References
Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 1–17.
Anderson, B. A. (2016a). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369(1), 24–39.
Anderson, B. A. (2016b). Value-driven attentional capture in the auditory domain. Attention, Perception, & Psychophysics, 78(1), 242–250.
Anderson, B. A. & Halpern, M. (2017). On the value-dependence of value-driven attentional capture. Attention, Perception, & Psychophysics, 79(4), 1001–1011.
Anderson, B. A. & Kim, H. (2019). On the relationship between value-driven and stimulus-driven attentional capture. Attention, Perception, & Psychophysics, 81(3), 607–613. http://doi.org/10.3758/s13414-019-01670-2 Anderson, B. A., Kronemer, S. I., Rilee, J. J., Sacktor, N. & Marvel, C. L. (2016). Reward, attention, and HIV-related risk in HIV+ individuals. Neurobiology of Disease, 92, 157–165.
Anderson, B. A., Laurent, P. A. & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371.
Anderson, B. A., Laurent, P. A. & Yantis, S. (2014). Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 1587, 88–96.
Anderson, B. A. & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, & Psychophysics, 74(8), 1644–1653.
Ansorge, U., Kiss, M., Worschech, F. & Eimer, M. (2011). The initial stage of visual selection is controlled by top-down task set: New ERP evidence. Attention, Perception, & Psychophysics, 73, 113–122.
Asutay, E. & Västfjäll, D. (2016). Auditory attentional selection is biased by reward cues. Scientific Reports, 36989.
Awh, E., Belopolsky, A. & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443.
Bacon, W. F. & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496.
Baluch, F. & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210–224.
Barras, C. & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74–83.
Basso, M. A. & Wurtz, R. H. (1997). Modulation of neuronal activity by target uncertainty. Nature, 389(6646), 66–69.
Batterink, L. J., Paller, K. A. & Reber, P. J. (2019). Understanding the neural bases of implicit and statistical learning. Topics in Cognitive Science. http://doi.org/10.1111/tops.12420 Belopolsky, A. V., Schreij, D. & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception, & Psychophysics, 72(2), 326–341.
Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191(3), 391–431.
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369.
Berridge, K. C., Robinson, T. E. & Aldridge, J. W. (2009). Dissecting components of reward: “Liking,” “wanting,” and learning. Current Opinion in Pharmacology, 9(1), 65–73.
Bichot, N. P. & Schall, J. D. (2002). Priming in macaque frontal cortex during popout visual search: Feature-based facilitation and location-based inhibition of return. Journal of Neuroscience, 22(11), 4675–4685.
Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77–80.
Biederman, I., Mezzanotte, R. J. & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14(2), 143–177.
Bisley, J. W. & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1–21.
Born, S., Kerzel, D. & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 208(4), 621–631.
Bravo, M. J. & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & Psychophysics, 51, 465–472.
Bucker, B., Belopolsky, A. V. & Theeuwes, J. (2015). Distractors that signal reward attract the eyes. Visual Cognition, 23(1–2), 1–24.
Bucker, B., Silvis, J. D., Donk, M. & Theeuwes, J. (2015). Reward modulates oculomotor competition between differently valued stimuli. Vision Research, 108, 103–112.
Bucker, B. & Theeuwes, J. (2014). The effect of reward on orienting and reorienting in exogenous cuing. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 635–646.
Bucker, B. & Theeuwes, J. (2017). Pavlovian reward learning underlies value driven attentional capture. Attention, Perception, & Psychophysics, 79(2), 415–428.
Burra, N. & Kerzel, D. (2014). The distractor positivity (PD) signals lowering of attentional priority: Evidence from event‐related potentials and individual differences. Psychophysiology, 51(7), 685–696.
Buschman, T. J. & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862.
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.
Chao, H.-F. (2010). Top-down attentional control for distractor locations: The benefit of precuing distractor locations on target localization and discrimination. Journal of Experimental Psychology. Human Perception and Performance, 36, 303–316.
Chelazzi, L., Duncan, J., Miller, E. K. & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918–2940.
Chelazzi, L., Eštočinová, J., Calletti, R., Gerfo, E. L., Sani, I., Della Libera, C. & Santandrea, E. (2014). Altering spatial priority maps via reward-based learning. Journal of Neuroscience, 34(25), 8594–8604.
Chelazzi, L., Marini, F., Pascucci, D. & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how and where. Current Opinion in Psychology, 29, 135–147. http://doi.org/10.1016/j.copsyc.2019.02.004 Chelazzi, L., Perlato, A., Santandrea, E. & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–72.
Chun, M. M. & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.
Chun, M. M. & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360–365.
Chun, M. M. & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224.
Chun, M. M. & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844–847.
Connor, C. E., Egeth, H. E. & Yantis, S. (2004). Visual attention: Bottom-up versus top-down. Current Biology, 14(19), R850–R852.
Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.
Cosman, J. D., Lowe, K. A., Zinke, W., Woodman, G. F. & Schall, J. D. (2018). Prefrontal control of visual distraction. Current Biology, 28(3), 414–420.
Davoli, C. C., Suszko, J. W. & Abrams, R. A. (2007). New objects can capture attention without a unique luminance transient. Psychonomic Bulletin & Review, 14(2), 338–343.
Libera, C. & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17(3), 222–227.
Della Libera, C. & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784.
Della Libera, C., Perlato, A. & Chelazzi, L. (2011). Dissociable effects of reward on attentional learning: From passive associations to active monitoring. PloS One, 6(4), e19460.
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93(24), 13494–13499.
Desimone, R. & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.
Duncan, J. (1985). Two techniques for investigating perception without awareness. Perception & Psychophysics, 38(3), 296–298.
Dux, P. E. & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71(8), 1683–1700.
Egeth, H. (2018). Comment on Theeuwes’s characterization of visual selection. Journal of Cognition, 1(1).
Egeth, H. E. & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48(1), 269–297.
Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.
Eimer, M. & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423–1433.
Eriksen, B. A. & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.
Eriksen, C. W. & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Perception & Psychophysics, 12(2), 201–204.
Failing, M., Feldmann-Wüstefeld, T., Wang, B., Olivers, C. & Theeuwes, J. (2019a). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance, 45(10), 1291–1303. http://doi.org/10.1037/xhp0000660 Failing, M., Nissens, T., Pearson, D., Le Pelley, M. & Theeuwes, J. (2015). Oculomotor capture by stimuli that signal the availability of reward. Journal of Neurophysiology, 114(4), 2316–2327.
Failing, M. F. & Theeuwes, J. (2014). Exogenous visual orienting by reward. Journal of Vision, 14(5), 6.
Failing, M. & Theeuwes, J. (2016). Reward alters the perception of time. Cognition, 148, 19–26.
Failing, M. & Theeuwes, J. (2017). Don’t let it distract you: How information about the availability of reward affects attentional selection. Attention, Perception, & Psychophysics, 79(8), 2275–2298.
Failing, M. & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25(2), 514–538.
Failing, M. & Theeuwes, J. (2020). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 257, 86–95.
Failing, M., Wang, B. & Theeuwes, J. (2019b). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 1–10.
Fecteau, J. H. & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382–390.
Feldmann-Wüstefeld, T. & Schubö, A. (2016). Intertrial priming due to distractor repetition is eliminated in homogeneous contexts. Attention, Perception, & Psychophysics, 78 (7), 1935–1947.
Feldmann-Wüstefeld, T., Uengoer, M. & Schubö, A. (2015). You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention. Psychophysiology, 52, 1483–1497.
Fiser, J. & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499–504.
Fiser, J. & Aslin, R. N. (2002a). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 458–467.
Fiser, J. & Aslin, R. N. (2002b). Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences, 99(24), 15822–15826.
Fockert, J. D., Rees, G., Frith, C. & Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759.
Folk, C. L., Remington, R. W. & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1040.
Foster, J. J. & Awh, E. (2018). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 34–40.
Found, A. & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception & Psychophysics, 58(1), 88–101.
Foxe, J. J. & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. http://doi.org/10.3389/fpsyg.2011.00154 Franconeri, S. L., Hollingworth, A. & Simons, D. J. (2005). Do new objects capture attention? Psychological Science, 16(4), 275–281.
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480.
Gaffan, D. (1994). Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transection. Journal of Cognitive Neuroscience, 6(4), 305–320.
Gaspelin, N., Leonard, C. J. & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750.
Gaspelin, N. & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265–1280.
Gaspelin, N. & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92.
Gaspelin, N. & Luck, S. J. (2018c) “‘Top-down’ does not mean ‘voluntary.’” Journal of Cognition, 1(1), 25, 1–4.
Geng, J. J. & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520–525.
Geng, J. J. & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & psychophysics, 67(7), 1252–1268.
Godijn, R. & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1039–1054.
Goschy, H., Bakos, S., Müller, H. J. & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195.
Goujon, A., Didierjean, A. & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524–533.
Grubb, M. A. & Li, Y. (2018). Assessing the role of accuracy-based feedback in value-driven attentional capture. Attention, Perception, & Psychophysics, 1–7.
Hickey, C., Chelazzi, L. & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103.
Hickey, C., Chelazzi, L. & Theeuwes, J. (2014). Reward-priming of location in visual search. PloS one, 9(7), e103372.
Hickey, C., Di Lollo, V. & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775.
Hickey, C. & Los, S. A. (2015). Reward priming of temporal preparation. Visual Cognition, 23(1–2), 25–40.
Hickey, C. & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85(3), 512–518.
Hickey, C. & Peelen, M. V. (2017). Reward selectively modulates the lingering neural representation of recently attended objects in natural scenes. Journal of Neuroscience, 37(31), 7297–7304.
Hikosaka, O., Kim, H. F., Yasuda, M. & Yamamoto, S. (2014). Basal ganglia circuits for reward value-guided behavior. Annual Review of Neuroscience, 37, 289–309.
Hikosaka, O., Takikawa, Y. & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.
Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62(4), 800–817.
Hillyard, S. A., Vogel, E. K. & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1257–1270.
Holland, P. C. & Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9(2), 195–202.
Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.
Itthipuripat, S., Võ, V. A., Sprague, T. C. & Serences, J. (2019). Value-driven attentional capture enhances distractor representations in early visual cortex. BioRxiv, 567354.
Itti, L. & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 1489–1506.
Itti, L. & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.
Itti, L., Koch, C. & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, (11), 1254–1259.
Jensen, O., Gips, B., Bergmann, T. O. & Bonnefond, M. (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends in Neurosciences, 37(7), 357–369.
Jensen, O. & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.
Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102, 107–120.
Jiang, Y. V. & Chun, M. M. (2001). Selective attention modulates implicit learning. Quarterly Journal of Experimental Psychology: Section A, 54(4), 1105–1124.
Jiang, Y. V., Li, Z. S. & Remington, R. W. (2015). Modulation of spatial attention by goals, statistical learning, and monetary reward. Attention, Perception, & Psychophysics, 77(7), 2189–2206.
Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. Attention and Performance, 187–203.
Jonides, J. & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346–354.
Kahneman, D., Treisman, A. & Burkell, J. (1983). The cost of visual filtering. Journal of Experimental Psychology: Human Perception and Performance, 9(4), 510–522.
Katsuki, F. & Constantinidis, C. (2014). Bottom-up and top-down attention: Different processes and overlapping neural systems. Neuroscientist, 20(5), 509–521.
Kerzel, D. & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645–658.
Kim, M. S. & Cave, K. R. (1995). Spatial attention in visual search for features and feature conjunctions. Psychological Science, 6(6), 376–380.
Kim, H. F. & Hikosaka, O. (2013). Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 79(5), 1001–1010.
Kiss, M., Grubert, A., Petersen, A. & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24(3), 749–759.
Koch, C. & Ullman, S. (1985). Shifts in visual attention: Towards the underlying circuitry. Human Neurobiology, 4, 219–227.
Kristjánsson, Á. (2010). Priming in visual search: A spanner in the works for Theeuwes’s bottom-up attention sweeps? Acta Psychologica, 135(2), 114.
Kristjánsson, Á. & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72(1), 5–18.
Kumada, T. (1999). Limitations in attending to a feature value for overriding stimulus-driven interference. Perception & Psychophysics, 61, 61–79.
Lamme, V. A. & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579.
Lamy, D. F. & Kristjánsson, Á. (2013). Is goal-directed attentional guidance just intertrial priming? A review. Journal of Vision, 13(3), 14. http://doi.org/10.1167/13.3.14 Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N. & Wills, A. J. (2016). Attention and associative learning in humans: An integrative review. Psychological Bulletin, 142(10), 1111–1140.
Le Pelley, M. E., Pearson, D., Griffiths, O. & Beesley, T. (2015). When goals conflict with values: Counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experimental Psychology: General, 144(1), 158–171.
Le Pelley, M. E., Seabrooke, T., Kennedy, B. L., Pearson, D. & Most, S. B. (2017). Miss it and miss out: Counterproductive nonspatial attentional capture by task-irrelevant, value-related stimuli. Attention, Perception, & Psychophysics, 1–15.
Le Pelley, M. E., Watson, P., Pearson, D., Abeywickrama, R. S. & Most, S. B. (2018). Winners and losers: Reward and punishment produce biases in temporal selection. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(5), 822–833. http://doi.org/10.1037/xlm0000612 Leber, A. B. & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13(1), 132–138.
Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6(1), 9–16.
Luck, S. J. & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308.
Ludwig, C. J. & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 902–912. http://doi.org/10.1037/0096-1523.28.4.902 MacLean, M. H. & Giesbrecht, B. (2015). Neural evidence reveals the rapid effects of reward history on selective attention. Brain Research, 1606, 86–94.
Maljkovic, V. & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672.
Maljkovic, V. & Nakayama, K. (2000). Priming of popout: III. A short-term implicit memory system beneficial for rapid target selection. Visual Cognition, 7(5), 571–595.
Martens, S. & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience & Biobehavioral Reviews, 34(6), 947–957.
McPeek, R. M. & Keller, E. L. (2002). Saccade target selection in the superior colliculus during a visual search task. Journal of Neurophysiology, 88(4), 2019–2034.
McPeek, R. M., Maljkovic, V. & Nakayama, K. (1999). Saccades require focal attention and are facilitated by a short-term memory system. Vision Research, 39(8), 1555–1566.
Mine, C. & Saiki, J. (2015). Task-irrelevant stimulus-reward association induces value-driven attentional capture. Attention, Perception, & Psychophysics, 77(6), 1896–1907.
Moher, J. & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74(8), 1590–1605.
Moran, J. &. Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784.
Müller, H. J., Heller, D. & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57(1), 1–17.
Müller, H. J. & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315.
Munneke, J., Van der Stigchel, S. & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129(1), 101–107.
Musz, E., Weber, M. J. & Thompson-Schill, S. L. (2015). Visual statistical learning is not reliably modulated by selective attention to isolated events. Attention, Perception, & Psychophysics, 77(1), 78–96.
Neumann, O. (1984). Automatic processing: A review of recent findings and a plea for an old theory. In Cognition and motor processes (pp. 255–293). Berlin: Springer.
Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M. & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36(6), 1797–1807.
Noonan, M. P., Crittenden, B. M., Jensen, O. & Stokes, M. G. (2018). Selective inhibition of distracting input. Behavioural Brain Research, 355, 36–47.
Olivers, C. N. & Hickey, C. (2010). Priming resolves perceptual ambiguity in visual search: Evidence from behaviour and electrophysiology. Vision Research, 50(14), 1362–1371.
Olivers, C. N. & Humphreys, G. W. (2003). Visual marking inhibits singleton capture. Cognitive Psychology, 47(1), 1–42.
Pearson, D., Donkin, C., Tran, S. C., Most, S. B. & Le Pelley, M. E. (2015). Cognitive control and counterproductive oculomotor capture by reward-related stimuli. Visual Cognition, 23(1–2), 41–66.
Pearson, D., Osborn, R., Whitford, T. J., Failing, M., Theeuwes, J. & Le Pelley, M. E. (2016). Value-modulated oculomotor capture by task-irrelevant stimuli is feature-specific. Attention, Perception & Psychophysics, 78(7), 2226–2240.
Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R. & Gottlieb, J. (2009). Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience, 29(36), 11182–11191.
Peelen, M. V., Heslenfeld, D. J. & Theeuwes, J. (2004). Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neuroimage, 22(2), 822–830.
Pinto, Y., Olivers, C. L. & Theeuwes, J. (2005). Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Perception & Psychophysics, 67(8), 1354–1361.
Pollmann, S., Eštočinová, J., Sommer, S., Chelazzi, L. & Zinke, W. (2016). Neural structures involved in visual search guidance by reward-enhanced contextual cueing of the target location. Neuroimage, 124, 887–897.
Popov, T., Kastner, S. & Jensen, O. (2017). FEF-controlled alpha delay activity precedes stimulus-induced gamma-band activity in visual cortex. Journal of Neuroscience, 37(15), 4117–4127.
Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum.
Posner, M. I. (1980). Orienting of Attention. Quarterly Journal of Experimental Psychology, 32, 3–25.
Posner, M. I. & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531–556.
Posner, M. I., Nissen, M. J. & Ogden, W. C. (1978). Attended and unattended processing modes: The role of set for spatial location. Modes of Perceiving and Processing Information, 137(158), 2.
Posner, M. I., Snyder, C. R. & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160.
Postle, B. R. & D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cognitive Brain Research, 8(2), 107–115.
Postle, B. R. & D’Esposito, M. (2003). Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cognitive, Affective, & Behavioral Neuroscience, 3(2), 133–144.
Qi, S., Zeng, Q., Ding, C. & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search. Brain Research, 1532, 32–43.
Rajsic, J., Perera, H. & Pratt, J. (2016). Learned value and object perception: Accelerated perception or biased decisions? Attention, Perception, & Psychophysics, 1–11.
Raymond, J. E. & O’Brien, J. L. (2009). Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychological Science, 20(8), 981–988.
Raymond, J. E., Shapiro, K. L. & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860.
Reynolds, J. H., Chelazzi, L. & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19(5), 1736–1753.
Reynolds, J. H. & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 168–185.
Ristic, J. & Kingstone, A. (2006). Attention to arrows: Pointing to a new direction. Quarterly Journal of Experimental Psychology, 59(11), 1921–1930.
Roper, Z. J., Vecera, S. P. & Vaidya, J. G. (2014). Value-driven attentional capture in adolescence. Psychological Science, 25(11), 1987–1993.
Ruff, C. C. & Driver, J. (2006). Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience, 18(4), 522–538.
Rungratsameetaweemana, N., Squire, L. R. & Serences, J. T. (2019). Preserved capacity for learning statistical regularities and directing selective attention after hippocampal lesions. Proceedings of the National Academy of Sciences, 116(39), 19705–19710.
Saffran, J. R., Aslin, R. N. & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.
Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A. & Barrueco, S. (1997). Incidental language learning: Listening (and learning) out of the corner of your ear. Psychological Science, 8(2), 101–105.
Sawaki, R. & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470.
Schacter, D. L. & Buckner, R. L. (1998). Priming and the brain. Neuron, 20(2), 185–195.
Schall, J. D. & Hanes, D. P. (1993). Neural basis of saccade target selection in frontal eye field during visual search. Nature, 366(6454), 467–469.
Schapiro, A. C., Turk‐Browne, N. B., Norman, K. A. & Botvinick, M. M. (2016). Statistical learning of temporal community structure in the hippocampus. Hippocampus, 26(1), 3–8.
Schoeberl, T., Goller, F. & Ansorge, U. (2019). Testing a priming account of the contingent capture effect. Attention, Perception, & Psychophysics, 81, 1262–1282.
Schreij, D., Owens, C. & Theeuwes, J. (2008). Abrupt onsets capture attention independent of top-down control settings. Perception & Psychophysics, 70(2), 208–218.
Schreij, D., Theeuwes, J. & Olivers, C. N. (2010). Abrupt onsets capture attention independent of top-down control settings II: Additivity is no evidence for filtering. Attention, Perception, & Psychophysics, 72(3), 672–682.
Schultz, W. (2016). Dopamine reward prediction-error signalling: A two-component response. Nature Reviews Neuroscience, 17(3), 183–195.
Serences, J. T. (2008). Value-based modulations in human visual cortex. Neuron, 60(6), 1169–1181.
Serences, J. T. & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104(1), 76–87.
Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E. & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological Science, 16(2), 114–122.
Serences, J. T., Yantis, S., Culberson, A. & Awh, E. (2004). Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. Journal of Neurophysiology, 92(6), 3538–3545.
Shapiro, K. L., Raymond, J. E. & Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Sciences, 1(8),291–296.
Shaw, M. L. & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology. Human Perception and Performance, 3, 201–211.
Sheliga, B. M., Riggio, L. & Rizzolatti, G. (1994). Orienting of attention and eye movements. Experimental Brain Research, 98(3), 507–522.
Shiffrin, R. M. & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.
Sisk, C. A., Remington, R. W. & Jiang, Y. V. (2018). The risks of downplaying top-down control. Journal of Cognition, 1(1).
Slagter, H. A., Prinssen, S., Reteig, L. C. & Mazaheri, A. (2016). Facilitation and inhibition in attention: functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125, 25–35.
Spaak, E. & de Lange, F. (2020). Hippocampal and prefrontal theta-band mechanisms underpin implicit spatial context learning. Journal of Neuroscience, 40(1), 191–202.
Squire, L. R. & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93(24), 13515–13522.
Staresina, B. P. & Davachi, L. (2009). Mind the gap: Binding experiences across space and time in the human hippocampus. Neuron, 63(2), 267–276.
Sussman, E. D., Bishop, H., Madnick, B. & Walter, R. (1985). Driver inattention and highway safety. Transportation Research Record, 1047, 40–48.
Taatgen, N. A., Juvina, I., Schipper, M., Borst, J. P. & Martens, S. (2009). Too much control can hurt: A threaded cognition model of the attentional blink. Cognitive Psychology, 59(1), 1–29.
Theeuwes, J. (1989). Effects of location and form cuing on the allocation of attention in the visual field. Acta Psychologica, 72(2), 177–192.
Theeuwes, J. (1990). Perceptual selectivity is task dependent: Evidence from selective search. Acta Psychologica, 74(1), 81−99.
Theeuwes, J. (1991a). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184–193.
Theeuwes, J. (1991b). Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Attention, Perception, & Psychophysics, 49(1), 83–90.
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.
Theeuwes, J. (1994a). Endogenous and exogenous control of visual selection. Perception, 23(4), 429–440.
Theeuwes, J. (1994b). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799–806. http://doi.org/10.1037/0096-1523.20.4.799 Theeuwes, J. (1995). Abrupt luminance change pops out; abrupt color change does not. Perception & Psychophysics, 57(5), 637–644.
Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65–70.
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99.
Theeuwes, J. (2013). Feature-based attention: It is all bottom-up priming. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1628), 20130055.
Theeuwes, J. (2018). Visual selection: Usually fast and automatic; seldom slow and volitional. Journal of Cognition, 1(1), 1–15. http://doi.org/10.5334/joc.13 Theeuwes, J. (2019). Goal-driven, stimulus-driven and history-driven selection. Current Opinion in Psychology, 29, 97–101.
Theeuwes, J., Atchley, P. & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. Control of Cognitive Processes: Attention and Performance XVIII, 105–124.
Theeuwes, J. & Belopolsky, A. V. (2012). Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Research, 74, 80–85.
Theeuwes, J. & Burger, R. (1998). Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1342–1353. http://doi.org/10.1037/0096-1523.24.5.1342 Theeuwes, J. & Godthelp, H. (1995). Self-explaining roads. Safety Science, 19, 217–225.
Theeuwes, J., Kramer, A. F., Hahn, S. & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9(5), 379–385.
Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E. & Zelinsky, G. J. (1999). Influence of attentional capture on oculomotor control. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1595–1608. http://doi.org/10.1037/0096-1523.25.6.1595 Theeuwes, J., Olivers, C. N. & Chizk, C. L. (2005). Remembering a location makes the eyes curve away. Psychological Science, 16(3), 196–199.
Theeuwes, J., Reimann, B. & Mortier, K. (2006). Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 14(4–8), 466–489.
Theeuwes, J. & Van der Burg, E. (2007). The role of spatial and nonspatial information in visual selection. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1335–1351. http://doi.org/10.1037/0096-1523.33.6.1335 Theeuwes, J. & Van der Burg, E. (2011). On the limits of top-down control of visual selection. Attention, Perception, & Psychophysics, 73(7), 2092–2103.
Theeuwes, J., Van der Horst, A. R. A. & Kuiken, M (2012). Designing safe road systems: A human factors perspective. Burlington: Ashgate.
Thomas, N. W. & Paré, M. (2007). Temporal processing of saccade targets in parietal cortex area LIP during visual search. Journal of Neurophysiology, 97(1), 942–947.
Thompson, K. G. & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 249–262.
Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Journal of Neurophysiology, 76, 4040–4055.
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan.
Tipper, S. P., Howard, L. A. & Jackson, S. R. (1997). Selective reaching to grasp: Evidence for distractor interference effects. Visual Cognition, 4(1), 1–38.
Todd, J. T. & Van Gelder, P. (1979). Implications of a transient-sustained dichotomy for the measurement of human performance. Journal of Experimental Psychology: Human Perception and Performance, 5(4), 625–638. http://doi.org/10.1037/0096-1523.5.4.625 Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology Section A, 40(2), 201–237.
Tseng, Y. C. & Lleras, A. (2013). Rewarding context accelerates implicit guidance in visual search. Attention, Perception, & Psychophysics, 75(2), 287–298.
Tulving, E. & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301–306.
Turk-Browne, N. B. (2012). Statistical learning and its consequences. Nebraska Symposium on Motivation, 59, 117–146.
Turk-Browne, N. B., Jungé, J. A. & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134(4), 552–564. http://doi.org/10.1037/0096-3445.134.4.552 Van der Stigchel, S., Belopolsky, A. V., Peters, J.C., Wijnen, J. G., Meeter, M. & Theeuwes, J. (2009a). The limits of top-down control of visual attention. Acta Psychologica, 132, 201–212.
Van der Stigchel, S., Mulckhuyse, M. & Theeuwes, J. (2009b). Eye cannot see it: The interference of subliminal distractors on saccade metrics. Vision Research, 49(16), 2104–2109.
Van der Stigchel, S. & Theeuwes, J (2006). Faces capture attention: Evidence from inhibition of return. Visual Cognition, 13(6), 657–665.
Van Moorselaar, D. & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953–6967.
Vecera, S. P. & Rizzo, M. (2004). What are you looking at? Impaired “social attention” following frontal-lobe damage. Neuropsychologia, 42, 1657–1665.
Võ, M. L. H. & Wolfe, J. M. (2013). Differential electrophysiological signatures of semantic and syntactic scene processing. Psychological Science, 24(9), 1816–1823.
Vuilleumier, P. (2015). Affective and motivational control of vision. Current Opinion in Neurology, 28(1), 29–35.
Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neuroscience, 21, 317–323.
Wang, B., Samara, I. & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 1–9.
Wang, B. & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 1–11.
Wang, B. & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13–17. http://doi.org/10.1037/xhp0000472 Wang, B. & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7), 1763–1774.
Wang, B. & Theeuwes, J. (in press). Salience determines attentional orienting in visual selection. Journal of Experimental Psychology: Human Perception and Performance.
Wang, B., Van Driel, J., Ort, E. & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 1–14.
White, B. J., Berg, D. J., Kan, J. Y., Marino, R. A., Itti, L. & Munoz, D. P. (2017). Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nature Communications, 8, 14263.
Wolfe, J. (2018). Everything is foreseen, yet free will is given (Mishna Avot 3: 15). Journal of Cognition, 1(1).
Wolfe, J. M., Butcher, S. J., Lee, C. & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 483.
Won, B. Y., Kosoyan, M. & Geng, J. J. (2019). Evidence for second-order singleton suppression based on probabilistic expectations. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 125–128. http://doi.org/10.1037/xhp0000594 Won, B. Y. & Leber, A. B. (2016). How do magnitude and frequency of monetary reward guide visual search? Attention, Perception, & Psychophysics, 1–11.
Wyble, B., Bowman, H. & Nieuwenstein, M. (2009). The attentional blink provides episodic distinctiveness: Sparing at a cost. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 787–807. http://doi.org/10.1037/a0013902 Yamamoto, S., Monosov, I. E., Yasuda, M. & Hikosaka, O. (2012). What and where information in the caudate tail guides saccades to visual objects. Journal of Neuroscience, 32(32), 11005–11016.
Yantis, S. & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 661–676. http://doi.org/10.1037/0096-1523.25.3.661 Yantis, S. & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95–107. http://doi.org/10.1037/0096-1523.20.1.95 Yantis, S. & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621. http://doi.org/10.1037/0096-1523.10.5.601 Yasuda, M. & Hikosaka, O. (2015). Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. Journal of Neurophysiology, 113(6), 1681–1696.
Yeterian, E. H. & Van Hoesen, G. W. (1978). Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections. Brain Research, 139(1), 43–63.
Zelinsky, G. J. & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences, 1339(1), 154–164.
Zhang, X., Zhaoping, L., Zhou, T. & Fang, F. (2012). Neural activities in V1 create a bottom-up saliency map. Neuron, 73(1), 183–192.
Zhao, J., Al-Aidroos, N. & Turk-Browne, N. B. (2013). Attention is spontaneously biased toward regularities. Psychological Science, 24(5), 667–677.
Zhaoping, L. (2008). Attention capture by eye of origin singletons even without awareness: A hallmark of a bottom-up saliency map in the primary visual cortex. Journal of Vision, 8(5), 1.1–18.