-size effect. Current Directions in Psychological Science, 4(4):118–123.
Papenmeier, F., Meyerhoff, H. S., Jahn, G., and Huff, M. (2014). Tracking by location and features: Object correspondence across spatiotemporal discontinuities during multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 40(1):159.
Pelli, D. G. and Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10):1129–1135.
Peter, U. T. (2005). Voluntary attention modulates the brightness of overlapping transparent surfaces. Vision Research, 45(9):1095–1098.
Peterson, M. A. (2014). Low-level and high-level contributions to figure-ground organization: evidence and theoretical implications. In Wagemans, J, editor. The Oxford Handbook of Perceptual Organization. New York: Oxford University Press.
Petrov, Y. and Meleshkevich, O. (2011). Asymmetries and idiosyncratic hot spots in crowding. Vision Research, 51(10):1117–1123.
Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12):542–551.
Pilz, K. S., Roggeveen, A. B., Creighton, S. E., Bennett, P. J., and Sekuler, A. B. (2012). How prevalent is object-based attention? PLoS ONE, 7(2):e30693.
Proffitt, D. R., Kaiser, M. K., and Whelan, S. M. (1990). Understanding wheel dynamics. Cognitive Psychology, 22(3):342–373.
Pylyshyn, Z. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32(1):65–97.
Pylyshyn, Z. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80:127–158.
Pylyshyn, Z. (2004). Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Visual Cognition, 11(7):801–822.
Pylyshyn, Z., Burkell, J., Fisher, B. et al. (1994). Multiple parallel access in visual attention. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 48(2):260.
Pylyshyn, Z. W. (2006). Seeing and Visualizing: It’s Not What You Think. Life and Mind. MIT Press, Cambridge, Mass., 1. mit press paperback ed.
Pylyshyn, Z. W. (2007). Things and Places: How the Mind Connects with the World. MIT Press.
Pylyshyn, Z. W. and Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3):179–197.
Rabelo, A. L. A., Farias, J. E. M., Sarmet, M. M. et al. (2020). Questionable research practices among Brazilian psychological researchers: Results from a replication study and an international comparison. International Journal of Psychology, 55(4):674–683.
Redick, T. S. and Engle, R. W. (2006). Working memory capacity and attention network test performance. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 20(5):713–721.
Reichle, E. D., Liversedge, S. P., Pollatsek, A., and Rayner, K. (2009). Encoding multiple words simultaneously in reading is implausible. Trends in Cognitive Sciences, 13(February):115–119.
Rensink, R. (2000). Visual search for change: A probe into the nature of attentional processing. Visual Cognition, 7(1):345–376.
Revkin, S. K., Piazza, M., Izard, V., Cohen, L., and Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological science, 19(6):607–614.
Rizzolatti, G., Umiltà, C., and Berlucchi, G. (1971). Opposite superiorities of the right and left cerbral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain: A Journal of Neurology, 94(3): 431–442.
Robinson, M. M., Benjamin, A. S., and Irwin, D. E. (2020). Is there a K in capacity? Assessing the structure of visual short-term memory. Cognitive Psychology, 121:101305.
Roudaia, E. and Faubert, J. (2017). Different effects of aging and gender on the temporal resolution in attentional tracking. Journal of Vision, 17(11):1.
Saenz, M., Buracas, G. T., and Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7):631–632.
Saiki, J. (2002). Multiple-object permanence tracking: Limitation in maintenance and transformation of perceptual objects. Progress in Brain Research, 140:133–148.
Saiki, J. (2019). Robust color-shape binding representations for multiple objects in visual working memory. Journal of Experimental Psychology: General, 148(5):905–925.
Saiki, J. and Holcombe, A. O. (2012). Blindness to a simultaneous change of all elements in a scene, unless there is a change in summary statistics. Journal of Vision, 12:1–11.
Schneider, K. A. and Kastner, S. (2005). Visual responses of the human superior colliculus: A high-resolution functional magnetic resonance imaging study. Journal of Neurophysiology, 94(4):2491–2503.
Scholl, B. (2001). Objects and attention: The state of the art. Cognition, 80(1/2):1–46.
Scholl, B. J. (2008). What have we learned about attention from multiple-object tracking (and vice versa)? In Dedrick, D. and Trick, L., editors, Computation, Cognition, and Pylyshyn, pages 49–78. MIT Press.
Scholl, B. J., Pylyshyn, Z. W., and Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80(1-2):159–177.
Scholl, B. J., Simons, D. J., and Levin, D. T. (2004). “Change blindness” blindness: An implicit measure of a metacognitive error. In Levin, D. T., editor, Thinking and Seeing: Visual Metacognition in Adults and Children, pages 145–164. MIT Press, Cambridge, MA.
Schönbrodt, F. D. and Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5):609–612.
Sekuler, R., McLaughlin, C., and Yotsumoto, Y. (2008). Age-related changes in attentional tracking of multiple moving objects. Perception, 37(6):867–876.
Sereno, A. B. and Kosslyn, S. M. (1991). Discrimination within and between hemifields: A new constraint on theories of attention. Neuropsychologia, 29(7):659–675.
Sereno, M. I., Pitzalis, S., and Martinez, A. (2001). Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science, 294(5545):1350–1354.
Shiffrin, R. M. and Gardner, G. T. (1972). Visual processing capacity and attentional control. Journal of Experimental Psychology, 93(1):72.
Shim, W. M., a. Alvarez, G., and Jiang, Y. V. (2008). Spatial separation between targets constrains maintenance of attention on multiple objects. Psychonomic Bulletin & Review, 15(2):390–397.
Shim, W. M., a Alvarez, G., Vickery, T. J., and Jiang, Y. V. (2010). The number of attentional foci and their precision are dissociated in the posterior parietal cortex. Cerebral Cortex, 20(6):1341–1349.
Shomstein, S. and Behrmann, M. (2008). Object-based attention: Strength of object representation and attentional guidance. Perception & Psychophysics, 70(1):132–144.
Shomstein, S. and Yantis, S. (2002). Object-based attention: Sensory modulation or priority setting? Perception & Psychophysics, 64(1):41–51.
Simon, H. A. (1969). The Sciences of the Artificial, Reissue of the Third Edition with a New Introduction by John Laird. MIT Press Academic, Cambridge, MA, 3rd ed.
Simons, D. J., Boot, W. R., Charness, N. et al. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3):103–186.
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30:276–315.
Störmer, V. S., a Alvarez, G., and Cavanagh, P. (2014). Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(35):11526–11533.
Strasburger, H. (2014). Dancing letters and ticks that buzz around aimlessly: On the origin of crowding. Perception, 43(9):963–976.
Strong, R. W. and Alvarez, G. A. (2020). Hemifield-specific control of spatial attention and working memory: Evidence from hemifield crossover costs. Journal of Vision, 20(8):24.
Suchow, J. W. and Alvarez, G. A. (2011). Motion Silences Awareness of Visual Change. Current Biology, 21(2): 140–143.
Tadin, D., Lappin, J. S., Blake, R., and Grossman, E. D. (2002). What constitutes an efficient reference frame for vision? Nature Neuroscience, 5(10):1010–1015.
Tombu, M. and Seiffert, A. E. (2008). Attentional costs in multiple-object tracking. Cognition, 108:1–25.
Tombu, M. and Seiffert, A. E. (2011). Tracking planets and moons: Mechanisms of object tracking revealed with a new paradigm. Attention, Perception, & Psychophysics, 73: 738–750.
Townsend, J. T. (1990). Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee but they can (and should) be distinguished. Psychological Science, 1(1):46–54.
Treisman, A. and Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12:97–136.
Treisman, A. and Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cognitive Psychology, 14:107–141.
Treisman, A. M. (1964). Verbal cues, language, and meaning in selective attention. The American Journal of Psychology, 77(2):206.
Treviño, M., Zhu, X., Lu, Y. Y. et al. (2021). How do we measure attention? Using factor analysis to establish construct validity of neuropsychological tests. Cognitive Research: Principles and Implications, 6(1):51.
Trick, L. M., Mutreja, R., and Hunt, K. (2012). Spatial and visuospatial working memory tests predict performance in classic multiple-object tracking in young adults, but nonspatial measures of the executive do not. Attention, Perception, & Psychophysics, 74(2):300–311.
Trick, L. M., Perl, T., and Sethi, N. (2005). Age-related differences in multiple-object tracking. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(2):P102–P105.
Tse, P., Cavanagh, P., and Nakayama, K. (1998). The role of parsing in high-level motion processing. In Watanabe, T., editor, High-level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, 249–266. MIT Press.
Tsotsos, J. K., Culhane, S. M., Wai, W. et al. (1995). Modeling visual attention via selective tuning. Artificial Intelligence, 78:507–545.
Tsotsos, J. K., Rodríguez-Sánchez, A. J., Rothenstein, A. L., and Simine, E. (2008). The different stages of visual recognition need different attentional binding strategies. Brain Research, 1225(2007):119–132.
Umemoto, A., Drew, T., Ester, E. F., and Awh, E. (2010). A bilateral advantage for storage in visual working memory. Cognition, 117(1):69–79.
Van der Burg, E., Cass, J., and Theeuwes, J. (2019). Changes (but not differences) in motion direction fail to capture attention. Vision Research, 165:54–63.
VanMarle, K. and Scholl, B. J. (2003). Attentive tracking of objects versus substances. Psychological Science, 14(5):498–504.
Vater, C., Gray, R., and Holcombe, A. O. (2021). A critical systematic review of the Neurotracker perceptual-cognitive training tool. Psychonomic Bulletin & Review, 28: 1458–1483.
Vater, C., Kredel, R., and Hossner, E.-J. (2017). Disentangling vision and attention in multiple-object tracking: How crowding and collisions affect gaze anchoring and dual-task performance. Journal of Vision, 17(5):1–13.
Vogel, E. K., Woodman, G. F., and Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology. Human Perception and Performance, 32(6):1436–1451.
Wang, L., Zhang, K., He, S., and Jiang, Y. (2010). Searching for life motion signals: Visual search asymmetry in local but not global biological-motion processing. Psychological Science, 21(8):1083–1089.
Wang, Y. and Vul, E. (2021). The role of kinematic properties in multiple object tracking. Journal of Vision, 21(3):1–15.
Wannig, A., Stanisor, L., and Roelfsema, P. R. (2011). Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Nature Neuroscience, 14(10):1243–1244.
Warren, P. A. and Rushton, S. K. (2007). Perception of object trajectory: Parsing retinal motion into self and object movement components. Journal of Vision, 7(11):2.
Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift für Psychologie, 61:161–165.
White, A. L. and Carrasco, M. (2011). Feature-based attention involuntarily and simultaneously improves visual performance across locations. Journal of Vision, 11(6):1–10.
White, A. L., Palmer, J., and Boynton, G. M. (2018). Evidence of serial processing in visual word recognition. Psychological Science, 29(7):1062–1071.
White, A. L., Palmer, J., Boynton, G. M., and Yeatman, J. D. (2019). Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proceedings of the National Academy of Sciences, 116(20):10087–10096.
Wilbiks, J. M. P. and Beatteay, A. (2020). Individual differences in multiple object tracking, attentional cueing, and age account for variability in the capacity of audiovisual integration. Attention, Perception, & Psychophysics, 82: 3521–3543.
Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4):1060–1092.
Wolfe, J. M. and Bennett, S. C. (1997). Preattentive object files: Shapeless bundles of basic features. Vision Research, 37(1):25–43.
Wolford, G. (1975). Perturbation model for letter identification. Psychological Review, 82(3):184.
Wu, C.-C. and Wolfe, J. M. (2018). Comparing eye movements during position tracking and identity tracking: No evidence for separate systems. Attention, Perception, & Psychophysics, 80(2):453–460.
Wuerger, S., Shapley, R., and Rubin, N. (1996). “On the visually perceived direction of motion” by Hans Wallach: 60 years later. Perception, 25:1317–1367.
Xu, Y. and Franconeri, S. L. (2015). Capacity for Visual Features in Mental Rotation. Psychological Science, 26(8):1241–1251.
Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24(3):295–340.
Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys, 38(4):13.
Zelinsky, G. J. and Neider, M. B. (2008). An eye movement analysis of multiple object tracking in a realistic environment. Visual Cognition, 16(5):553–566.
Zelinsky, G. J. and Todor, A. (2010). The role of “rescue saccades” in tracking objects through occlusions. Journal of Vision, 10(14):1–13.
Zhang, J. and Mueller, S. T. (2005). A note on ROC analysis and non-parametric estimate of sensitivity. Psychometrika, 70(1):203–212.
Zylberberg, A., Fernández Slezak, D., Roelfsema, P. R., Dehaene, S., and Sigman, M. (2010). The brain’s router: A cortical network model of serial processing in the primate brain. PLoS Computational Biology, 6(4):e1000765.