Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
October 2020
Print publication year:
2020
Online ISBN:
9781108893473

Book description

Computational fluid dynamics (CFD), which involves using computers to simulate fluid flow, is emerging as a powerful approach for elucidating the palaeobiology of ancient organisms. Here, Imran A. Rahman describes its applications for studying fossil echinoderms. When properly configured, CFD simulations can be used to test functional hypotheses in extinct species, informing on aspects such as feeding and stability. They also show great promise for addressing ecological questions related to the interaction between organisms and their environment. CFD has the potential to become an important tool in echinoderm palaeobiology over the coming years.

References

Alexander, D. E. & Ghiold, J. (1980). The functional significance of the lunules in the sand dollar, Mellita quinquiesperforata. The Biological Bulletin, 159(3), 561–70.
Álvaro, J. J. & Vennin, E. (1997). Episodic development of Cambrian eocrinoid-sponge meadows in the Iberian Chains (NE Spain). Facies, 37(1), 4963.
Ausich, W. I., Brett, C. E., Hess, H. & Simms, M. J. (1999). Crinoid form and function. In Hess, H., Ausich, W. I., Brett, C. E. & Simms, M. J., eds., Fossil Crinoids. Cambridge: Cambridge University Press, pp. 3–30.
Bauer, J. E., Waters, J. A. & Sumrall, C. D. (2019). Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata). Palaeontology, 62(6), 1003–13.
Baumiller, T. K. (1990). Physical modeling of the batocrinid anal tube: Functional analysis and multiple hypothesis testing. Lethaia, 23(4), 399408.
Baumiller, T. K. (2008). Crinoid ecological morphology. Annual Review of Earth and Planetary Science, 36, 221–49.
Baumiller, T. K., LaBarbera, M. & Woodley, J. D. (1991). Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): In situ and laboratory experiments and observations. Bulletin of Marine Science, 48(3), 731–48.
Baumiller, T. K. & Plotnick, R. E. (1989). Rotational stability in stalked crinoids and the function of wing plates in Pterotocrinus depressus. Lethaia, 22(3), 317–26.
Bottjer, D. J. & Ausich, W. I. (1986). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12(4), 400–20.
Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. (2000). The Cambrian substrate revolution. GSA Today, 10(9), 17.
Bourke, J. M., Porter, W. R., Ridgely, R. C., Lyson, T. R., Schachner, E. R., Bell, P. R. & Witmer, L. M. (2014). Breathing life into dinosaurs: Tackling challenges of soft-tissue restoration and nasal airflow in extinct species. The Anatomical Record, 297(11), 2148–86.
Bourke, J. M., Porter, W. R. & Witmer, L. M. (2018). Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora). PLoS ONE, 13(12), e0207381.
Breimer, A. & Macurda, D. B. Jr. (1972). The phylogeny of the fissiculate blastoids. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde. Eerste Reeks, 26(3), 1390.
Briggs, D. E. G., Siveter, D. J., Siveter, D. J., Sutton, M. D. & Rahman, I. A. (2017). An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm. Proceedings of the Royal Society B, 284(1862), 20171189.
Clark, E. G., Bhullar, B.-A. S., Darroch, S. A. F. & Briggs, D. E. G. (2017). Water vascular system architecture in an Ordovician ophiuroid. Biology Letters, 13(12), 20170635.
Cohen-Rengifo, M., Agüera, A., Detrain, C., Bouma, T. J., Dubois, P. & Flammang, P. (2018). Biomechanics and behaviour in the sea urchin Paracentrotus lividus (Lamarck, 1816) when facing gradually increasing water flows. Journal of Experimental Marine Biology and Ecology, 506, 6171.
Daley, P. E. J. (1996). The first solute which is attached as an adult: A Mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zoological Journal of the Linnean Society, 117(4), 405–40.
Darroch, S. A. F., Rahman, I. A., Gibson, B., Racicot, R. A. & Laflamme, M. (2017). Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biology Letters, 13(5), 20170033.
David, B., Lefebvre, B., Mooi, R. & Parsley, R. (2000). Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26(4), 529–55.
Dec, M. (2019). Hydrodynamic performance of psammosteids: New insights from computational fluid dynamics simulations. Acta Palaeontologica Polonica, 64(4), 679–84.
Dornbos, S. Q. (2006). Evolutionary palaeoecology of early epifaunal echinoderms: Response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2–4), 225–39.
Dornbos, S. Q. (2008). Tiering history of early epifaunal suspension-feeding echinoderms. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology. Bloomington: Indiana University Press, pp. 13343.
Dynowski, J. F., Nebelsick, J. H., Klein, A. & Roth-Nebelsick, A. (2016). Computational fluid dynamics analysis of the fossil crinoid Encrinus liliiformis (Echinodermata: Crinoidea). PLoS ONE, 11(5), e0156408.
Emelyanov, E. M. (2005). The Barrier Zones in the Ocean. New York: Springer.
Evans, M. W. & Harlow, F. H. (1957). The particle-in-cell method for hydrodynamic calculations. Los Alamos Scientific Laboratory Report, LA- 2139, 176.
Friedrich, W.-P. (1993). Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria, 7, 3190.
Gibson, B. M., Rahman, I. A., Maloney, K. M., Racicot, R. A., Mocke, H., Laflamme, M. & Darroch, S. A. F. (2019). Gregarious suspension feeding in a modular Ediacaran organism. Science Advances, 5(6), eaaw0260.
Gutarra, S., Moon, B. C., Rahman, I. A., Palmer, C., Lautenschlager, S., Brimacombe, A. J. & Benton, M. J. (2019). Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proceedings of the Royal Society B, 286(1898), 20182786.
Hagdorn, H. (1999). Triassic Muschelkalk of Central Europe. In Hess, H., Ausich, W. I., Brett, C. E. & Simms, M. J., eds., Fossil Crinoids. Cambridge: Cambridge University Press, pp. 164–176.
Harlow, F. H. & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Physics of Fluids, 8(12), 2182–9.
Hebdon, N., Ritterbush, K. A. & Choi, Y. (2020). Computational fluid dynamics modeling of fossil ammonoid shells. Palaeontologia Electronica, 23(1), a21.
Hess, J. L. & Smith, A. M. O. (1967). Calculation of potential flow around arbitrary bodies. Progress in Aerospace Sciences, 8, 1138.
Holtz, E. H. & MacDonald, B. A. (2009). Feeding behaviour of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea) in the laboratory and the field: Relationships between tentacle insertion rate, flow speed, and ingestion. Marine Biology, 156(7), 1389–98.
Huynh, T. L., Evangelista, D. & Marshall, C. R. (2015). Visualizing the fluid flow through the complex skeletonized respiratory structures of a blastoid echinoderm. Palaeontologia Electronica, 18(1), 14A.
Kogan, I., Pacholak, S., Licht, N., Schneider, J. W., Brücker, C. & Brandt, S. (2015). The invisible fish: Hydrodynamic constraints for predator–prey interaction in fossil fish Saurichthys compared to recent actinopterygians. Biology Open, 4, 1715–26.
Lautenschlager, S. (2016). Reconstructing the past: Methods and techniques for the digital restoration of fossils. Royal Society Open Science, 3(10), 160342.
Lefebvre, B. (2007). Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(1–2), 156–99.
Liu, S., Smith, A. S., Gu, Y., Tan, J., Liu, K. & Turk, G. (2015). Computer simulations imply forelimb-dominated underwater flight in plesiosaurs. PLoS Computational Biology, 11(12), e1004605.
Loo, L.-O., Jonsson, P. R., Sköld, M. & Karlsson, Ö. (1996). Passive suspension feeding in Amphiura filiformis (Echinodermata: Ophiuroidea): Feeding behaviour in flume flow and potential feeding rate of field populations. Marine Ecology Progress Series, 139, 143–55.
Macurda, D. B., Jr. & Meyer, D. L. (1974). Feeding posture of modern stalked crinoids. Nature, 247(5440), 394–6.
Messing, C. G., RoseSmyth, M. C., Mailer, S. R. & Miller, J. E. (1988). Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science, 42(3), 480–7.
Parsley, R. L. (1990). Aristocystites, a recumbent diploporid (Echinodermata) from the Middle and Late Ordovician of Bohemia, ČSSR. Journal of Paleontology, 64(2), 278–93.
Parsley, R. L. (1999). The Cincta (Homostelea) as blastozoans. In Candia Carnevali, M. D. & Bonasoro, F., eds., Echinoderm Research 1998. Rotterdam: Balkema, pp. 369–75.
Parsley, R. L. (2015). Flume studies using 1:1 scale models of Series 2 and basal Series 3 Cambrian gogiid eocrinoids from Guizhou Province, China to determine feeding posture and mode of attachment. Palaeoworld, 24(4), 400–7.
Rahman, I. A. (2017). Computational fluid dynamics as a tool for testing functional and ecological hypotheses in fossil taxa. Palaeontology, 60(4), 451–9.
Rahman, I. A., Darroch, S. A. F., Racicot, R. A. & Laflamme, M. (2015a). Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances, 1(10), e1500800.
Rahman, I. A. & Lautenschlager, S. (2017). Applications of three-dimensional box modeling to paleontological functional analysis. In Tapanila, L. & Rahman, I. A., eds., Virtual Paleontology: The Paleontological Society Papers, 22, 119–32.
Rahman, I. A., O’Shea, J., Lautenschlager, S. & Zamora, S. (2020). Potential evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63(5), 689–701.
Rahman, I. A., Thompson, J. R., Briggs, D. E. G., Siveter, D. J., Siveter, D. J. & Sutton, M. D. (2019). A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan. Proceedings of the Royal Society B, 286(1900), 20182792.
Rahman, I. A. & Zamora, S. (2009). The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157(2), 420–32.
Rahman, I. A., Zamora, S., Falkingham, P. L. & Phillips, J. C. (2015b). Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society B, 282(1818), 20151964.
Reich, M., Sprinkle, J., Lefebvre, B., Rössner, G. E. & Zamora, S. (2017). The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography. Journal of Paleontology, 91(4), 735–54.
Riddle, S. (1989). Functional morphology and paleoecological implications of the platycrinitid column (Echinodermata, Crinoidea). Journal of Paleontology, 63(6), 889–97.
Rigby, S. & Tabor, G. (2006). The use of computational fluid dynamics in reconstructing the hydrodynamic properties of graptolites. GFF, 128(2), 189–94.
Saulsbury, J. & Zamora, S. (2019). The nervous and circulatory systems of a Cretaceous crinoid: Preservation, palaeobiology and evolutionary significance. Palaeontology, 63(2), 243–53.
Schmidtling, R. C., II, & Marshall, C. R. (2010). Three dimensional structure and fluid flow through the hydrospires of the blastoid echinoderm, Pentremites rusticus. Journal of Paleontology, 84(1), 109–17.
Shiino, Y. & Kuwazuru, O. (2010). Functional adaptation of spiriferide brachiopod morphology. Journal of Evolutionary Biology, 23(7), 1547–57.
Shiino, Y. & Kuwazuru, O. (2011). Comparative experimental and simulation study on passive feeding flow generation in Cyrtospirifer. Memoirs of the Association of Australasian Palaeontologists, 41, 18.
Shiino, Y., Kuwazuru, O., Suzuki, Y. & Ono, S. (2012). Swimming capability of the remopleuridid trilobite Hypodicranotus striatus: Hydrodynamic functions of the exoskeleton and the long, forked hypostome. Journal of Theoretical Biology, 300, 2938.
Shiino, Y., Kuwazuru, O., Suzuki, Y., Ono, S. & Masuda, C. (2014). Pelagic or benthic? Mode of life of the remopleuridid trilobite Hypodicranotus striatulus. Bulletin of Geosciences, 89(2), 207–18.
Shiino, Y., Kuwazuru, O. & Yoshikawa, N. (2009). Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): Generating mechanism of passive feeding flows. Journal of Theoretical Biology, 259(1), 132–41.
Siedler, G., Griffies, S. M., Gould, J. & Church, J. A., eds. (2013). Ocean Circulation and Climate: A 21st Century Perspective. Oxford: Academic Press.
Smith, A. B. (2005). The pre-radial history of echinoderms. Geological Journal, 40(3), 255–80.
Souza, A. & Friedrichs, C. (2005). Near-bottom boundary layers. In Baumert, H. Z., Simpson, J. & Sündermann, J., eds., Marine Turbulence: Theories, Observations, and Models. Cambridge: Cambridge University Press, pp. 283–296.
Stow, D. A. V., Hernández-Molina, F. J., Llave, E., Sayago-Gil, M., Díaz del Río, V. & Branson, A. (2009). Bedform-velocity matrix: The estimation of bottom current velocity from bedform observations. Geology, 37(4), 327–30.
Telford, M. (1983). An experimental analysis of lunule function in the sand dollar Mellita quinquiesperforata. Marine Biology, 76(2), 125–34.
Thompson, M., Drolet, D. & Himmelman, J. H. (2005). Localization of infaunal prey by the sea star Leptasterias polaris. Marine Biology, 146(5), 887–94.
Troelsen, P. V., Wilkinson, D. M., Seddighi, M., Allanson, D. R. & Falkingham, P. L. (2019). Functional morphology and hydrodynamics of plesiosaur necks: Does size matter? Journal of Vertebrate Paleontology, 39(2), e1594850.
Waters, J. A., Sumrall, C. D., White, L. E., & Nguyen, B. K. (2015). Advancing phylogenetic inference in the Blastoidea (Echinodermata): Virtual 3D reconstructions of the internal anatomy. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology. Cuadernos del Museo Geominero, 19, 193–7.
Waters, J. A., White, L. E., Sumrall, C. D. & Nguyen, B. K. (2017).A new model of respiration in blastoid (Echinodermata) hydrospires based on computational fluid dynamic simulations of virtual 3D models. Journal of Paleontology, 91(4), 662–71.
Welch, J. R. (1978). Flume study of simulated feeding and hydrodynamics of a Paleozoic stalked crinoid. Paleobiology, 4(1), 8995.
Wroe, S., Parr, W. C. H., Ledogar, J. A., Bourke, J., Evans, S. P., Fiorenza, L., Benazzi, S., Hublin, J.-J., Stringer, C., Kullmer, O., Curry, M., Rae, T. C. & Yokley, T. R. (2018). Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proceedings of the Royal Society B, 282(1876), 20180085.
Zamora, S., Rahman, I. A. & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7(6), e38296.
Zamora, S. & Smith, A. B. (2008). A new Middle Cambrian stem-group echinoderm from Spain: Palaeobiological implications of a highly asymmetric cinctan. Acta Palaeontologica Polonica, 53(2), 207–20.
Zamora, S. & Smith, A. B. (2012). Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society B, 279(1727), 293–8.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.