References
Anderson, A. R. , and Belnap, N. D. (1975). Entailment: The Logic of Relevance and Necessity, Vol. I. Princeton: Princeton University Press.
Anderson, A. R. , Belnap, N. D., and Dunn, M. (1992). Entailment: The Logic of Relevance and Necessity, Vol. II. Princeton: Princeton University Press.
Avron, A. (1990). Relevance and paraconsistency—a new approach. Journal of Symbolic Logic 55(2), 707–732.
Barrio, E. A. , Pailos, F., and Szmuc, D. (2021). Substructural logics, pluralism and collapse. Synthese 198, 4991–5007.
Barwise, J. (1985). Model-theoretic logics: Background and aims. In Barwise, J. and Feferman, S. eds.), Model-theoretic Logics, pp. 3–23. New York: Springer-Verlag.
Barwise, J. , and Perry, J. (1983). Situations and Attitudes. Cambridge, Massachusetts, and London: MIT Press.
Beall, J. (2019). FDE as the One True Logic. In Omori, H. and Wansing, H. (eds.), New Essays on Belnap-Dunn Logic. Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol 418, pp. 115–125. Cham: Springer.
Beall, J. , Brady, R., Dunn, J. M., Hazen, A. P., Mares, E., Meyer, R. K., Priest, G., Restall, G., Ripley, D., Slaney, J., and Sylvan, R. (2012). On the ternary relation and conditionality. Journal of Philosophical Logic 41(3), 595–612.
Beall, J. , and Restall, G. (2006). Logical Pluralism. Oxford: Clarendon Press.
Benacerraf, P. , and Putnam, H. (1983). Philosophy of Mathematics. Cambridge: Cambridge University Press.
Boolos, G. (1984). To be is to be a value of a variable (or to be some values of some variables). Journal of Philosophy 81(8), 430–449.
Boolos, G. (1985). Nominalist platonism. Philosophical Review 94, 327–344.
Boolos, G. , Burgess, J., and Jeffrey, R. (2002). Computability and Logic, 4th ed., Cambridge: Cambridge University Press.
Brouwer, L. E. J. (1964a). Consciousness, philosophy and mathematics. In Benacerraf, P. and Putnam, H. (eds.), Philosophy of Mathematics: Selected Readings, pp. 90–96. Englewood Cliffs, NJ: Cambridge University Press.
Brouwer, L. E. J. (1964b). Intuitionism and Formalism. In Benacerraf, P. and Putnam, H. (eds.), Philosophy of Mathematics: Selected Readings, pp. 77–89. Englewood Cliffs, NJ: Cambridge University Press.
Burgess, J. (1992). Proofs about proofs: A defense of classical logic. In Detlefsen, M. (ed.), Proof, Logic and Formalization, pp. 8–23. London: Routledge.
Cocchiarella, N. (1988). Predication versus membership in the distinction between logic as language and logic as calculus. Synthese 77, 37–72.
Cook, R. T. (2002). Vagueness and mathematical precision. Mind 111(442), 225–247.
Corcoran, J. (1973). Gaps between logical theory and mathematical practice. In Bunge, M. A. (ed.), The Methodological Unity of Science, pp. 23–50. Boston: Reidel.
Davidson, D. (1984). Inquiries into Truth and Interpretation. Oxford: Oxford University Press.
Davis, M. (1965). The Undecidable. Hewlett, New York: The Raven Press.
Dean, W. (forthcoming). Skolem’s Paradox and Non-absoluteness. Cambridge: Cambridge University Press.
Dedekind, R. (1888). Was Sind und Was Sollen die Zahlen? F. Vieweg.
Dummett, M. (1978a). The Justification of Deduction. In Truth and Other Enigmas, pp. 290–318. Cambridge, MA: Harvard University Press.
Dummett, M. (1978b). The Philosophical Basis of Intuitionistic Logic. In Truth and Other Enigmas, pp. 215–247. Cambridge, MA: Harvard University Press.
Dummett, M. (2000). Elements of Intuitionism. Oxford: Clarendon Press.
Dunn, J. M. (2015). The relevance of relevance to relevance logic. In Banerjee, M. and Krishna, S. N. (eds.), Logic and Its Applications, pp. 11–29. Berlin Heidelberg: Springer.
Eklund, M. (1996). How logic became first-order. Nordic Journal of Philosophical Logic 1, 147–167.
Feferman, S. (2006). Predicativity. In Shapiro, S. (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, pp. 590–624. Oxford: Oxford University Press.
Frege, G. (1879). Begriffsschrift: Eine der Arithmetischen Nachgebildete Formelsprache des Reinen Denkens. Halle a.d.S.: Louis Nebert.
Gilmore, P. (1957). The monadic theory of types in the lower-predicate calculus. In Summaries of Talks Presented at the Summer Institute of Symbolic Logic at Cornell, pp. 309–312. Princeton, NJ: Institute for Defense Analysis.
Gödel, K. (1930). Die vollständigkeit der axiome des logischen funktionenkalkuls. Montatshefte für Mathematik und Physik 37, 349–360. Translated as “The completeness of the axioms of the functional calculus of logic,” in Van Heijenoort (1967), pp. 582–591.
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter systeme i. Montatshefte für Mathematik und Physik 38(1), 173–198. Translated as “On formally undecidable propositions of the Principia Mathematica,” in Davis (1965), pp. 4–35, Van Heijenoort (1967), pp. 596–616, and Gödel (1986), 144–195.
Gödel, K. (1986). Collected Works I. Oxford: Oxford University Press.
Haack, S. (1978). Philosophy of Logic. Cambridge: Cambridge University Press.
Haack, S. (1996). Deviant Logic, Fuzzy Logic: Beyond the Formalism. Chicago: University of Chicago Press.
Henkin, L. (1950). Completeness in the theory of types. The Journal of Symbolic Logic 15(2), 81–91.
Heyting, A. (1956). Intuitionism. Amsterdam: North Holland.
Hughes, G. E. , and Cresswell, M. (1996). A New Introduction to Modal Logic. United Kingdom: Routledge.
Kerr, A. D. (2021). A plea for KR. Synthese 198, 3047–3071.
Kripke, S. (1965). Semantical analysis of intuitionistic logic I. In Crossley, J. and Dummett, M. (eds.), Formal Systems and Recursive Functions, pp. 92–130. Amsterdam: North Holland.
Lewis, C. I. , and Langford, C. H. (1932). Symbolic Logic. New York: Dover Publications.
Lindström, P. (1969). On extensions of elementary logic. Theoria 35(1), 1–11.
Link, G. (1998). Algebraic Semantics in Language and Philosophy. Stanford, CA: SCLI Publications.
Logan, Shay & Graham, Leach-Krouse (2021). On Not Saying What We Shouldn’t Have to Say. _Australasian Journal of Logic_ 18(5):524–568.
Löwenheim, L. (1915). Über möglichkeiten im relativkalkül. Mathematische Annalen 76, 447–470.
Marcus, R. (1995). Modalities: Philosophical Essays. New York: Oxford University Press.
Mares, E. (2004). Relevant Logic: A Philosophical Interpretation. Cambridge: Cambridge University Press.
Martin, C. J. (1986). William’s machine. The Journal of Philosophy 83(10), 564–572.
Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Montague. New Haven: Yale University Press.
Moore, G. H. (1980). Beyond first-order logic, the historical interplay between logic and set theory. History and Philosophy of Logic 1, 95–137.
Moore, G. H. (1982). Zermelo’s Axiom of Choice: Its Origins, Development, and influence. Journal of Symbolic Logic 49(2), 659–660. Springer-Verlag.
Moore, G. H. (1988). The emergence of first-order logic. In Aspray, W. and Kitcher, P. (eds.), History and Philosophy of Modern Mathematics, pp. 95–135. Minneapolis: University of Minnesota Press. Minnesota Studies in the Philosophy of Science Volume 11.
Mortensen, C. (2013). Inconsistent Mathematics. Mathematics and Its Applications. Netherlands: Springer.
Øgaard, T. F. (2016). Paths to triviality. Journal of Philosophical Logic 45(3), 237–276.
Peano, G. (1889). Arithmetices principia: nova methodo exposita. Bocca brothers.
Prawitz, D. (1974). On the idea of a general proof theory. Synthese 27(1), 63–77.
Prawitz, D. (2008). Meaning and proofs: On the conflict between classical and intuitionistic logic. Theoria 43(1), 2–40.
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic 8(1), 219–241.
Priest, G. (1987). Doubt Truth to Be a Liar. New York: Oxford University Press.
Priest, G. (2001). An Introduction to Non-Classical Logic. Cambridge: Cambridge University Press.
Priest, G. (2006). In Contradiction: A Study of the Transconsistent, 2nd ed., Oxford: Oxford University Press.
Quine, W. V. O. (1986). Philosophy of Logic. Cambridge, MA: Harvard University Press.
Rayo, A. , and Yablo, S. (2001). Nominalism through de-nominalization. Noûs 35(1), 74–92.
Read, S. (1988). Relevant Logic: A Philosophical Examination of Inference. Oxford: Wiley-Blackwell.
Resnik, M. (1988). Second-order logic still wild. Journal of Philosophy 85, 75–87.
Resnik, M. (1996). Ought there to be but one logic? In Copeland, B. J. (ed.), Logic and Reality: Essays on the Legacy of Arthur Prior, pp. 489–517. Oxford: Oxford University Press.
Restall, G. (2000). An Introduction to Substructural Logic. New York: Routledge.
Ripley, D. (2015). Naive set theory and nontransitive logic. The Review of Symbolic Logic 8(3), 553–571.
Routley, R. , and Meyer, R. K. (1973). The semantics of entailment. In Leblanc, H. (ed.), Truth, Syntax, and Modality: Proceedings of the Temple University Conference on Alternative Semantics, pp. 199–243. North Holland.
Routley, R. , and Routley, V. (1972). The semantics of first degree entailment. Noûs 6(4), 335–359.
Rumfitt, I. (2015). The Boundary Stones of Thought: An Essay in the Philosophy of Logic. Oxford: Oxford University Press.
Russell, B. (1908). Mathematical logic as based on a theory of types. American Journal of Mathematics 30, 222–262.
Russell, B. (1973). Essays in Analysis. London: George Allen and Unwin Ltd.
Shapiro, S. (1991). Foundations without Foundationalism. Oxford: Clarendon Press.
Shapiro, S. (1993). Modality and ontology. Mind 102, 455–481.
Shapiro, S. (1996). (ed.) The Limits of Logic: Higher-order Logic and the Löwenheim-Skolem Theorem. United Kingdom: Routledge.
Shapiro, S. (1998). Logical consequence: Models and modality. In Schirn, M. (ed.), The Philosophy of Mathematics Today, pp. 131–156. Oxford: Clarendon Press.
Stebbing, L. S. (1939). Thinking to Some Purpose. London: Penguin Books.
Tarski, A. (2002). On the concept of following logically. History and Philosophy of Logic 23, 155–196.
Tedder, A. (2021). Information flow in logics in the vicinity of BB. The Australasian Journal of Logic 18, 1–24.
Tennant, N. (1997). The Taming of the True. New York: Oxford University Press.
Tennant, N. (2005). Relevance in reasoning. In Shapiro, S. (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, pp. 696–726. Oxford: Oxford University Press.
Tennant, N. (2015). A new unified account of truth and paradox. Synthese 124, 571–605.
Tennant, N. (2017). Core Logic. Oxford: Oxford University Press.
Urquhart, A. (1972). Semantics for relevant logics. The Journal of Symbolic Logic 37(1), 159–169.
Van Heijenoort, J. (1967). From Frege to Gödel. Cambridge, MA: Harvard University Press.
Wang, H. (1974). From Mathematics to Philosophy. London: Routledge and Kegan Paul.
Weber, Z. (2011). A paraconsistent model of vagueness. Mind 119(476), 1025–1045.
Whitehead, A. N. , and Russell, B. (1910). Principia Mathematica. Cambridge: Cambridge University Press.