Skip to main content
×
Home
Bayesian Models for Astrophysical Data

Book description

This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Reviews

'This volume is a very welcome addition to the small but growing library of resources for advanced analysis of astronomical data. Astronomers are often confronted with complex constrained regression problems, situations that benefit from computationally intensive Bayesian approaches. The authors provide a unique and sophisticated guide with tutorials in methodology and software implementation. The worked examples are impressive. Many astronomers use Python and will benefit from the less familiar capabilities of R, Stan, and JAGS for Bayesian analysis. I suspect the work will also be useful to scientists in other fields who venture into the world of Bayesian computational statistics.'

Eric D. Feigelson - Pennsylvania State University, author of Modern Statistical Methods for Astronomy

'Encyclopaedic in scope, a treasure trove of ready code for the hands-on practitioner.'

Ben Wandelt - Paris Institute of Astrophysics, Institut Lagrange de Paris, Université Paris-Sorbonne

'This informative book is a valuable resource for astronomers, astrophysicists, and cosmologists at all levels of their career. From students starting out in the field to researchers at the frontiers of data analysis, everyone will find insightful techniques accompanied by helpful examples of code. With this book, Hilbe, de Souza, and Ishida are firmly taking astrostatistics into the twenty-first century.'

Roberto Trotta - Imperial College London, author of The Edge of the Sky

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.


E. D. Feigelson and Babu J. G. (2012). Statistical Challenges in Modern Astronomy V. Lecture Notes in Statistics. Springer.

J. M. Hilbe (2012). “Astrostatistics in the international arena.” In: Statistical Challenges in Modern Astronomy V, eds. Feigelson E. D. and Babu J. G. . Springer, pp. 427–433.

S. Andreon and Weaver B. (2015). Bayesian Methods for the Physical Sciences: Learning from Examples in Astronomy and Physics. Springer Series in Astrostatistics. Springer.

A. K. Chattopadhyay and Chattopadhyay T. (2014). Statistical Methods for Astronomical Data Analysis. Springer Series in Astrostatistics. Springer.

A. Gelman , Lee D. , and Guo J. (2015). “Stan: a probabilistic programming language for Bayesian inference and optimization.” J. Educational and Behavioral Statistics.

R. A. Muenchen and Hilbe J. M. (2010). R for Stata Users. Statistics and Computing. Springer.

M. K. Cowles (2013). Applied Bayesian Statistics: With R and Open BUGS Examples. Springer Texts in Statistics. Springer.

E. D. Feigelson and Babu G. J. (2012a). Modern Statistical Methods for Astronomy: With R Applications. Cambridge University Press.

J. M. Hilbe (2011). Negative Binomial Regression, Second Edition. Cambridge University Press.

J. M. Hilbe (2014). Modeling Count Data. Cambridge University Press.

J. M. Hilbe (2015). Practical Guide to Logistic Regression. Taylor & Francis.

S. Andreon and Weaver B. (2015). Bayesian Methods for the Physical Sciences: Learning from Examples in Astronomy and Physics. Springer Series in Astrostatistics. Springer.

A. K. Chattopadhyay and Chattopadhyay T. (2014). Statistical Methods for Astronomical Data Analysis. Springer Series in Astrostatistics. Springer.

M. K. Cowles (2013). Applied Bayesian Statistics: With R and OpenBUGS Examples. Springer Texts in Statistics. Springer.

E. D. Feigelson and Babu G. J. (2012a). Modern Statistical Methods for Astronomy: With R Applications. Cambridge University Press.

E. D. Feigelson and Babu G. J. (2012b). Statistical Challenges in Modern Astronomy V. Lecture Notes in Statistics. Springer.

J. M. Hilbe (2011). Negative Binomial Regression, Second Edition. Cambridge University Press.

J. M. Hilbe (2014). Modeling Count Data. Cambridge University Press.

J. M. Hilbe (2015). Practical Guide to Logistic Regression. Taylor & Francis.

R. A. Muenchen and Hilbe J. M. (2010). R for Stata Users. Statistics and Computing. Springer.

A. Pole , West M. , and Harrison J. (1994). Applied Bayesian Forecasting and Time Series Analysis. Springer.

E. A. Suess and Trumbo B. E. (2010). Introduction to Probability Simulation and Gibbs Sampling with R. Use R! Series. Springer.

H. Weisberg (2014). Willful Ignorance: The Mismeasure of Uncertainty. Wiley.

K. N. Abazajian et al. (2009). “The seventh data release of the Sloan Digital Sky Survey.” Astrophys. J. Suppl. 182, 543–558. DOI: 10.1088/0067-0049/182/2/543. arXiv:0812.0649.

S. Aeschbacher et al. (2012). “A novel approach for choosing summary statistics in approximate Bayesian computation.” Genetics 192(3), 1027–1047. DOI: 10.1534/genetics.112.143164.

H. Akaike (1974). “A new look at the statistical model identification.” IEEE Trans. Automatic Control 19(6), 716–723.

S. Alam et al. (2015). “The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III.” Astrophys. J. Suppl. 219, 12. DOI: 10.1088/0067-0049/219/1/12. arXiv: 1501.00963 [astro-ph.IM].

L. A. Almeida et al. (2015). “Discovery of the massive overcontact binary VFTS352: evidence for enhanced internal mixing.” Astrophys. J. 812, 102. DOI: 10.1088/0004-637X/812/2/102. arXiv: 1509.08940[astro-ph.SR].

J. A. Baldwin et al. (1981). “Classification parameters for the emission-line spectra of extragalactic objects.” Publ. Astronom. Soc. Pacific 93, 5–19. DOI: 10.1086/130766.

N. Bastian et al. (2010). “A universal stellar initial mass function? a critical look at variations.” Ann. Rev. Astron. Astrophys. 48, 339–389. DOI: 10.1146/annurev-astro-082708-101642. arXiv: 1001.2965.

M. A. Beaumont et al. (2009). “Adaptive approximate Bayesian computation.” Biometrika, asp052.

A. J. Benson (2010). “Galaxy formation theory.” Phys. Rep. 495, 33–86. DOI: 10.1016/j.physrep.2010.06.001. arXiv: 1006.5394 [astro-ph.CO].

M. Betoule et al. (2014). “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples.” Astron. Astrophys. 568, A22. DOI: 10.1051/0004-6361/201423413. arXiv: 1401.4064.

M. R. Blanton et al. (2011). “Improved background subtraction for the Sloan Digital Sky Survey images.” Astronom. J. 142, 31 DOI: 10.1088/ 0004-6256/142/1/31. arXiv: 1105.1960 [astro-ph.IM].

L. E. Bleem et al. (2015). “Galaxy clusters discovered via the Sunyaev–Zel'dovich effect in the 2500-square-degree SPT-SZ survey.” Astrophys. J. Suppl. 216, 27. DOI: 10.1088/0067-0049/216/2/27. arXiv: 1409.0850.

F. Bonnarel et al. (2000). “The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources.” A&AS 143, 33–40. DOI: 10.1051/aas:2000331.

J. D. Bradford et al. (2015). “A study in blue: the baryon content of isolated low-mass galaxies.” Astrophys. J. 809, 146. DOI: 10.1088/0004-637X/809/2/146. arXiv: 1505.04819.

A. Burkert and Tremaine S. (2010). “A correlation between central supermassive black holes and the globular cluster systems of early-type galaxies.” Astrophys. J. 720, 516–521. DOI: 10.1088/0004-637X/720/1/516. arXiv: 1004.0137 [astro-ph.CO].

T. Burr and Skurikhin A. (2013). “Selecting summary statistics in approximate bayesian computation for calibrating stochastic models.” BioMed Res. Int. 2013.

G. Chabrier (2003). “Galactic stellar and substellar initial mass function.” Publ. Astronom. Soc. Pacific 115, 763–795. DOI: 10.1086/376392. eprint:arXiv:astro-ph/0304382.

G. Chattopadhyay and Chattopadhyay S. (2012). “Monthly sunspot number time series analysis and its modeling through autoregressive artificial neural network.” Europ. Physical J. Plus 127, 43. DOI: 10.1140/epjp/i2012-12043-9. arXiv: 1204.3991 [physics.gen-ph].

A. Conley et al. (2011). “Supernova constraints and systematic uncertainties from the first three years of the Supernova Legacy Survey.” Astrophys. J. Suppl. 192, 1. DOI: 10.1088/0067-0049/192/1/1. arXiv: 1104.1443[astro-ph.CO].

P. C. Consul and Famoye F. (1992). “Generalized poisson regression model.” Commun. Statistics – Theory Meth. 21(1), 89–109. DOI: 10.1080/03610929208830766.

R. S. de Souza and Ciardi B. (2015). “AMADA–Analysis of multidimensional astronomical datasets.” Astron. Comput. 12, 100–108. DOI: 10.1016/j.ascom. 2015.06.006. arXiv: 1503.07736 [astro-ph.IM].

R. S. de Souza et al. (2015a). “The overlooked potential of generalized linear models in astronomy – I: Binomial regression.” Astron. Comput. 12, 21–32. ISSN: 2213-1337. DOI: http://dx.doi.org/10.1016/j.ascom.2015.04.002. URL: www.sciencedirect.com/science/article/pii/S2213133715000360.

S. Djorgovski and Davis M. (1987). “Fundamental properties of elliptical galaxies.” Astrophys. J. 313, 59–68. DOI: 10.1086/164948.

D. J. Eisenstein et al. (2011). “SDSS-III: massive spectroscopic surveys of the distant universe, the Milky Way, and extra-solar planetary systems.” Astronom. J. 142, 72. DOI: 10.1088/0004-6256/142/3/72. arXiv: 1101.1529 [astro-ph.IM].

J. Elliott et al. (2015). “The overlooked potential of generalized linear models in astronomy – II: Gamma regression and photometric redshifts”. Astron. Comput. 10, 61–72. DOI: 10.1016/j.ascom.2015.01.002. arXiv: 1409.7699 [astro-ph.IM].

A. C. Fabian (2012). “Observational evidence of active galactic nuclei feedback.” Ann. Rev. Astron. Astrophys. 50, 455–489. DOI: 10.1146/annurev-astro-081811-125521. arXiv: 1204.4114.

E. D. Feigelson and Babu G. J. (1992). “Linear regression in astronomy. II.” Astrophys. J. 397, 55–67. DOI: 10.1086/171766.

L. Ferrarese and Merritt D. (2000). “A fundamental relation between supermassive black holes and their host galaxies.” Astrophys. J. 539, L9–L12. DOI: 10.1086/312838. eprint: astro-ph/0006053.

K. Gebhardt et al. (2000). “Black hole mass estimates from reverberation mapping and from spatially resolved kinematics.” Astrophys. J. 543, L5–L8. DOI: 10.1086/318174. eprint: astro-ph/0007123.

A. E. Gelfand and Smith A. F. M. (1990). “Sampling-based approaches to calculating marginal densities.” J. Amer. Statist. Assoc. 85(410), 398–409.

A. E. Gelfand et al. (1990). “Illustration of Bayesian inference in normal data models using Gibbs sampling.” J. Amer. Statist. Assoc. 85(412), 972–985. DOI: 10.1080/01621459.1990.10474968.

A. Gelman (2006). “Prior distributions for variance parameters in hierarchical models.” Bayesian Anal. 1(3), 515–533.

A. Gelman et al. (2014). “Understanding predictive information criteria for Bayesian models.” Statist. Comput. 24(6), 997–1016. DOI: 10.1007/s11222-013-9416-2.

A. Gelman et al. (2015). “Stan: a probabilistic programming language for bayesian inference and optimization.” J. Educational and Behavioral Statist. DOI: 10.3102/1076998615606113. eprint: http://jeb.sagepub.com/content/early/2015/10/09/1076998615606113.full.pdf+html.

J. Guy et al. (2007). “SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators.” Astron. Astrophys. 466, 11–21. DOI: 10.1051/0004-6361:20066930. eprint: astro-ph/0701828.

W. E. Harris et al. (2013). “A catalog of globular cluster systems: what determines the size of a galaxy's globular cluster population?” Astrophys. J. 772, 82. DOI: 10.1088/0004-637X/772/2/82. arXiv: 1306.2247[astro-ph.GA].

W. K. Hastings (1970). “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika 57, 97–109. DOI: 10.1093/biomet/57.1.97.

J. M. Hilbe and Greene W. H. (2007). Count response regression models, in Epidemiology and Medical Statistics, eds. Rao C. R. , Miller J. P. , and Rao D. C. , Elsevier Handbook of Statistics Series.

W. Hillebrandt and Niemeyer J. C. (2000). “Type Ia supernova explosion models.” Ann. Rev. Astron. Astrophys. 38(1), 191–230. DOI: 10.1146/annurev.astro.38.1.191. eprint: http://dx.doi.org/10.1146/annurev.astro.38.1.191.

E. E. O. Ishida et al. (2015). “COSMOABC: likelihood-free inference via population monte carlo approximate Bayesian computation.” Astron. Comput. 13, 1–11. DOI: 10.1016/j.ascom.2015.09.001. arXiv: 1504.06129.

T. Isobe et al. (1990). “Linear regression in astronomy.” Astrophys. J. 364, 104–113. DOI: 10.1086/169390.

H. Jang-Condell and Hernquist L. (2001). “First structure formation: a simulation of small-scale structure at high redshift.” Astrophys. J. 548(1), 68. http://stacks.iop.org/0004-637X/548/i=1/a=68

M. Janson et al. (2014). “The AstraLux Multiplicity Survey: extension to late M-dwarfs.” Astrophys. J. 789, 102. DOI: 10.1088/0004-637X/789/2/102. arXiv: 1406.0535 [astro-ph.SR].

V. L. Kashyap et al. (2002). “Flare heating in stellar coronae.” Astrophys. J. 580, 1118–1132. DOI: 10.1086/343869. eprint: astro-ph/0208546.

B. C. Kelly (2007). “Some aspects of measurement error in linear regression of astronomical data.” Astrophys. J. 665, 1489–1506. DOI: 10.1086/519947. arXiv: 0705.2774.

R. Kessler et al. (2010). “Results from the Supernova Photometric Classification Challenge.” Publ. Astronom. Soc. Pacific 122, 1415–1431. DOI: 10.1086/657607. arXiv: 1008.1024 [astro-ph.CO].

L. J. Kewley et al. (2001). “Theoretical modeling of starburst galaxies.” Astrophys. J. 556, 121–140. DOI: 10.1086/321545. eprint: astro-ph/0106324.

A. V. Kravtsov and Borgani S. (2012). “Formation of galaxy clusters.” Ann. Rev. Astron. Astrophys. 50, 353–409. DOI: 10.1146/annurev-astro-081811-125502. arXiv: 1205.5556 [astro-ph.CO].

J. M. D. Kruijssen (2014). “Globular cluster formation in the context of galaxy formation and evolution.” Classical Quant. Grav. 31(24), 244006. DOI: 10.1088/0264-9381/31/24/244006. arXiv: 1407.2953.

D. Lynden-Bell (1969). “Galactic nuclei as collapsed old quasars.” Nature 223, 690–694. DOI: 10.1038/223690a0.

C. Ma et al. (2016). “Application of Bayesian graphs to SN Ia data analysis and compression.” Mon. Not. Roy. Atronom. Soc. (preprint). arXiv: 1603.08519.

M. N. Machida et al. (2008). “Formation scenario for wide and close binary systems.” Astrophys. J. 677, 327–347. DOI: 10.1086/529133. arXiv: 0709.2739.

K. S. Mandel et al. (2011). “Type Ia supernova light curve inference: hierarchical models in the optical and near-infrared.” Astrophys. J. 731, 120. DOI: 10.1088/0004-637X/731/2/120. arXiv: 1011.5910.

D. Maoz et al. (2014). “Observational clues to the progenitors of type Ia supernovae.” Ann. Rev. Astron. Astrophys. 52(1), 107–170. DOI: 10.1146/annurev-astro-082812-141031.

J. Marley and Wand M. (2010). “Non-standard semiparametric regression via BRugs.” J. Statist. Software 37(1), 1–30. DOI: 10.18637/jss.v037.i05.

N. Metropolis and Ulam S. (1949). “The Monte Carlo method.” J. Amer. Statist. Assoc. 44(247), 335–341. www.jstor.org/stable/2280232.

N. Metropolis et al. (1953). “Equation of state calculations by fast computing machines.” J. Chem. Phys. 21, 1087–1092.

M. Mignoli et al. (2009). “The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties.” Astron. Astrophys. 493, 39–49. DOI: 10.1051/0004-6361:200810520. arXiv: 0810.2245.

R. B. O'Hara and Sillanpää M. J. (2009). “A review of Bayesian variable selection methods: what, how and which.” Bayesian Anal. 4(1), 85–117. DOI: 10.1214/09-ba403.

T. Park and Casella G. (2008). “The Bayesian lasso.” J. Amer. Statist. Assoc. 103(482), 681–686. DOI: 10.1198/016214508000000337.

M. Pawlak (2016). “Period–luminosity–colour relation for early-type contact binaries.” Mon. Not. Roy. Astronom. Soc. DOI: 10.1093/mnras/stw269. arXiv: 1602.01467 [astro-ph.SR].

S. Perlmutter et al. (1999) “Measurements of and from 42 high-redshift supernovae.” Astrophys. J. 517, 565–586. DOI: 10.1086/307221. eprint: astro-ph/9812133.

B. M. Peterson (2008). “The central black hole and relationships with the host galaxy.” New Astron. Rev. 52, 240–252. DOI: 10.1016/j.newar.2008.06.005.

A. Raichoor and Andreon S. (2014). “Do cluster properties affect the quenching rate?” Astron. Astorphys. 570, A123. DOI: 10.1051/0004-6361/201424050. arXiv: 1409.4416.

K. L. Rhode (2012). “Exploring the correlations between globular cluster populations and supermassive black holes in giant galaxies.” Astronom. J. 144, 154. DOI: 10.1088/0004-6256/144/5/154. arXiv: 1210.4570 [astro-ph.CO].

S. Richardson and Gilks W. R. (1993). “A Bayesian approach to measurement error problems in epidemiology using conditional independence models.” Amer. J. Epidemiology 138(6), 430–442. eprint: https://aje.oxfordjournals.org/content/138/6/430.full.pdf+html.

A. G. Riess et al. (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant.” Astronom. J. 116, 1009–1038. DOI: 10.1086/300499. eprint: astro-ph/9805201.

D. B. Rubin (1984). “Bayesianly justifiable and relevant frequency calculations for the applied statistician.” Ann. Statist. 12(4), 1151–1172. www.jstor.org/stable/2240995.

D. Rubin et al. (2015). “UNITY: Confronting supernova cosmology's statistical and systematic uncertainties in a unified Bayesian framework.” Astrophys. J. 813, 137. DOI: 10.1088/0004-637X/813/2/137. arXiv: 1507.01602.

S. M. Rucinski (2004). “Contact binary stars of theW UMa-type as distance tracers.” New Astron. Rev. 48, 703–709. DOI: 10.1016/j.newar.2004.03.005. eprint: astro-ph/0311085.

H. Rue et al. (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.” J. Royal Statist. Soc. Series B 71(2), 319–392. DOI: 10.1111/j.1467-9868.2008.00700.x.

E. E. Salpeter (1955). “The luminosity function and stellar evolution.” Astrophys. J. 121, 161. DOI: 10.1086/145971.

H. Sana et al. (2012). “Binary interaction dominates the evolution of massive stars.” Science 337, 444. DOI: 10.1126/science.1223344. arXiv: 1207.6397 [astro-ph.SR].

C. M. Schafer and Freeman P. E. (2012). “Likelihood-free inference in cosmology: potential for the estimation of luminosity.” Statistical Challenges in Modern Astronomy V, eds. Feigelson E. D. and Jogesh B. G. , pp. 3–19. Springer.

G. Schwarz (1978). “Estimating the dimension of a model.” Ann. Statist. 6(2), 461–464.

T. T. Shimizu and Mushotzky R. F. (2013). “The first hard X-ray power spectral density functions of active galactic nucleus.” Astrophys. J. 770, 60. DOI: 10.1088/0004-637X/770/1/60. arXiv: 1304.7002 [astro-ph.HE].

G. F. Snyder et al. (2011). “Relation between globular clusters and supermassive black holes in ellipticals as a manifestation of the black hole fundamental plane.” Astrophys.J. 728, L24. DOI: 10.1088/2041-8205/728/1/L24. arXiv: 1101.1299 [astro-ph.CO].

D. J. Spiegelhalter et al. (2002). “Bayesian measures of model complexity and fit.” J. Royal Statist. Soc., Series B 64(4), 583–639. DOI: 10.1111/1467-9868.00353.

M. A. Tanner and Wong W. H. (1987). “The calculation of posterior distributions by data augmentation.” J. Amer. Statist. Assoc. 82, 528–540.

S. Tremaine et al. (2002). “The slope of the black hole mass versus velocity dispersion correlation.” Astrophys. J. 574, 740–753. DOI: 10.1086/341002. eprint: astro-ph/0203468.

J. M. Vaquero (2007). “Historical sunspot observations: a review.” Adv. Space Res. 40, 929–941. DOI: 10.1016/j.asr.2007.01.087. eprint: astro-ph/0702068.

A. Vehtari and Ojanen J. (2012). “A survey of Bayesian predictive methods for model assessment, selection and comparison.” Statist. Surv. 6, 142–228. DOI: 10.1214/12-SS102.

A. Weyant et al. (2013). “Likelihood-free cosmological inference with Type Ia super-novae: approximate Bayesian computation for a complete treatment of uncertainty.” Astrophys. J. 764, 116. DOI: 10.1088/0004-637X/764/2/116. arXiv: 1206.2563 [astro-ph.CO].

R.C. Wolf et al. (2016). “SDSS-II Supernova Survey: an analysis of the largest sample of Type Ia supernovae and correlations with host-galaxy spectral properties.” Astrophys. J. 821, 115. DOI: 10.3847/0004-637X/821/2/115. arXiv: 1602.02674.

L. Zaninetti (2013). “The initial mass function modeled by a left truncated beta distribution.” Astrophys. J. 765, 128. DOI: 10.1088/0004-637X/765/2/128. arXiv: 1303.5597 [astro-ph.SR].

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 540 *
Loading metrics...

Book summary page views

Total views: 1055 *
Loading metrics...

* Views captured on Cambridge Core between 11th May 2017 - 20th September 2017. This data will be updated every 24 hours.