Skip to main content Accessibility help
×
  • Cited by 2
Publisher:
Cambridge University Press
Online publication date:
March 2024
Print publication year:
2024
Online ISBN:
9781009292955

Book description

Interacting biological systems at all organizational levels display emergent behavior. Modeling these systems is made challenging by the number and variety of biological components and interactions – from molecules in gene regulatory networks to species in ecological networks – and the often-incomplete state of system knowledge, such as the unknown values of kinetic parameters for biochemical reactions. Boolean networks have emerged as a powerful tool for modeling these systems. This Element provides a methodological overview of Boolean network models of biological systems. After a brief introduction, the authors describe the process of building, analyzing, and validating a Boolean model. They then present the use of the model to make predictions about the system's response to perturbations and about how to control its behavior. The Element emphasizes the interplay between structural and dynamical properties of Boolean networks and illustrates them in three case studies from disparate levels of biological organization.

References

Stuart, A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3):437467, March 1969. https://doi.org/10.1016/0022-5193(69)90015-0. www.sciencedirect.com/science/article/pii/0022519369900150.
Thomas, René. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42(3):563585, 1973. https://doi.org/10.1016/0022-5193(73)90247-6. www.sciencedirect.com/science/article/pii/0022519373902476.
Hopfield, J J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):25542558, April 1982. https://doi.org/10.1073/pnas.79.8.2554. www.pnas.org/doi/abs/10.1073/pnas.79.8.2554.
El Houssine Snoussi and René Thomas. Logical identification of all steady states: The concept of feedback loop characteristic states. Bulletin of Mathematical Biology, 55(5):973991, 1993.
James, P. Crutchfield. The calculi of emergence: Computation, dynamics and induction. Physica D: Nonlinear Phenomena, 75(1):1154, August 1994. https://doi.org/10.1016/0167-2789(94)90273-9. www.sciencedirect.com/science/article/pii/0167278994902739.
Feo, Thomas A. and Resende, Mauricio G. C.. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2):109133, March 1995. https://doi.org/10.1007/BF01096763.
Memmott, Jane. The structure of a plant–pollinator food web. Ecology Letters, 2(5):276280, 1999. https://doi.org/10.1046/j.1461-0248.1999.00087.x. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1461-0248.1999.00087.x.
von Dassow, George, Meir, Eli, Munro, Edwin M., and Odell, Garrett M.. The segment polarity network is a robust developmental module. Nature, 406(6792):188–192, July 2000. https://doi.org/10.1038/35018085. www.nature.com/articles/35018085.
Thomas, René and Kaufman, Marcelle. Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(1):180195, March 2001a. https://doi.org/10.1063/1.1349893. https://aip.scitation.org/doi/abs/10.1063/1.1349893.
Thomas, René and Kaufman, Marcelle. Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(1):170179, March 2001b. https://doi.org/10.1063/1.1350439. https://aip.scitation.org/doi/abs/10.1063/1.1350439.
von Dassow, George and Odell, Garrett M.. Design and constraints of theDrosophila segment polarity module: Robust spatial patterning emerges from intertwined cell state switches. Journal of Experimental Zoology, 294(3):179215, October 2002. https://doi.org/10.1002/jez.10144. http://doi.wiley.com/10.1002/jez.10144.
Raeymaekers, Luc. Dynamics of Boolean networks controlled by biologically meaningful functions. Journal of Theoretical Biology, 218(3):331341, 2002. https://doi.org/10.1006/jtbi.2002.3081.
Harris, Stephen E., Sawhill, Bruce K., Wuensche, Andrew, and Kauffman, Stuart. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity, 7(4):2340, 2002. https://doi.org/10.1002/cplx.10022. https://onlinelibrary.wiley.com/doi/abs/10.1002/cplx.10022.
Bascompte, Jordi, Jordano, Pedro, Melián, Carlos J., and Olesen, Jens M.. The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences, 100(16):93839387, 2003.
Aldana, Maximino and Cluzel, Philippe. A natural class of robust networks. Proceedings of the National Academy of Sciences, 100(15):87108714, 2003. https://doi.org/10.1073/pnas.1536783100. www.pnas.org/doi/abs/10.1073/pnas.1536783100.
Albert, Réka and Othmer, Hans G.. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology, 223(1): 118, July 2003. https://doi.org/10.1016/S0022-5193(03)00035-3. https://linkinghub.elsevier.com/retrieve/pii/S0022519303000353.
Song, Li, Assmann, Sarah M., and Albert, Réka. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biology, 4(10): e312, September 2006. https://doi.org/10.1371/journal.pbio.0040312. https://dx.plos.org/10.1371/journal.pbio.0040312.
Salam Jarrah, Abdul, Raposa, Blessilda, and Laubenbacher, Reinhard. Nested canalyzing, unate cascade, and polynomial functions. Physica D: Nonlinear Phenomena, 233(2):167174, 2007. https://doi.org/10.1016/j.physd.2007.06.022. www.sciencedirect.com/science/article/pii/S0167278907002035.
Zhang, Ranran, Shah, Mithun V., Yang, Jun et al. Network model of survival signaling in large granular lymphocyte leukemia. Proceedings of the National Academy of Sciences, 105(42):1630816313, October 2008. https://doi.org/10.1073/pnas.0806447105. www.pnas.org/cgi/doi/10.1073/pnas.0806447105.
Albert, István, Thakar, Juilee, Song, Li, Zhang, Ranran, and Albert, Réka. Boolean network simulations for life scientists. Source Code for Biology and Medicine, 3(1):16, November 2008. https://doi.org/10.1186/1751-0473-3-16.
Zhirov, A. O., Zhirov, O. V., and Shepelyansky, D. L.. Two-dimensional ranking of wikipedia articles. The European Physical Journal B, 77(4):523531, October 2010. https://doi.org/10.1140/epjb/e2010-10500-7.
Shmulevich, Ilya and Edward, R. Dougherty. Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. Society of Industrial and Applied Mathematics, 2010.
Saadatpour, Assieh, Albert, István, and Albert, Réka. Attractor analysis of asynchronous Boolean models of signal transduction networks. Journal of Theoretical Biology, 266(4):641656, 2010. https://doi.org/10.1016/j.jtbi.2010.07.022. www.sciencedirect.com/science/article/pii/S0022519310003796.
Pandey, Sona, Wang, Rui-Sheng, Wilson, Liza et al. Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Molecular Systems Biology, 6(1):372, 2010. https://doi.org/10.1038/msb.2010.28. www.embopress.org/doi/abs/10.1038/msb.2010.28.
Vilà, Montserrat, Espinar, José L, Hejda, Martin et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7):702708, 2011.
Saadatpour, Assieh, Wang, Rui-Sheng, Liao, Aijun et al. Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLOS Computational Biology, 7(11):115, November 2011. https://doi.org/10.1371/journal.pcbi.1002267.
Naldi, Aurélien, Remy, Elisabeth, Thieffry, Denis, and Chaouiya, Claudine. Dynamically consistent reduction of logical regulatory graphs. Theoretical Computer Science, 412(21):22072218, May 2011. https://doi.org/10.1016/j.tcs.2010.10.021. https://linkinghub.elsevier.com/retrieve/pii/S0304397510005839.
Campbell, Colin, Yang, Suann, Albert, Réka, and Shea, Katriona. A network model for plant–pollinator community assembly. Proceedings of the National Academy of Sciences, 108(1):197202, 2011. https://doi.org/10.1073/pnas.1008204108. www.pnas.org/content/108/1/197.
Campbell, Colin, Yang, Suann, Shea, Katriona, and Albert, Réka. Topology of plant–pollinator networks that are vulnerable to collapse from species extinction. Physical Review E, 86(2):021924, 2012.
Allesina, Stefano and Tang, Si. Stability criteria for complex ecosystems. Nature, 483:205208, 2012. https://doi.org/10.1038/nature10832. www.nature.com/articles/nature10832.
Gomez Tejeda Zañudo, Jorge and Albert, Réka. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(2):eabf8124, June 2013. https://doi.org/10.1063/1.4809777. https://aip.scitation.org/doi/abs/10.1063/1.4809777.
Staniczenko, Phillip P. A., Kopp, Jason C., and Allesina, Stefano. The ghost of nestedness in ecological networks. Nature Communications, 4:1391, 2013. https://doi.org/10.1038/ncomms2422. www.nature.com/articles/ncomms2422.
Russo, Laura, DeBarros, Nelson, Yang, Suann, Shea, Katriona, and Mortensen, David. Supporting crop pollinators with floral resources: Network-based phenological matching. Ecology and Evolution, 3(9):31253140, 2013. https://doi.org/10.1002/ece3.703. https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.703.
Mochizuki, Atsushi, Fiedler, Bernold, Kurosawa, Gen, and Saito, Daisuke. Dynamics and control at feedback vertex sets. II: A faithful monitor to determine the diversity of molecular activities in regulatory networks. Journal of Theoretical Biology, 335:130146, October 2013. https://doi.org/10.1016/j.jtbi.2013.06.009. www.sciencedirect.com/science/article/pii/S0022519313002816.
LaBar, Thomas, Campbell, Colin, Yang, Suann, Albert, Réka, and Shea, Katriona. Global versus local extinction in a network model of plant–pollinator communities. Theoretical Ecology, 6(4):495503, 2013.
Fiedler, Bernold, Mochizuki, Atsushi, Kurosawa, Gen, and Saito, Daisuke. Dynamics and control at feedback vertex sets. I: Informative and determining nodes in regulatory networks. Journal of Dynamics and Differential Equations, 25(3):563604, September 2013. https://doi.org/10.1007/s10884-013-9312-7. http://link.springer.com/10.1007/s10884-013-9312-7.
Nathaniel Steinway, Steven, Zañudo, Jorge G. T., Ding, Wei et al. Network modeling of TGF signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and wnt pathway activation. Cancer Research, 74(21):59635977, November 2014.
LaBar, Thomas, Campbell, Colin, Yang, Suann, Albert, Réka, and Shea, Katriona. Restoration of plant–pollinator interaction networks via species translocation. Theoretical Ecology, 7(2):209220, 2014.
Albert, Réka and Thakar, Juilee. Boolean modeling: A logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. WIREs Systems Biology and Medicine, 6(5):353369, 2014. https://doi.org/10.1002/wsbm.1273. https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wsbm.1273.
Jorge, G. T. Zañudo and Albert, Réka. Cell fate reprogramming by control of intracellular network dynamics. PLOS Computational Biology, 11(4):e1004193, April 2015. https://doi.org/10.1371/journal.pcbi.1004193. https://dx.plos.org/10.1371/journal.pcbi.1004193.
Nathaniel Steinway, Steven, Gómez Tejeda Zañudo, Jorge, Michel, Paul J. et al. Combinatorial interventions inhibit TGF -driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. npj Systems Biology and Applications, 1(1):15014, November 2015. https://doi.org/10.1038/npjsba.2015.14.
Campbell, Colin, Yang, Suann, Albert, Réka, and Shea, Katriona. Plant–pollinator community network response to species invasion depends on both invader and community characteristics. Oikos, 124(4):406413, 2015.
Mackey, Michael C., Santillán, Moisés, Tyran-Kamińska, Marta, and Zeron, Eduardo S.. Simple Mathematical Models of Gene Regulatory Dynamics. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International, 2016. https://doi.org/10.1007/978-3-319-45318-7. http://link.springer.com/10.1007/978-3-319-45318-7.
Liu, Yang-Yu and Barabási, Albert-Laszló. Control principles of complex networks. Reviews of Modern Physics, 88(3):035006, September 2016. https://doi.org/10.1103/RevModPhys.88.035006. http://arxiv.org/abs/1508.05384.
Koorehdavoudi, Hana and Bogdan, Paul. A statistical physics characterization of the complex systems dynamics: Quantifying complexity from spatio-temporal interactions. Scientific Reports, 6(1):27602, June 2016. https://doi.org/10.1038/srep27602. www.nature.com/articles/srep27602.
Klarner, Hannes, Streck, Adam, and Siebert, Heike. PyBoolNet: A python package for the generation, analysis and visualization of Boolean networks. Bioinformatics, 33(5):770772, October 2016. https://doi.org/10.1093/bioinformatics/btw682. https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw682.
Kivelson, Sophia and Steven, A. Kivelson. Defining emergence in physics. npj Quantum Materials, 1(1):12, November 2016. https://doi.org/10.1038/npjquantmats.2016.24. www.nature.com/articles/npjquantmats201624.
Deritei, Dávid, Aird, William C., Ercsey-Ravasz, Mária, and Ravasz Regan, Erzsébet. Principles of dynamical modularity in biological regulatory networks. Scientific Reports, 6(1):21957, April 2016. https://doi.org/10.1038/srep21957. www.nature.com/articles/srep21957.
Abou-Jaoudé, Wasim, Traynard, Pauline, Monteiro, Pedro et al. Logical modeling and dynamical analysis of cellular networks. Front Genet, 7:94, 2016. https://doi.org/10.3389/fgene.2016.00094.
Gomez Tejeda Zañudo, Jorge, Yang, Gang, and Albert, Réka. Structure-based control of complex networks with nonlinear dynamics. Proceedings of the National Academy of Sciences, 114(28):72347239, July 2017. https://doi.org/10.1073/pnas.1617387114. www.pnas.org/content/114/28/7234.
Maheshwari, Parul and Albert, Réka. A framework to find the logic backbone of a biological network. BMC Systems Biology, 11(1):122, December 2017.
Albert, Réka, Acharya, Biswa R., Wook Jeon, Byeong et al. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLOS Biology, 15(9):135, September 2017. https://doi.org/10.1371/journal.pbio.2003451.
Yang, Gang, Gómez Tejeda Zañudo, Jorge, and Albert, Réka. Target control in logical models using the domain of influence of nodes. Frontiers in Physiology, 9:454, 2018. https://doi.org/10.3389/fphys.2018.00454. www.frontiersin.org/articles/10.3389/fphys.2018.00454/full.
Santolini, Marc and Barabási, Albert-László. Predicting perturbation patterns from the topology of biological networks. Proceedings of the National Academy of Sciences, 115(27):E6375–E6383, 2018. https://doi.org/10.1073/pnas.1720589115. www.pnas.org/doi/abs/10.1073/pnas.1720589115.
Razzaq, Misbah, Paulevé, Loïc, Siegel, Anne et al. Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data. PLOS Computational Biology, 14(10):123, October 2018. https://doi.org/10.1371/journal.pcbi.1006538.
Muñoz, Stalin, Carrillo, Miguel, Azpeitia, Eugenio, and Rosenblueth, David A.. Griffin: A tool for symbolic inference of synchronous Boolean molecular networks. Frontiers in Genetics, 9:39, 2018. https://doi.org/10.3389/fgene.2018.00039. www.frontiersin.org/articles/10.3389/fgene.2018.00039.
de Abril, Ildefons Magrans, Yoshimoto, Junichiro, and Doya, Kenji. Connectivity inference from neural recording data: Challenges, mathematical bases and research directions. Neural Networks, 102:120137, 2018. https://doi.org/10.1016/j.neunet.2018.02.016. www.sciencedirect.com/science/article/pii/S0893608018300704.
Correia, Rion B., Gates, Alexander J., Wang, Xuan, and Rocha, Luis M.. CANA: A python package for quantifying control and canalization in Boolean networks. Frontiers in Physiology, 9:1046, 2018. www.frontiersin.org/articles/10.3389/fphys.2018.01046.
Rozum, Jordan C. and Albert, Réka. Identifying (un)controllable dynamical behavior in complex networks. PLOS Computational Biology, 14(12):e1006630, December 2018a. https://doi.org/10.1371/journal.pcbi.1006630. https://dx.plos.org/10.1371/journal.pcbi.1006630.
Naldi, Aurélien, Hernandez, Céline, Abou-Jaoudé, Wassim et al. Logical modeling and analysis of cellular regulatory networks with GINsim 3.0. Frontiers in Physiology, 9, 2018a. https://doi.org/10.3389/fphys.2018.00646. www.frontiersin.org/articles/10.3389/fphys.2018.00646/full.
Rozum, Jordan C. and Albert, Réka. Self-sustaining positive feedback loops in discrete and continuous systems. Journal of Theoretical Biology, 459:3644, December 2018b. https://doi.org/10.1016/j.jtbi.2018.09.017. https://linkinghub.elsevier.com/retrieve/pii/S0022519318304533.
Naldi, Aurélien, Hernandez, Céline, Levy, Nicolas et al. The CoLoMoTo interactive notebook: Accessible and reproducible computational analyses for qualitative biological networks. Frontiers in Physiology, 9:680, June 2018b. https://doi.org/10.3389/fphys.2018.00680. www.frontiersin.org/article/10.3389/fphys.2018.00680/full.
Wooten, David J., Groves, Sarah M., Tyson, Darren R. et al. Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers. PLOS Computational Biology, 15(10):e1007343, October 2019. https://doi.org/10.1371/journal.pcbi.1007343. journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007343.
Russo, Laura, Albert, Réka, Campbell, Colin, and Shea, Katriona. Experimental species introduction shapes network interactions in a plant-pollinator community. Biological Invasions, 21:35053519, 2019. https://doi.org/10.1007/s10530-019-02064-z.
Rozum, Jordan C. and Albert, Réka. Controlling the cell cycle restriction switch across the information gradient. Advances in Complex Systems, 22(07n08):1950020, November 2019. https://doi.org/10.1142/S0219525919500206. www.worldscientific.com/doi/abs/10.1142/S0219525919500206.
Richard, Adrien. Positive and negative cycles in Boolean networks. Journal of Theoretical Biology, 463:6776, 2019. https://doi.org/10.1016/j.jtbi.2018.11.028. www.sciencedirect.com/science/article/pii/S0022519318305812.
Maheshwari, Parul, Hao, Du, Sheen, Jen, Assmann, Sarah M., and Albert, Reka. Model-driven discovery of calcium-related protein-phosphatase inhibition in plant guard cell signaling. PLOS Computational Biology, 15(10):128, October 2019. https://doi.org/10.1371/journal.pcbi.1007429.
Loskot, Pavel, Atitey, Komlan, and Mihaylova, Lyudmila. Comprehensive review of models and methods for inferences in bio-chemical reaction networks. Frontiers in Genetics, 10, 2019. https://doi.org/10.3389/fgene.2019.00549. www.frontiersin.org/articles/10.3389/fgene.2019.00549.
Deritei, Dávid, Rozum, Jordan C., Ravasz Regan, Erzsébet, and Albert, Réka. A feedback loop of conditionally stable circuits drives the cell cycle from checkpoint to checkpoint. Scientific Reports, 9:16430, 2019. https://doi.org/10.1038/s41598-019-52725-1.
Campbell, Colin and Albert, Réka. Edgetic perturbations to eliminate fixed-point attractors in Boolean regulatory networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2):023130, 2019. https://doi.org/10.1063/1.5083060.
Bornholdt, Stefan and Kauffman, Stuart. Ensembles, dynamics, and cell types: Revisiting the statistical mechanics perspective on cellular regulation. Journal of Theoretical Biology, 467:1522, 2019. https://doi.org/10.1016/j.jtbi.2019.01.036. www.sciencedirect.com/science/article/pii/S0022519319300530.
Alon, Uri. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall, 2019.
Schwab, Julian D., Külwein, Silke D., Ikonomi, Nensi, Kühl, Michael, and Kestler, Hans A.. Concepts in Boolean network modeling: What do they all mean? Computational and Structural Biotechnology Journal, 18:571582, 2020. https://doi.org/10.1016/j.csbj.2020.03.001. www.sciencedirect.com/science/article/pii/S200103701930460X.
Saint-Antoine, MM and Singh, A. Network inference in systems biology: Recent developments, challenges, and applications. Current Opinion in Biotechnology, 63:8998, 2020. https://doi.org/10.1016/j.copbio.2019.12.002.
Paulevé, Loïc, Kolčák, Juraj, Chatain, Thomas, and Haar, Stefan. Reconciling qualitative, abstract, and scalable modeling of biological networks. Nature Communications, 11(1):4256, August 2020. https://doi.org/10.1038/s41467-020-18112-5. www.nature.com/articles/s41467-020-18112-5.
Biella, Paolo, Akter, Asma, Ollerton, Jeff, Nielsen, Anders, and Klecka, Jan. An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks. Functional Ecology, 34(11):22462258, 2020. https://doi.org/10.1111/1365-2435.13642. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13642.
Zheng, Zhigang. An introduction to emergence dynamics in complex systems. In Liu, Xiang-Yang, editor, Frontiers and Progress of Current Soft Matter Research, Soft and Biological Matter, pages 133196. Springer, 2021. https://doi.org/10.1007/978-981-15-9297-3_4.
Rozum, Jordan C., Gómez Tejeda Zañudo, Jorge, Gan, Xiao, Deritei, Dávid, and Albert, Réka. Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. Science Advances, 7(29):eabf8124, July 2021. https://doi.org/10.1126/sciadv.abf8124. https://advances.sciencemag.org/content/7/29/eabf8124.
Sadat Fatemi Nasrollahi, Fatemeh, Gómez Tejeda Zañudo, Jorge, Campbell, Colin, and Albert, Réka. Relationships among generalized positive feedback loops determine possible community outcomes in plant–pollinator interaction networks. Physical Review E, 104(5):054304, 2021.
Subbaroyan, Ajay, Martin, Olivier C., and Samal, Areejit. Minimum complexity drives regulatory logic in Boolean models of living systems. PNAS Nexus, 1(1):pgac017, April 2022. https://doi.org/10.1093/pnasnexus/pgac017.
Jordan, C. Rozum, Deritei, Dávid, Hyong Park, Kyu, Gómez Tejeda Zañudo, Jorge, and Albert, Réka. pystablemotifs: Python library for attractor identification and control in Boolean networks. Bioinformatics, 38(5):14651466, March 2022. https://doi.org/10.1093/bioinformatics/btab825.
Rozum, Jordan C. and Albert, Réka. Leveraging network structure in nonlinear control. npj Systems Biology and Applications, 8(1):36, 2022. https://doi.org/10.1038/s41540-022-00249-2.
Newby, Eli, Gómez Tejeda Zañudo, Jorge, and Albert, Réka. Structure-based approach to identifying small sets of driver nodes in biological networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(6):063102, 2022. https://doi.org/10.1063/5.0080843.
Naldi, Aurélien, Richard, Adrien, and Tonello, Elisa. Linear cuts in Boolean networks, 2022. https://arxiv.org/abs/2203.01620.
Maheshwari, Parul, Assmann, Sarah M., and Albert, Reka. Inference of a Boolean network from causal logic implications. Frontiers in Genetics, 13: 836856, 2022. https://doi.org/10.3389/fgene.2022.836856. www.frontiersin.org/articles/10.3389/fgene.2022.836856.
Abdelmonem Hemedan, Ahmed, Niarakis, Anna, Schneider, Reinhard, and Ostaszewski, Marek. Boolean modelling as a logic-based dynamic approach in systems medicine. Computational and Structural Biotechnology Journal, 20:31613172, 2022. https://doi.org/10.1016/j.csbj.2022.06.035. www.sciencedirect.com/science/article/pii/S2001037022002495.
Beneš, Nikola, Brim, Luboš, Huvar, Ondřej et al. AEON.py: Python library for attractor analysis in asynchronous Boolean networks. Bioinformatics, 38(21):49784980, November 2022. https://doi.org/10.1093/bioinformatics/btac624.
Trinh, Van-Giang, Benhamou, Belaid, Hiraishi, Kunihiko, and Soliman, Sylvain. Minimal trap spaces of logical models are maximal siphons of their petri net encoding. In Petre, Ion and Păun, Andrei, editors, Computational Methods in Systems Biology, volume 13447, pages 158176. Springer International, 2022a. https://doi.org/10.1007/978-3-031-15034-0_8. https://link.springer.com/10.1007/978-3-031-15034-0_8.
Campbell, Colin, Russo, Laura, Albert, Réka, Buckling, Angus, and Shea, Katriona. Whole community invasions and the integration of novel ecosystems. PLOS Computational Biology, 18(6):e1010151, 2022. https://doi.org/10.1371/journal.pcbi.1010151. https://dx.plos.org/10.1371/journal.pcbi.1010151.
Trinh, Van-Giang, Hiraishi, Kunihiko, and Benhamou, Belaid. Computing attractors of large-scale asynchronous Boolean networks using minimal trap spaces. In Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pages 110. ACM, August 2022b. https://doi.org/10.1145/3535508.3545520. https://dl.acm.org/doi/10.1145/3535508.3545520.
Sadat Fatemi Nasrollahi, Fatemeh, Campbell, Colin, and Albert, Réka. Predicting cascading extinctions and efficient restoration strategies in plant–pollinator networks via generalized positive feedback loops. Scientific Reports, 13(1):902, 2023.
Rämö, Pauli, Kauffman, Stuart, Kesseli, Juha, and Yli-Harja, Olli. Measures for information propagation in Boolean networks. Physica D: Non-linear Phenomena, 227(1):100104, March 2007. https://doi.org/10.1016/j.physd.2006.12.005.
Barros, João. Information Flows in Complex Networks. In Emmert-Streib, Frank and Dehmer, Matthias, editors, Information Theory and Statistical Learning, pages 267287. Springer US, Boston, MA, 2009. https://doi.org/10.1007/978-0-387-84816-7_11.
Harush, Uzi and Barzel, Baruch. Dynamic patterns of information flow in complex networks. Nature Communications, 8(1):2181, December 2017. https://doi.org/10.1038/s41467-017-01916-3.
Hyong Park, Kyu, Xavier Costa, Felipe, Rocha, Luis M., Albert, Réka, and Rozum, Jordan C., Models of Cell Processes are Far from the Edge of Chaos, PRX Life 1(2), 023009, 2023. https://doi.org/10.1103/PRXLife.1.023009.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.