Skip to main content
Computation and Modelling in Insurance and Finance
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Bølviken, Erik 2017. Wiley StatsRef: Statistics Reference Online.

    Huseby, A and Thomsen, J 2017. Safety and Reliability of Complex Engineered Systems.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Computation and Modelling in Insurance and Finance
    • Online ISBN: 9781139020251
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
  • Buy the print book

Book description

Focusing on what actuaries need in practice, this introductory account provides readers with essential tools for handling complex problems and explains how simulation models can be created, used and re-used (with modifications) in related situations. The book begins by outlining the basic tools of modelling and simulation, including a discussion of the Monte Carlo method and its use. Part II deals with general insurance and Part III with life insurance and financial risk. Algorithms that can be implemented on any programming platform are spread throughout and a program library written in R is included. Numerous figures and experiments with R-code illustrate the text. The author's non-technical approach is ideal for graduate students, the only prerequisites being introductory courses in calculus and linear algebra, probability and statistics. The book will also be of value to actuaries and other analysts in the industry looking to update their skills.

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. M. Adelson (1966). Compound Poisson distributions. Operational Research Quarterly, 17, 73–75.

J. Ahrens and U. Dieter (1974). Computer methods for sampling from Gamma, Beta, Poisson and binomial distributions. Computing, 12, 223–246.

D. Applebaum (2004). Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press.

s. Asmussen (2000). Ruin Probabilities. Singapore: World Scientific.

s. Asmussen and D.p. Kroese (2006). Improved algorithms for rare event simulation with heavy tails. Advances in Applied Probability, 38, 545–558.

A. C. Atkinson (1979). The computer generation of poisson random variables. Applied Statistics, 28, 29–35.

P. Azcue and N. Muler (2005). Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model. Mathematical Finance, 15, 261–308.

D. Babbel , J. Gold and C. B. Merrill (2002). Fair value of liabilities: The financial economics perspective. North American Actuarial Journal, 6, 12–27.

J. N. Bacro and M. Brito (1998). A tail bootstrap procedure for estimating the tail Pareto-index. Journal of Statistical Planning and Inference, 71, 245–260.

N. Balakrishnan (2004b). Discrete multivariate distributions. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons; pp. 549–571.

N. Balakrishnan and V. B. Nevzorov (2003). A Primer on Statistical Distributions. Hoboken, NJ: John Wiley & Sons.

C. A. Ball and W. N. Torous (2000). Stochastic correlation across international stock markets. Journal of Empirical Finance, 7, 373–388.

O. Barndorff-Nielsen (1997). Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics, 24, 1–13.

O. Barndorff-Nielsen and N. Shepard (2004). Econometric analysis of realized covariation: High frequency based covariation, regression and correlation in financial economics. Econometrica, 72, 885–925.

O. Barndorff-Nielsen and R. Stelzer (2005). Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian Lévy processes. Scandinavian Journal of Statistics, 32, 617–637.

N. Bäuerle (2005). Benchmark and mean-variance problems for insurers. Mathematical Methods of Operations Research, 62, 159–165.

N. Bäuerle and R. Griibel (2005). Multivariate counting processes. Copulas and Beyond. Astin Bulletin, 35, 379–408.

J. Beirlant (2004). Extremes. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons pp. 654–661.

J. Beirlant and Y. Goegebeur (2004). Local polynomial maximum likelihood estimation for pareto type distributions. Journal of Multivariate Analysis, 89, 97–118.

J. Beirlant , Y. Goegebeur , J. Segers and J. Teugels (2004). Statistics of Extremes: Theory and Applications. Chichester: John Wiley & Sons.

F. Benth (2004). Option Theory with Stochastic Analysis. An Introduction to Mathematical Finance. Berlin: Springer-Verlag.

A. Berkelaar , C. Dert , B. Oldenkamp and S. Zhang (2002). A primal-dual decomposition-based interior point approach to two-stage stochastic linear programming. Operations Research, 50, 904–915.

R. Bhar , C. Chiarella and W. J. Runggaldier (2002). Estimation in models of the instantaneous short term interest rate by use of a dynamic Bayesian algorithm. In K. Sandmann and P. J. Schönbucher (eds), Advances in Finance and Stochastics. Berlin: Springer-Verlag; pp. 177–195.

F. Black and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.

P. Blum and M. Dacorogna (2004). DFA - dynamic financial analysis. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons; pp. 505–519.

N. Bolia and S. Juneja (2005). Monte Carlo methods for pricing financial options. Sadhana, 30, 347–385.

T. Bollerslev (2001). Financial econometrics: past developments and future challenges. Journal of Econometrics, 100, 41–51.

E. Bølviken (2004) Stochastic simulation. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons; pp. 1613–1615.

C. S. Bos and N. Shephard (2006). Inference for adaptive time series models: Stochastic volatility and conditionally gaussian state space form. Econometric Reviews, 25, 219–244.

G. E. P. Box and M. E. Muller (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29, 610–611.

S.I. Boyarchenko and Z. Levendorskiῐ (2002) Non-Gaussian Merton-Black-Scholes Theory. River Edge, NJ: World Scientific.

M. J. Brennan and E. S. Schwartz (1976). The pricing of equity-linked insurance policies with an asset value guarantee. Journal of Financial Economics, 3, 195–213.

M. D. Buhmann (2003). Radial Basis Functions: Theory and Implementations. Cambridge: Cambridge University Press.

S. Butenko , A. Golodnikov and S. Uryasev (2005). Optimal security liquidation algorithms. Computational Optimization and Applications, 32, 9–27.

Z. Butt and S. Haberman (2004). Application of frailty-based mortality models using generalized linear models. Astin Bulletin, 34, 175–197.

J. Cai and K. s. Tan (2007). Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measure. Astin Bulletin, 37, 93–112.

A. Cairns (2000b). Some notes on the dynamics and optimal control of stochastic pension fund models in continuous Time. Astin Bulletin, 30, 19–55.

A. Cairns , D. Blake and K. Dowd (2006). Pricing death: Frameworks for the valuation and securization of mortality risk. Astin Bulletin, 36, 79–120.

N. H. Chan and H. Y. Wong (2006). Simulation Techniques in Financial Risk Management. Hoboken, NJ: John Wiley & Sons.

X. Chen and Y. Fan (2006). Estimation of copula-based semi-parametric time series models. Journal of Econometrics, 130, 307–335.

R. C. H. Cheng and G. M. Feast (1979). Some simple gamma variable generators. Applied Statistics, 28, 290–295.

U. Cherubini , E. Luciano and W. Vecchiato (2004). Copula Methods in Finance. Chichester: John Wiley & Sons.

S. Chib , F. Nardari and N. Shepard (2006). Analysis of high dimensional stochastic volatility models. Journal of Econometrics, 134, 341–371.

P. Congdon (2003). Applied Bayesian Modelling. Chichester: John Wiley & Sons.

R. Cont (2006). Model uncertainty and its impact on the pricing of derivative instruments. Mathematical Finance, 16, 519–547.

J. Cox , J. Ingersoll and S. Ross (1985). A theory of the term structure of interest rates. Econometrica, 53, 385–407.

J. S. Dagpunar (1989). An easily implemented generalised inverse Gaussian generator. Communications in Statistics. Simulation and Computation, 18, 703–710.

J. S. Dagpunar (2007). Simulation and Monte Carlo with Applications in Finance and MCMC. Chichester: John Wiley & Sons.

A. Dassios and J.-W. Jang (2003). Pricing of catastrophe reinsurance and derivatives using the cox process with shot noise intensity. Finance and Stochastics, 7, 73–95.

A. Dassios and J.-W. Jang (2005). Kalman-Busy filtering for linear systems driven by the cox process with shot noise intensity and its Application to the pricing of reinsurance contracts. Journal of Applied Probability, 42, 93–107.

A. C. Davison and D. V. Hinkley (1997). Bootstrap Methods and their Application. Cambridge: Cambridge University Press.

E. De Alba (2004). Bayesian claims reserving. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons; pp. 146–153.

E. De Alba (2006). Claims reserving when there are negative values in the run off triangle: Bayesian analysis the three-parameter log-normal distribution. North American Actuarial Journal, 10, 45–59.

P. Deb , M. K. Munkin and P. K. Trivedi (2006). Private insurance, selection and health care use: A Bayesian analysis of a Roy-type model. Journal of Business & Economic Statistics, 24, 403–415.

L. De Haan and F. Ferreira (2006). Extreme Value Theory: An Introduction. New York: Springer-Verlag.

P. De Jong and S. Ferris (2006). Adverse selection spirals. Astin Bulletin, 36, 589–628.

P. De Jong and G. Z. Heller (2008). Generalized Linear Models for Insurance Data. Cambridge: Cambridge University Press.

P. De Jong and L. Tickle (2006). Extending Leesarter mortality forecasting. Mathematical Population Studies, 13, 1–18.

P.E. De Lange , S.-E. Fleten and A.A. Gaivorinsky (2004). Modeling financial reinsurance in the casualty insurance business via stochastic programming. Journal of Economic Dynamics and Control, 28, 991–1012.

M. Denuit , x. Maréchal , S. Pitrebois and J.-F. Wahlin (2007). Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems. Chichester: John Wiley & Sons.

L. Devroye (1986). Non-uniform Random Variate Generation. New York: Springer-Verlag.

D. C. M. Dickson (2005). Insurance Risk and Ruin. Cambridge: Cambridge University Press.

D. C. M. Dickson and H. Waters (2006). Optimal dynamic reinsurance. Astin Bulletin, 36, 415–432.

A. Doucet , N. De Freitas and N. Gordon (eds) (2001). Sequential Monte Carlo in Practice. New York: Springer-Verlag.

G. H. Dunteman and M.-H. R. Ho (2006). An Introduction to Generalized Linear Models. Thousand Oaks, CA: Sage Publications.

B. Efron (1979). Bootstrap methods: An other look at the jacknife. Annals of Statistics, 7, 1–26.

B. Efron and R. J. Tibshirani (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.

P. Embrechts , C. Kliippelberg and T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag.

P. Embrechts , F. Lindskog and A. Mcneil (2003). Modelling dependence with copulas and applications to risk management. In S. T. Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance. Amsterdam: Elsevier; pp. 329–384.

P. D. England and R. J. Verrall (2006). Predictive distributions of outstanding liabilities in general insurance. Annals of Actuarial Science, 1, 221–270.

R.F. Engle (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50, 987–1007.

G. Escarela and J. F. Carrière (2006). A bivariate model of claim frequencies and severities. Journal of Applied Statistics, 33, 867–883.

K.T. Fang , S. Kotz and K.w. Ng (1990). Symmetric Multivariate and Related Distributions. London: Chapman & Hall.

E. C. Fieller and H. O. Hartley (1954). Sampling with control variables. Biometrika, 41, 494–501.

A. Finkelstein and J. Poterba (2002). Selection effects in the United Kingdom Individual annuities market. The Economic Journal, 112, 28–50.

G. S. Fishman (2001). Discrete-Event Simulation, Modeling, Programming and Analysis. New York: Springer-Verlag.

S.-E. Fleten , K. Høyland and S. W. Wallace (2002). The performance of stochastic dynamic and fixed mix portfolios models. European Journal of Operational Research, 140, 37–39.

D. O. Forfar (2004). Life table. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science, Chichester: John Wiley & Sons; pp. 1005–1009.

F. Fornari and A. Mele (2000). Stochastic Volatility in Financial Markets. Crossing the Bridge to Continuous Time. Dordrecht: Kluwer.

J. Franke , w. Härdle and C. Hafner (2004). Statistics of Financial Markets. Berlin: Springer-Verlag.

p. H. Franses and D. Van Dijk (2000). Non-linear Time Series Models in Empirical Finance. Cambridge: Cambridge University Press.

E. Frees (2003). Multivariate credibility for aggregate loss models. North American Actuarial Journal, 7, 13–37.

E.W. Frees and E.A. Valdez (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, 1–25.

A. Frigessi , O. Haug and H. Rue (2002). A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes, 5, 219–235.

M. Fu and J.-Q. Hu (1997). Conditional Monte Carlo. Gradient Estimation and Optimization Applications. Boston, MA: Kluwer.

C.-D. Fuh (2006). Efficient likelihood estimation in state space models. Annals of Statistics, 34, 2026–2068.

c. Genest and J. MacKay (1986). Thejoy of copulas: Bivariate distributions with uniform marginals. The American Statistician, 40, 280–283.

V. Genon-Catalot , T. Jeantheau and C. Larédo (2000). Stochastic volatility models as hidden markov models and statistical applications. Bernoulli, 6, 1051–1079.

J.E. Gentle (1998). Numerical Linear Algebrafor Applications in Statistics. New York: Springer-Verlag.

H.U. Gerber (1997). Life Insurance Mathematics, 3rd edn. Berlin: Springer-Verlag.

H. U. Gerber and E. S. W. Shiu (2003). Geometrie brownian motion models for assets and liabilities: From pension funding to optimal dividends. North American Actuarial Journal, 7, 37–51.

A. Gisler (2006). The estimation error in the chain ladder reserving method: A bayesian approach. Astin Bulletin, 36, 554–565.

A. Gloter (2007). Efficient estimation of drift parameters in stochastic volatility models. Finance and Stochastics, 11, 495–519.

J. Gondzio and R. Kouwenberg (2001). High-performance computing for asset-liability management. Operations Research, 49, 879–891.

J. Grandell (2004). Poisson processes. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons, pp. 1296–1301.

M. Greenwood and G. U. Yule (1920). An inquiry into the nature of frequency-distributions of multiple happenings, with particular reference to the occurrence of multiple attacks of disease or repeated accidents. Journal of Royal Statistical Society, 83, 255–279.

S. Haberman and A. E. Renshaw (1996). Generalized linear models and actuarial science. The Statistician, 45, 407–436.

R. Hafner (2004). Stochastic Implied Volatility. A Factor-Based Model. Berlin: Springer-Verlag.

P. Hall (1992). The Bootstrap and Edgeworth Expansion. New York: Springer-Verlag.

G. Hämmerlin and K.-H. Hof fmann (1991). Numerical Mathematics. Berlin: Springer-Verlag.

J. M. Hammersley and D. C. Handscomb (1964). Monte Carlo Methods. London: Methuen.

J. M. Hammersley and K. W. Morton (1956). A new Monte Carlo technique: Antithetic variates. Proceedings of the Cambridge Philosophical Society, 52, 449–475.

A. Harel and G. Harpaz (2007). Fair actuarial values for deductible insurance policies in the presence of parameter uncertainty. International Journal of Theoretical and Applied Finance, 10, 389–397.

A. Harvey , E. Ruiz and N. Shephard (1994). Multivariate stochastic variance models. Review of Economic Studies, 61, 247–264.

A. Harvey , S. J. Koopman and N. Shephard (eds) (2004). State Space and Unobserved Components Models: Theory and Applications. Cambridge: Cambridge University Press.

W. K. Hastings (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.

U. Herold and R. Maurer (2006). Portfolio choice and estimation risk: A comparison of bayesian to heuristic approaches. Astin Bulletin, 36, 135–160.

J. M. Hilbe (2007). Negative Binomial Regression. Cambridge: Cambridge University Press.

P. Hilli , M. Koivu , T. Pennanen and A. Ranne (2007). A stochastic programming model for asset liability management of a finnish pension company. Annals of Operations Research, 152, 115–139.

B. Højgaard and M. Taksar (2004). Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy. Quantitative Finance, 4, 315–327.

w. Hörmann , J. Leydold and G. Derflinger (2004). Automatic Non-Uniform Random Variate Generation. Berlin: Springer-Verlag.

B.R. Hunt , R.L. Lipsman and J. Rosenberg (2001). A Guide to MATLAB:for Beginners and Experienced Users. Cambridge: Cambridge University Press.

W. S. Jewell (1974). Credible means are exact Bayesian for exponential families. Astin Bulletin, 8, 77–90.

H. Joe (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.

N.L. Johnson , A.W. Kemp and S. Kotz (2005). Univariate Discrete Distributions, 3rd edn. Hoboken, NJ: John Wiley & Sons.

R. Josa-Fombellida and J. P. Rincón-Zapatero (2008). Mean-variance portfolio and contribution selection in stochastic pension funding. European Journal of Operational Research, 187, 120–137.

R. Kaas D. Dannenburg and M. Goovaerts (1997). Exact credibility for weighted observations. Astin Bulletin, 27, 287–295.

M. Kaluszka (2005). Truncated stop loss as optimal reinsurance agreementin One-period Models. Astin Bulletin, 35, 337–349.

D. Karlis and J. Lillestöl (2004). Bayesian estimation of NIG models via Markov chain Monte Carlo methods. Applied Stochastic Models in Business and Industry, 20, 323–338.

C. H. Kimberling (1974). A probabilistic interpretation of complete monotonicity. Aequationes Mathematicae, 10, 152–164.

A. J. Kinderman and J. F. Monahan (1980). New methods for generating Student's t and Gamma variables. Computing, 25, 369–377.

C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economic and Actuarial Sciences. Hoboken, NJ: John Wiley & Sons.

S. A. Klugman (1992). Bayesian Statistics in Actuarial Science: with Emphasis on Credibility. Dordrecht: Kluwer.

S.A. Klugman (2004). Continuous parametric distributions. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons, pp. 357–362.

S. A. Klugman , H. H. Panjer and G. E. Willmot (2008). Loss Models: From Data to Decisions, 3rd edn. New York: John Wiley & Sons.

E. J. Kontoghiorges , B. Rustem and S. Siokos (eds) (2002). Computational Methods in Decision-Making, Economics and Finance. Dordrecht: Kluwer.

S. Kotz and S. Nadarajah (2000). Extreme Value Distributions: Theory and Applications. London: Imperial College Press.

S. Kotz and S. Nadarajah (2004). Multivariatet Distributions and their Applications. Cambridge: Cambridge University Press.

S. Kotz , N. Balakrishnan and N.L. Johnson (2000). Continuous, Multivariate, Distributions. Volume 1. Models and Applications, 2nd edn. New York: John Wiley & Sons.

R. Kouwenberg (2001). Scenario generation and stochastic programming models for asset liability management. European Journal of Operational Research, 134, 279–292.

P. Krokhmal and S. Uryasev (2007). A sample-path approach to optimal position liquidation. Annals of Operations Research, 152, 193–225.

H. O. Lancaster (1957). Some properties of the bivariate normal distribution considered in the form of a contingency table. Biometrika, 44, 289–292.

K. Lange (2004). Optimization. New York: Springer-Verlag.

H. P. Langtangen (2003). Computational Partial Differential Equations: Numerical Methods and Diffpack Programming, 2nd edn. Berlin: Springer-Verlag.

J.F. Lawless (1987). Negative binomial and mixed poisson regression. Canadian Journal of Statistics, 15, 209–225.

R. D. Lee and L. w. Carter (1992). Modeling and forecasting us mortality (with discussion). Journal of the American Statistical Association, 87, 659–675.

S.-Y. Lee , W.-Y. Poon and X.-Y. Song (2007). Bayesian analysis of the factor model with finance applications. Quantitative Finance, 7, 343–356.

Y. Lee , J. A. Nelder and Y. Pawitan (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-Likelihood. Boca Raton, FL: Chapman & Hall/CRC.

M. Leippold , F. Trojani and p. Vanini (2004). A geometric approach to multi-period mean variance optimization of assets and liabilities. Journal of Economic Dynamics and Control, 28, 1079–1113.

Z. Liang and J. Guo (2007). Optimal proportional reinsurance and ruin probability. Stochastic Models, 23, 333–350.

X. S. Lin (2006). Introductory Stochastic Analysis for Finance and Insurance. Hoboken, NJ: John Wiley & Sons.

F. Longin and B. Solnik (2001). Extreme correlation of international equity markets. Journal of Finance, 56, 649–676.

H. Lütkepohl and M. Krätzig (eds) (2004). Applied Time Series Econometrics. Cambridge: Cambridge University Press.

H. Lütkepohl (2005). New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.

u. Makov (2001). Principal applications of Bayesian methods in actuarial science: A perspective. North American Actuarial Journal, 5, 53–57.

H. Markowitz (1952). Portfolio selection. Journal of Finance, 7, 77–91.

G. Marsaglia (1980). Generating random variables with a i-distribution. Mathematics of Computation, 34, 235–236.

A. Marshall and I. Olkin (1988). Families of multivariate distributions. Journal of American Statistical Association, 83, 834–841.

P. McCullagh and J. A. Nelder (1989). Generalized Linear Models, 2nd edn. London: Chapman & Hall.

R.C. Merton (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.

N. Metropolis , A. W. Rosenbluth , M. N. Rosenbluth , A. H. Teller and E. Teller (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092. [Reprinted in Kotz S. and Johnson N.L. (eds) (1997). Breakthroughs in Statistics, Volume III. New York: Springer-Verlag; pp. 127-139].

T. Mikosch (2006). Copulas: Facts and tales. Extremes, 9, 3–20.

T. C. Mills and R. N. Markellos (2008). The Econometric Modelling of Financial Time Series, 3rd edn. Cambridge: Cambridge University Press.

O. S. Mitchell and D. McCarthy (2002). Estimating international adverse selection in annuities. North American Actuarial Journal, 6, 38–54.

H. Niederreiter (1992). Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia, PA: SIAM.

R. Nordberg (2004a). Credibility theory. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science, Chichester: John Wiley & Sons, pp. 398–406.

R. Nordberg (2004b). Life insurance mathematics. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science, Chichester: John Wiley & Sons, pp. 986–997.

I. Ntzoufras , A. Katsis and D. Karlis (2005). Bayesian assessment of the distribution of insurance claim counts using reversible jump MCMC. North American Actuarial Journal, 9, 90–108.

R. E. Odeh and J.O. Evans (1974). Algorithm A570: The percentage points of the normal distribution. Applied Statistics, 23, 96–97.

E. Ohlsson and B. Johansson (2006). Exact credibility and Tweedie models. Astin Bulletin, 36, 121–133.

B. Oksendal (2003). Stochastic Differential Equations: An Introduction with Applications, 6th edn. Berlin: Springer-Verlag.

Y. Omori , S. Chib , N. Shephard and J. Nakajima (2007). Stochastic volatility with leverage: Fast and efficient likelihood inference. Journal of Econometrics, 140, 425–449.

M. I. Owadally (2003). Pension funding and the actuarial assumption concerning investment returns. Astin Bulletin, 33, 289–312.

H. Panjer (1981). Recursive evaluation of a family of compound distributions. Astin Bulletin, 12, 22–26.

M. Papi and S. Sbaraglia (2006). Optimal asset-liability management with constraints: A dynamic programming approach. Applied Mathematics and Computation, 173, 306–349.

J. Pollard (2004). Decrement analysis. In J. Teugels and B. Sundt (eds), Encyclopedia of Actuarial Science, Chichester: John Wiley & Sons; pp. 436–445.

O. Purcaru and M. Denuit (2003). Dependence in dynamic claim frequency credibility models. Astin Bulletin, 33, 23–40.

R. Rebonato (2004). Volatility and Correlation. The Perfect Hedger and the Fox, 2nd edn. Chichester: John Wiley & Sons.

C. R. Robert and G. Casella (2004). Monte Carlo Statistical Methods, 2nd edn. Berlin: Springer-Verlag.

T. Rolski , H. Schmidli , V. Schmidt and J. Teugels (1999). Stochastic Processes for Insurance and Finance. Chichester: John Wiley & Sons.

S. Roman (2004). Introduction to the Mathematics of Finance. New York: Springer-Verlag.

M. Rudolf and W. T. Ziemba (2004). Intertemporal surplus management. Journal of Economic Dynamics and Control, 28, 975–990.

D. Ruppert (2004). Statistics and Finance: An Introduction. New York: Springer-Verlag.

S. Sbaraglia , M. Papi , M. Briani , M. Bernaschi and F. Gozzi (2003). A model for optimal asset-liability management for insurance companies. International Journal of Theoretical and Applied Finance, 6, 277–299.

R. Schnieper (2004). Robust Bayesian experience rating. Astin Bulletin, 34, 125–150.

w. Schoutens (2003). Lévy Processes in Finance: Pricing Financial Derivatives. Chichester: John Wiley & Sons.

R. W. Scott (1992). Multivariate Density Estimation: Theory, Practice and Visualization, 2nd edn. New York: John Wiley & Sons.

N. Shephard (1994). Local scale models: State space alternative to integrated GARCH processes. Journal of Econometrics, 60, 181–202.

S. E. Shreve (2004b). Stochastic Calculus for Finance II. Continuous Time Models. New York: Springer-Verlag.

A. Stuart (1962). Gamma-distributed products of independent random variables. Biometrika, 49, 564–565.

G. Taylor (2000). Loss Reserving: An Actuarial Perspective. Boston, MA: Kluwer.

J. Teugels and B. Sundt (eds) (2004). Encyclopedia of Actuarial Science. Chichester: John Wiley & Sons.

R. Tsay (2010). Analysis of Financial Time series, 3rd edn. Hoboken, NJ: John Wiley & Sons.

s. Tuljapurkar , N. Li and c. Boe (2000). A universal pattern of decline in the G7 countries. Nature, 405, 789–792.

J. Van der Hoeck and R. J. Elliot (2006). Binomial Models in Finance. New York: Springer-Verlag.

O. Vasicek (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5, 177–188.

w. N. Venables and B. Ripley (2002). Modern Applied Statistics with S-plus, 4th edn. New York: Springer-Verlag.

M.P. Wand and M.C. Jones (1995). Kernel Smoothing. Boca Raton, FL: Chapman & Hall/CRC.

D. Wang and P. Lu (2005). Modelling and forecasting mortality distributions in england and wales using the Leearter model. Journal of Applied Statistics, 32, 873–885.

N. Whelan (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, 339–352.

H. White (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.

A. D. Wilkie (1995). More on a stochastic asset model for actuarial use (with discussion). British Actuarial Journal, 1, 777–964.

R. J. Williams (2006). Introduction to the Mathematics of Finance. Providence, RI: American Mathematical Society.

P. Wilmott , S. Howison and J. Dewynne (1995). The Mathematics of Financial Derivatives. Cambridge: Cambridge University Press.

M. V. Wiitrich , H. Biihlmann and H. Furrer (2010). Market-Consistent Actuarial Valuation, 2nd edn. Berlin: Springer-Verlag.

K. Yau , K. Yip and H.K. Yuen (2003). Modelling repeated insurance claim frequency data using the generalized linear mixed model. Journal of Applied Statistics, 30, 857–865.

V. R. Young (2004). Premium principles. In J. Teugels , and B. Sundt (eds), Encyclopedia of Actuarial Science, Chichester: John Wiley & Sons; pp. 1322–1331.

L. Zhang , P. A. Mykland and Y. Ai't-Sahalia (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. Journal of American Statistical Association, 100, 1394–1411.

x. Zhang , M. Zhou and J. Guo (2007). Optimal combination of quota-share and excess-of-loss reinurance policies in a dynamic setting: Research articles. Applied Stochastic Models in Business and Industry, 23, 63–71.

E. Zivot and J. Wang (2003). Modelling Financial Time Series with S-plus. New York: Springer-Verlag.


Full text views

Total number of HTML views: 0
Total number of PDF views: 980 *
Loading metrics...

Book summary page views

Total views: 838 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.