Skip to main content
Auxiliary Polynomials in Number Theory
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This (lowercase (translateProductType product.productType)) has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Amoroso, Francesco and Masser, David 2016. Lower bounds for the height in Galois extensions. Bulletin of the London Mathematical Society, Vol. 48, Issue. 6, p. 1008.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Auxiliary Polynomials in Number Theory
    • Online ISBN: 9781107448018
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
  • Buy the print book

Book description

This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the author places the method in a broader context by exploring its application in other areas, such as exponential sums and counting problems in both finite fields and the field of rationals. Throughout the book, the method is explained in a 'molecular' fashion, where key ideas are introduced independently. Each application is the most elementary significant example of its kind and appears with detailed references to subsequent developments, making it accessible to advanced undergraduates as well as postgraduate students in number theory or related areas. It provides over 700 exercises both guiding and challenging, while the broad array of applications should interest professionals in fields from number theory to algebraic geometry.


'Several features of this book are original. First of all: the topic … Next, thanks to the unique style of the author, this book offers a pleasant reading; a number of nice jokes enable the reader to have a good time while learning high level serious mathematic … This book includes a large number of statements, proofs, ideas, problem which will be of great value for the specialists; but it should interest also any mathematician, including students, who wish to expand their knowledge and see a superb example of a topic having an surprising number of different applications in several directions.'

Source: Bulletin of the European Mathematical Society

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
Adolphson, A.C., Conrey, J.B., Ghosh, A., Yager, R.I. (eds.) (1987). Analytic Number Theory and Diophantine Problems (Stillwater 1984), Progress in Math. 70, Birkhäuser.
Amoroso, F., David, S. (1999). Le probléme de Lehmer en dimension supérieure, J. reine angew. Math. 513, 145–179.
Amoroso, F., Dvornicich, R. (2000). A lower bound for the height in abelian extensions, J. Number Theory 80, 260–272.
Amoroso, F., Mignotte, M. (1996). On the distribution of the roots of polynomials, Ann. Inst. Fourier, Grenoble 46, 1275–1291.
Amoroso, F., Zannier, U. (2000). A relative Dobrowolski lower bound over abelian extensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 711–727.
Amoroso, F., Zannier, U. (eds.) (2003). Diophantine Approximation (Cetraro Italy 2000), Lecture Notes in Math. 1819, Springer.
André, Y. (1989). G-Functions and Geometry, Aspects of Math. E13, Vieweg.
Baker, H.F. (1907). An Introduction to the Theory of Multiply Periodic Functions, Cambridge University Press.
Baker, A. (1964). Rational approximations to and other algebraic numbers, Quarterly J. Math. 15, 375–383.
Baker, A. (1966). Linear forms in the logarithms of algebraic numbers I, Mathematika 13, 204–216.
Baker, A. (1967a). Linear forms in the logarithms of algebraic numbers II, Mathematika 14, 102–107.
Baker, A. (1967b). Linear forms in the logarithms of algebraic numbers III, Mathematika 14, 220–228.
Baker, A. (1968a). Linear forms in the logarithms of algebraic numbers IV, Mathematika 15, 204–216.
Baker, A. (1968b). Contributions to the theory of diophantine equations. II. The diophantine equation, Phil. Trans. Roy. Soc. London 263A, 193–208.
Baker, A. (ed.) (1988). New Advances in Transcendence Theory, Cambridge University Press.
Baker, A. (1990). Transcendental Number Theory, Cambridge University Press.
Baker, A. (2012). A Comprehensive Course in Number Theory, Cambridge University Press.
Baker, A., Masser, D. (eds.) (1977). Transcendence Theory: Advances and Applications, Academic Press.
Baker, A., Wüstholz, G. (1993). Logarithmic forms and group varieties, J. reine angew. Math. 442, 19–62.
Baker, A., Wüstholz, G. (2007). Logarithmic Forms and Diophantine Geometry, Cambridge University Press.
Barré, K., Diaz, G., Gramain, F., Philibert, G. (1996). Une preuve de la conjecture de Mahler– Manin, Inventiones Math. 124, 1–9.
Bays, M., Habegger, P. (2015). A note on divisible points on curves, Trans. Amer. Math. Soc. 367, 1313–1328.
Bertrand, D., Masser, D. (1980). Linear forms in elliptic logarithms, Inventiones Math. 58, 283–288.
Bertrand, D., Waldschmidt, M. (eds.) (1983). Approximations Diophantiennes et Nombres Transcendants (Luminy 1982), Progress in Math. 31, Birkhäuser.
Beukers, F. (1979). A note on the irrationality of ξ(2) and ξ(3), Bull. London Math. Soc. 11, 268–272.
Beukers, F. (1997). On a sequence of polynomials, J. Pure Appl. Algebra 117/118, 97–103.
Bilu, Yu.F. (1997) Limit distribution of small points on algebraic tori, Duke Math. J. 89, 465–476.
Bilu, Yu.F., Masser, D. (2006). A quick proof of Sprindzhuk's decomposition theorem. In More Sets, Graphs and Numbers – A Salute to Vera Sòs and András Hajnal (eds. E., Györi, G., Katona, L., Lovász), Bolyai Society Mathematical Studies 15, Springer (pp. 25–32).
Bilu, Yu.F., Bugeaud, Y., Mignotte, M. (2014). The Problem of Catalan, Springer.
Bilu, Yu.F., Masser, D., Zannier, U. (2013). An effective “Theorem of André” for CM-points on a plane curve, Math. Proc. Cambridge Phil. Soc. 154, 145–152.
Boas, R.P. (1954). Entire Functions, Academic Press.
Bombieri, E. (1970). Algebraic values of meromorphic maps, Inventiones Math. 10, 267–287; 11, 163–166.
Bombieri, E. (1982). On the Thue–Siegel–Dyson theorem, Acta Math. 148, 255–296.
Bombieri, E. (1983). On Weil's “Théorème de décomposition”, Amer. J. Math. 105, 295–308.
Bombieri, E., Gubler, W. (2006). Heights in Diophantine Geometry, Cambridge University Press.
Bombieri, E., Pila, J. (1989). The number of integral points on arcs and ovals, Duke Math. J. 59, 337–357.
Bombieri, E., Vaaler, J.D. (1983). On Siegel's Lemma, Inventiones Math. 73, 11–32.
Bombieri, E., Zannier, U. (1995). Algebraic points on subvarieties of Gn m, Int. Math. Res. Notices 7, 333–347.
Bombieri, E., Masser, D., Zannier, U. (1999). Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Research Notices 20, 1119–1140.
Boyd, D.W. (1992). Two sharp inequalities for the norm of a factor of a polynomial, Mathematika 39, 341–349.
Brenner, J.L., Foster, L.L. (1982). Exponential diophantine equations, Pacific. J. Math. 101, 263–301.
Brownawell, W.D. (1974). The algebraic independence of certain numbers related by the exponential function, J. Number Theory 6, 22–31.
Brownawell, W.D. (1983). Zero estimates for solutions of differential equations. In Bertrand and Waldschmidt (1983) (pp. 67–94).
Brownawell, W.D., Masser, D. (1980) Multiplicity estimates for analytic functions I, J. reine angew. Math. 314, 200–216.
Buck, R.C. (1948). Integral valued entire functions, Duke Math. J. 15, 879–891.
Burger, E.B., Tubbs, R. (2004). Making Transcendence Transparent, Springer.
Carlitz, L. (1935). On certain functions connected with polynomials in a Galois field, Duke Math. J. 1, 137–168.
Cassels, J.W.S. (1965). An Introduction to Diophantine Approximation, Tracts in Mathematics and Mathematical Physics 45, Cambridge University Press.
Cassels, J.W.S. (1991). Lectures on Elliptic Curves, LMS Student Texts 24, Cambridge University Press.
Chowla, S., Selberg, A. (1967). On Epstein's zeta function, J. reine angew. Math. 227, 86–110.
Chudnovsky, G.V. (1984). Contributions to the Theory of Transcendental Numbers, Math. Surveys and Monographs 19, Amer. Math. Soc.
Cohen, P.B. (1984). On the coefficients of the transformation polynomials for the elliptic modular function, Math. Proc. Camb. Phil. Soc. 95, 389–402.
Cohen, P.B., Zannier, U. (2000) Multiplicative dependence and bounded height, an example. In Proc. Algebraic Number Theory and Diophantine Analysis Conference (Graz 1998), Walter de Gruyter (pp. 93–101).
Conway, J.H., Guy, R.K. (1996). The Book of Numbers, Springer.
Corvaja, P., Zannier, U. (2002). Some new applications of the subspace theorem, Compositio Math. 131, 319–340.
Corvaja, P., Zannier, U. (2013). Greatest common divisors of u − 1, v − 1 in positive characteristic and rational points on curves over finite fields, J. Eur. Math. Soc. 15, 1927–1942
David, S., Philippon, P. (1999). Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 489–543.
Dixon, A.L. (1908). The eliminant of three quantics in two independent variables, Proc. London Math. Soc. 6, 468–478.
Dobrolowski, E. (1979). On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34, 391–401.
Duverney, D. (1997). Sur les propriétés arithmétiques de la fonction de Tschakaloff, Periodica Math. Hungarica 35, 149–157.
Dyson, F.J. (1947). The approximation to algebraic numbers by rationals, Acta Math. 79, 225–240.
Eagle, A. (1958). The Elliptic Functions as They Should Be, Galloway and Porter.
Eichler, M. (1966). Introduction to the Theory of Algebraic Numbers and Functions, Academic Press.
Erdʺos, P., Turán, P. (1950). On the distribution of roots of polynomials, Annals of Math. 51, 105–119.
Esnault, H., Viehweg, E. (1984). Dyson's Lemma for polynomials in several variables (and the theorem of Roth), Inventiones Math. 78, 445–490.
Evertse, J.H., Silverman, J.H. (1986). Uniform bounds for the number of solutions to, Math. Proc. Cambridge Phil. Soc. 100, 237–248.
Favre, C., Rivera-Letelier, J. (2006). Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Annalen 335, 311–361.
Feldman, N.I. (1951). Approximation of certain transcendental numbers. II: The approximation of certain numbers connected with the Weierstrass -function, Izv. Akad. Nauk. SSSR 15, 153–176 (Russian); English transl. Amer. Math. Soc. Trans. 59 (1966), 246–270.
Feldman, N.I. (1971). An effective refinement of the exponent in Liouville's theorem, Izv. Akad. Nauk. SSSR 35, 973–990 (Russian); English transl. Math. USSR Izv. 5, 985–1002.
Feldman, N.I., Nesterenko, Yu.V. (1997). Number Theory IV, Transcendental Numbers, Encyclopaedia of Math. Sci. 44 (eds. A.N., Parshin, I.R., Shafarevich), Springer.
Galochkin, A.I. (1974). Lower bounds of polynomials in the values of a certain class of analytic functions, Mat. Sbornik 95, 396–417 (Russian); English transl. Math. USSR Sb. 24, 385–407.
Galochkin, A.I. (1980). Transcendence measure of values of functions satisfying certain functional equations, Mat. Zametki 27, 175–183 (Russian); English transl. Math. notes Acad. Sci. USSR 27, 83–88.
Garcia, A., Voloch, J.F. (1988). Fermat curves over finite fields, J. Number Theory 30, 345–356.
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V. (1994). Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser.
Gelfond, A.O. (1934). Sur quelques résultats nouveaux dans la théorie des nombres transcendants, Comptes Rendus Acad. Sci. Paris, 199, 259.
Gelfond, A.O. (1960). Transcendental and Algebraic Numbers, Dover.
Ghosh, A., Ward, K. (2015). The number of roots of polynomials in a prime field, Int. Math. Res. Notices 4, 898–926.
Goss, D. (1996). Basic Structures of Function Field Arithmetic, Ergebnisse Math. 35, Springer.
Gramain, F. (1978). Fonctions entiéres arithmétiques. In Séminaire P. Lelong–H. Skoda (Analyse) 1976/77, Lecture Notes in Math. 694, Springer (pp. 96–125).
Gramain, F. (1981). Sur le théorème de Fukasawa–Gelfond, Inventiones Math. 63, 495–506.
Gramain, F., Mignotte, M., Waldschmidt, M. (1986). Valeurs algébriques de fonctions analytiques, Acta Arith. 47, 97–121.
Grant, D. (1990). Formal groups in genus two, J. reine angew. Math. 411, 96–121.
Greenhill, A.G. (1892). The Applications of Elliptic Functions, Macmillan.
Grytczuk, A., Schinzel, A. (1991). On Runge's theorem about diophantine equations. In Coll. Math. Soc. János Bolyai 60 (Sets, Graphs and Numbers), North-Holland (pp. 329–356).
Habegger, P. (2005). The equation in multiplicatively independent unknowns, Acta Arith. 119, 349–372.
Habegger, P. (2007). Heights and Multiplicative Relations on Algebraic Varieties, Doctoral Thesis, Basle.
Hall, R.R. (1971). On pseudo-polynomials, Mathematika 18, 71–77.
Halphen, G.H. (1886). Traité des Fonctions Elliptiques et de leurs Applications, I. Gauthier-Villars.
Hančl, J., Tijdeman, R. (2004). On the irrationality of Cantor series, J. reine angew. Math. 571, 145–158.
Heath-Brown, D.R. (1996). An estimate for Heilbronn's exponential sum. In Analytic Number Theory (Proceedings of a Conference in Honor of Heini Halberstam Volume 2), Progr. Math. 139, Birkhäuser (eds. B.C., Berndt, H.G., Diamond, A.J., Hildebrand) (pp. 451–463).
Heath-Brown, D.R., Konyagin, S. (2000). New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum, Quart. J. Math. 51, 221–235.
Hensel, K. (1905). Über die arithmetischen Eigenschaften der algebraischen und transzendenten Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung 14, 545–558.
Hilliker, D.L., Straus, E.G. (1983). Determination of bounds for the solutions to those binary diophantine equations that satisfy the hypotheses of Runge's theorem, Trans. Amer. Math. Soc. 280, 637–657.
Hindry, M., Silverman, J.H. (2000). Diophantine Geometry, Graduate Texts in Math. 201, Springer.
Jones, G.O., Wilkie, A.J. (eds.) (2015). O-minimality and Diophantine Geometry, LMS Lecture Note Series 421, Cambridge University Press.
Klein, F. (1956). Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover.
Kmošek, M. (1979). Continued Fraction Expansion of some Irrational Numbers, Master's thesis, Uniwersytet Warszawski (in Polish).
Kowalski, E. (2010). Lecture notes and related documents, available online at
Kronecker, L. (1857). Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. reine angew. Math. 53, 173–175.
Kühne, L. (2013). An effective result of André–Oort type II, Acta Arith. 161, 1–19.
Lang, S. (1996a). Introduction to Transcendental Numbers, Addison-Wesley.
Lang, S. (1996b). Introduction to Diophantine Approximations, Addison-Wesley.
Lang, S. (1973). Elliptic Functions, Addison-Wesley.
Lang, S. (1978). Elliptic Curves, Diophantine Analysis, Grundlehren der Math. Wiss. 231, Springer.
Lang, S. (1983). Fundamentals of Diophantine Geometry, Springer.
Lang, S. (1993). Algebra, Addison-Wesley.
Laurent, M. (1983).Minoration de la hauteur de Néron–Tate. In Séminaire de théorie des nombres, Paris 1981/1982, Progr. Math 38, Birkhäuser (ed. M.-J., Bertin) (pp. 137–151).
Lehmer, D.H. (1933). Factorization of certain cyclotomic functions, Annals of Math. 34, 461–479.
Leitner, D.J. (2011). Two exponential diophantine equations, J. Théorie des Nombres Bordeaux 23, 479–487.
Loher, T., Masser, D. (2004). Uniformly counting points of bounded height, Acta Arithmetica 111, 277–297.
Loxton, J.H., van der Poorten, A.J. (1978). Algebraic independence properties of the Fredholm series, J. Australian Math. Soc. A26, 31–45.
Macaulay, F.S. (1916). The Algebraic Theory of Modular Systems, Tracts in Mathematics and Mathematical Physics 19, Cambridge University Press.
Mahler, K. (1953). On the approximation of π , Koninkl. Nederl. Akad. Wet. A56, 30–42 or Indagationes Math. 15, 30–42.
Mahler, K. (1964). Inequalities for ideal bases in algebraic number fields, J. Australian Math. Soc. 4, 425–448.
Mahler, K. (1968). Applications of a theorem by A.B., Shidlovsky, Phil. Trans. Roy. Soc. London A305, 149–173.
Mahler, K. (1975). On the transcendency of the solutions of a special class of functional equations, Bull. Australian Math. Soc. 13, 389–410.
Mahler, K. (1976). Lectures on Transcendental Numbers, Lecture Notes in Math. 546, Springer.
Masser, D. (1975). Elliptic Functions and Transcendence, Lecture Notes in Math. 437, Springer.
Mahler, K. (1977). Division fields of elliptic functions, Bull. London Math. Soc. 9, 49–53.
Mahler, K. (1980a). Sur les fonctions entières à valeurs entières, Comptes Rendus Acad. Sci. Paris 291, 1–4.
Mahler, K. (1980b). Problem 6479, Amer. Math. Monthly 93, 486–488.
Mahler, K. (1981). A note on Baker's Theorem. In Recent Progress in Analytic Number Theory (eds. H., Halberstam and C., Hooley), Academic Press (pp. 153–158).
Mahler, K. (1983). On certain functional equations in several variables. In Bertrand and Waldschmidt (1983) (pp. 173–190).
Mahler, K. (2003). Sharp estimates for Weierstrass elliptic functions, J. d'Analyse Math. 90, 257–302.
Mahler, K. (2011). Rational values of the Riemann zeta function, J. Number Th. 131, 2037–2046.
Masser, D., Vaaler, J.D. (2008). Counting algebraic numbers with large height I. In Diophantine Approximation – Festschrift for Wolfgang Schmidt (eds. H.-P., Schlickewei, K., Schmidt, R.F., Tichy), Developments in Mathematics 16, Springer (pp. 237–243).
Masser, D., Wolbert, J. (1993). On products of polynomials, Proc. Amer. Math. Soc. 117, 593–599.
Masser, D., Wüstholz, G. (1986). Algebraic independence of values of elliptic functions, Math. Annalen 276, 1–17.
Masser, D., Wüstholz, G. (1990). Estimating isogenies on elliptic curves, Inventiones Math. 100, 1–24.
Masser, D., Zannier, U. (2010). Torsion anomalous points and families of elliptic curves, Amer. J. Math. 132, 1677–1691.
Masser, D., Zannier, U. (2015). Torsion points on families of abelian surfaces and Pell's equation over polynomial rings (with Appendix by V. Flynn), J. European Math. Soc. 17, 2379–2416.
Mignotte, M. (1979). Approximations des nombres algébriques par des nombres algébriques de grand degré, Ann. Fac. Sci Toulouse 1, 165–170.
Mignotte, M. (1989). Sur un théorème de M. Langevin, Acta Arith. 54, 81–86.
Mihăilescu, P. (2004). Primary cyclotomic units and a proof of Catalan's conjecture, J. reine angew Math. 572, 167–195.
Miller, W. (1982). Transcendence measures by a method of Mahler, J. Australian Math. Soc. 32, 68–78.
Mitkin, D.A. (1992). An estimate for the number of roots of some comparisons by the Stepanov method, Mat. Zametki 51, 52–58, 157 (Russian); English transl. Math. Notes 51, 565–570.
Mordell, L.J. (1923). On the integer solutions of the equation, Proc. London Math. Soc. 21, 415–419.
Myerson, G. (1986). How small can a sum of roots of unity be?, Amer.Math. Monthly 93, 457–459.
Néron, A. (1965). Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math. 82, 249–331.
Nesterenko, Yu.V. (1983). Estimates for the number of zeros of certain functions. In Bertrand and Waldschmidt (1983) (pp. 263–269).
Nesterenko, Yu.V. (1996). Modular functions and transcendence questions, Mat. Sb. 187/9, 65–96 (Russian); English transl. Sb. Math. 187/9, 1319–1348.
Nesterenko, Yu.V., Philippon, P. (eds.) (2001). Introduction to Algebraic Independence Theory, Lecture Notes in Math. 1752, Springer.
Nishioka, K. (1986). Proof of Masser's conjecture on the algebraic independence of values of Liouville series, Proc. Japan Acad. A62, 219–222.
Nishioka, K. (1996). Mahler Functions and Transcendence, Lecture Notes in Math. 1631, Springer.
Niven, I. (1956). Irrational Numbers, The Carus Math. Monog. 11, Math. Assoc. Amer.
Osgood, C.F. (ed.) (1973). Diophantine Approximation and its Applications, Academic Press.
Perelli, A., Zannier, U. (1981). Su un teorema di Pólya, Boll. U. Mat. Italiana 18A, 305–307.
Perelli, A., Zannier, U. (1984). On recurrent mod p sequences, J. reine angew. Math. 348, 135–146.
Petsche, C. (2005). A quantitative version of Bilu's equidistribution theorem, Int. J. Number Theory 1, 281–291.
Philibert, G. (1997). Un lemme de zéros modulaire, J. Number Theory 66, 306–313.
Philippon, P. (1983). Variétés abéliennes et indépendance algébrique II: Un analogue abélien du théorème de Lindemann–Weierstrass, Inventiones Math. 72, 389–405.
Philippon, P. (ed.) (1992). Approximations Diophantiennes et Nombres Transcendants (Luminy 1990), Walter de Gruyter.
Pila, J. (2004). Integer points on the dilation of a subanalytic surface, Quarterly J. Math. 55, 207–223.
Pila, J. (2011). O-minimality and the André–Oort conjecture for Cn , Annals of Math. 173, 1779–1840.
Pila, J., Wilkie, A. (2006). The rational points of a definable set, Duke Math. J. 133, 591–616.
Pólya, G. (1915). Über ganzwertige ganze Funktionen, Rend. Cont. Math. Palermo 40, 1–16.
Pontreau, C. (2005). Minoration effective de la hauteur des points d'une courbe de G2 m définie sur Q, Acta Arith. 120, 1–26.
van der Poorten, A.J. (1979). A proof that Euler missed… Apéry's proof of the irrationality of ξ(3), Math. Intelligencer 1, 195–203.
Rankin, R. (1977). Modular Forms and Functions, Cambridge University Press.
Rausch, U. (1985). On a theorem of Dobrowolski about the product of conjugate numbers, Colloq. Math. 50, 137–142.
Rémond, G. (2002). Sur les sous-variétés des tores, Compositio Math. 134, 337–366.
Roth, K.F. (1955). Rational approximations to algebraic numbers, Mathematika, 2, 1–20.
Runge, C. (1887). Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen, J. reine angew. Math. 100, 425–435.
Ruppert, W. (1986). Reduzibilität ebener Kurven, J. reine angew. Math. 369, 167–191.
Rusza, I.Z. (1971). On congruence preserving functions (Hungarian), Mat. Lapok, 22, 125–134.
Schanuel, S.H. (1979). Heights in number fields, Bull. Soc. Math. France 107, 433–449.
Schinzel, A. (1969). An improvement of Runge's theorem on diophantine equations, Commentarii Pontif. Acad. Sci. 2, 1–9.
Schinzel, A. (1982). Selected Topics on Polynomials, University of Michigan Press.
Schinzel, A. (2000). Polynomials with Special Regard to Reducibility, Encyclopaedia of Math. and its Applications 77, Cambridge University Press.
Schmidt, W.M. (1976). Equations over Finite Fields, an Elementary Approach, Lecture Notes in Math. 536, Springer.
Schmidt, W.M. (1980). Diophantine Approximation, Lecture Notes in Math. 785, Springer.
Schmidt, W.M. (1990). Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith. 56, 161–179.
Schmidt, W.M. (1991). Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer.
Schneider, T. (1957). Einführung in die Transzendenten Zahlen, Grundlehren der Math. Wiss. 81, Springer.
Serre, J-P. (1988). Algebraic Groups and Class Fields, Graduate Texts in Math. 117, Springer.
Shallit, J. (1979). Simple continued fractions for some irrational numbers, J. Number Theory 11, 209–217.
Shanks, D. (1974). Incredible identities, Fibonacci Quart. 12, 271–280.
Shidlovsky, A.B. (1989). Transcendental Numbers, Walter de Gruyter.
Shkredov, I.D. (2014). On exponential sums over multiplicative subgroups of medium size, Finite Fields and Their Applications 30, 72–87.
Shparlinsky, I. (1991). Estimates for Gauss sums, Mat. Zametki 50, 122–130 (Russian); English transl. Math. Notes 50, 740–746.
Siegel, C.L. (1921). Approximation algebraischer Zahlen, Math. Zeit., 10, 173–213; Ges. Abh. I, 6–46.
Siegel, C.L. (1929). Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-math. Kl., No. 1; Ges. Abh. I, 209–266.
Siegel, C.L. (1935). Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1, 83–86; Ges. Abh. I, 406–409.
Siegel, C.L. (1949). Transcendental Numbers, Princeton.
Siegel, C.L. (1955). Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen, Math.-phys. Kl. 4, 71–77; Ges. Abh. III, 216–222.
Silverman, J.H. (1992). The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer.
Sprindzuk, V.G. (1993). Classical Diophantine Equations in Two Unknowns, Lecture Notes in Math. 1559, Springer.
Stark, H. (1973). Effective estimates of solutions of some diophantine equations, Acta Arith. 24, 251–259.
Stewart, C.L. (1978). Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 106, 169–176.
Stöhr, K.-O., Voloch, J.F. (1986). Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52, 1–19.
Stolarsky, K.B. (1974). Algebraic Numbers and Diophantine Approximation, Pure and Applied Math. 26, Marcel Dekker.
Strassen, V. (1974). Polynomials with rational coefficients which are hard to compute, SIAM J. Comp. 3, 128–149.
Surroca, A. (2006). Valeurs algébriques de fonctions transcendantes, Int. Math. Research Notices ID 16834, 1–31.
Szpiro, L., Ullmo, E., Zhang, S. (1997). Equirépartition des petits points, Inventiones Math. 127, 337–347.
Thue, A. (1909). Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135, 284–305.
Thunder, J.L. (1995). Siegel's lemma for function fields, Michigan Math. J. 42, 147–162.
Tijdeman, R. (1971a). On the number of zeros of general exponential polynomials, Indagationes Math. 33, 1–7.
Tijdeman, R. (1971b). On the algebraic independence of certain numbers, Indagationes Math. 33, 146–162.
Viola, C. (1985). On Dyson's lemma, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12, 105–135.
Waldschmidt, M. (1973). Solution du huitième problème de Schneider, J. Number Theory 5, 191–202.
Waldschmidt, M. (1974). Nombres Transcendants, Lecture Notes in Math. 402, Springer.
Waldschmidt, M. (1978). Pólya's theorem by Schneider's method, Acta Math. Acad. Sci. Hungaricae 31, 21–25.
Waldschmidt, M. (1987). Nombres Transcendants et Groupes Algébriques, Astérisque 69–70.
Waldschmidt, M. (2000). Diophantine Approximation on Linear Algebraic Groups, Grundlehren der Math. Wiss. 326, Springer.
Whittaker, E.T., Watson, G.N. (1965). A Course of Modern Analysis, Cambridge University Press.
Wilkie, A.J. (2004). Diophantine properties of sets definable in o-minimal structures, J. Symbolic Logic 69, 851–861.
Wüstholz, G. (1983). Über das Abelsche Analogon des Lindemannschen Satzes I, Inventiones Math. 72, 363–388.
Wüstholz, G. (ed.) (1987). Diophantine Approximation and Transcendence Theory, Lecture Notes in Math. 1290, Springer.
Wüstholz, G. (1989a). Multiplicity estimates on group varieties, Annals of Math. 129, 471–500.
Wüstholz, G. (1989b). Algebraische Punkte auf analytischen untergruppen algebraischer Gruppen, Annals of Math. 129, 501–517.
Wüstholz, G. (ed.) (2002). A Panorama of Number Theory or the View from Baker's Garden, Cambridge University Press.
Yu, H.B. (1999). Note on Heath-Brown's estimate for Heilbronn's exponential sum, Proc. Amer. Math. Soc. 127, 1995–1998.
Zagier, D. (1993). Algebraic numbers close to both 0 and 1, Math. Comp. 61, 485–491.
Zannier, U. (1996). On periodic mod p sequences and G-functions, Manuscripta Math. 90, 391–402.
Zannier, U. (1998). Polynomials modulo p whose values are squares (elementary improvements on some consequences of Weil's bounds), L'Enseignement Math. 44, 95–102.
Zannier, U. (2003). Some Applications of Diophantine Approximation to Diophantine Equations, Forum, Udine.
Zannier, U. (ed.) (2007). Diophantine Geometry, Edizione della Normale 4 Scuola Normale Pisa.
Zannier, U. (2012). Some Problems of Unlikely Intersections in Arithmetic and Geometry (with Appendices by D. Masser), Annals of Math. Studies 181, Princeton University Press.
Zannier, U. (2014a). Lecture Notes on Diophantine Analysis, Edizione della Normale 8 Scuola Normale Pisa.
Zannier, U. (ed.) (2014b). On Some Applications of Diophantine Approximations (with Commentary by C. Fuchs and U. Zannier), Edizione della Normale 2 Scuola Normale Pisa.
Zhang, S. (1992). Positive line bundles on arithmetic surfaces, Annals of Math. 136, 569–587.


Full text views

Total number of HTML views: 0
Total number of PDF views: 2228 *
Loading metrics...

Book summary page views

Total views: 1735 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st June 2018. This data will be updated every 24 hours.