
- Publisher:
- Cambridge University Press
- Online publication date:
- June 2012
- Print publication year:
- 2010
- Online ISBN:
- 9780511779237
Bayesian decision analysis supports principled decision making in complex domains. This textbook takes the reader from a formal analysis of simple decision problems to a careful analysis of the sometimes very complex and data rich structures confronted by practitioners. The book contains basic material on subjective probability theory and multi-attribute utility theory, event and decision trees, Bayesian networks, influence diagrams and causal Bayesian networks. The author demonstrates when and how the theory can be successfully applied to a given decision problem, how data can be sampled and expert judgements elicited to support this analysis, and when and how an effective Bayesian decision analysis can be implemented. Evolving from a third-year undergraduate course taught by the author over many years, all of the material in this book will be accessible to a student who has completed introductory courses in probability and mathematical statistics.
‘The author presents a good set of solved exercises, which serve for illustration, and a large set of proposed exercises are suggested. I recommend this book for professional and advanced students in statistics, operations research, computer science, artificial intelligence, cognitive sciences and different branches of engineering.’
Narciso Bouza Herrera Source: Zentralblatt MATH
'… an excellent resource for students at final year undergraduate level or higher, and for anyone researching issues of complex decision-making.'
Source: Mathematics Today
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.