Skip to main content Accessibility help
×
Home
Computational Thermodynamics of Materials
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 13
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This unique and comprehensive introduction offers an unrivalled and in-depth understanding of the computational-based thermodynamic approach and how it can be used to guide the design of materials for robust performances, integrating basic fundamental concepts with experimental techniques and practical industrial applications, to provide readers with a thorough grounding in the subject. Topics covered range from the underlying thermodynamic principles, to the theory and methodology of thermodynamic data collecting, analysis, modeling, and verification, with details on free energy, phase equilibrium, phase diagrams, chemical reactions, and electrochemistry. In thermodynamic modelling, the authors focus on the CALPHAD method and first-principles calculations. They also provide guidance for use of YPHON, a mixed-space phonon code developed by the authors for polar materials based on the supercell approach. Including worked examples, case studies, and end-of-chapter problems, this is an essential resource for students, researchers, and practitioners in materials science.

Reviews

'The book introduces basic thermodynamic concepts clearly and directs readers to appropriate references for advanced concepts and details of software implementation. The list of references is quite comprehensive. … This book will serve as an excellent reference on computational thermodynamics, and the exercises provided at the end of each chapter make it valuable as a graduate level textbook.'

Ram Devanathan Source: MRS Bulletin

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
1. Hillert, M., Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge, 2007.
2. Guggenheim, E. A., Mixtures, Clarendon Press, Oxford, 1952.
3. Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985.
4. Palatnik, L. S. and Landau, A. I., Phase Equilibria in Multicomponent Systems, Holt, Rinehart and Winston, London, 1964.
5. Hillert, M., “Principles of phase diagrams”, Int. Met. Rev. 30 (1985) 45–67.
6. Liu, Z. K. and Chang, Y. A., “Thermodynamic assessment of the Al–Fe–Si system”, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 30 (1999) 1081–1095.
7. Liu, Z. K., “Design magnesium alloys: how computational thermodynamics can help”. In Kaplan, H. I., Hryn, J. N., and Clow, B. B., Eds., Magnesium Technology 2000, Nashville, TN, TMS, Warrendale, PA, 2000, pp. 191–198.
8. Kohn, W. and Sham, L. J., “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140 (1965) A1133–A1138.
9. Goodwin, A. R. H., Marsh, K. N., and Wakeham, W. A., Eds., Measurement of the Thermodynamic Properties of Single Phases, Elsevier, Amsterdam, 2003.
10. Weir, R. D. and Loos, T. W. de, Eds., Measurement of the Thermodynamic Properties of Multiple Phases, Elsevier, Amsterdam, 2005.
11. Zhao, J.-C., Ed., Methods for Phase Diagram Determination, Elsevier, Amsterdam, 2007.
12. Marsh, K. N. and O'Hare, P. A. G., Eds., Solution Calorimetry, Blackwell Scientific, Oxford, 1994.
13. Kresse, G. and Joubert, D., “From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B 59 (1999) 1758–1775.
14. Kresse, G. and Furthmuller, J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Sci. 6 (1996) 15–50.
15. Wang, Y., Chen, L.-Q., and Liu, Z.-K., “YPHON: a package for calculating phonons of polar materials”, Commun. Comput. Phys. 185 (2014) 2950–2968.
16. Wang, Y., Liu, Z. K., and Chen, L. Q., “Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations”, Acta Mater. 52 (2004) 2665–2671.
17. Teter, D. M., Gibbs, G. V., Boisen, M. B., Allan, D. C., and Teter, M. P., “First-principles study of several hypothetical silica framework structures”, Phys. Rev. B 52 (1995) 8064–8073.
18. Shang, S. L., Wang, Y., Kim, D., and Liu, Z. K., “First-principles thermodynamics from phonon and Debye model: application to Ni and Ni3Al”, Comput. Mater. Sci. 47 (2010) 1040–1048.
19. Xie, J. J., Gironcoli, S. de, Baroni, S., and Scheffler, M., “First-principles calculation of the thermal properties of silver”, Phys. Rev. B 59 (1999) 965–969.
20. Walle, A. van de, Asta, M., and Ceder, G., “The alloy theoretic automated toolkit: a user guide”, CALPHAD 26 (2002) 539–553.
21. Alfe, D., “PHON: A program to calculate phonons using the small displacement method”, Comput. Phys. Commun. 180 (2009) 2622–2633.
22. Kresch, M., Delaire, O., Stevens, R., Lin, J. Y. Y., and Fultz, B., “Neutron scattering measurements of phonons in nickel at elevated temperatures”, Phys. Rev. B 75 (2007) 104301.
23. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.
24. Fultz, B., Anthony, L., Nagel, L. J., Nicklow, R. M., and Spooner, S., “Phonon densities of states and vibrational entropies of ordered and disordered Ni3Al”, Phys. Rev. B 52 (1995) 3315–3321.
25. Mostoller, M., Nicklow, R. M., Zehner, D. M., Lui, S. C., Mundenar, J. M., and Plummer, E. W., “Bulk and surface vibrational-modes in NiAl”, Phys. Rev. B 40 (1989) 2856–2872.
26. Statassis, C., Kayser, F. X., Loong, C.-K., and Rach, D., “Lattice dynamics of Ni3Al”, Phys. Rev. B 24 (1981) 3048–3054.
27. Manley, M. E., Lander, G. H., Sinn, H., Alatas, A., Hults, W. L., McQueeney, R. J., Smith, J. L., and Willit, J., “Phonon dispersion in uranium measured using inelastic x-ray scattering”, Phys. Rev. B 67 (2003) 052302.
28. Wang, Y., Wang, J. J., Zhang, H., Manga, V. R., Shang, S. L., Chen, L. Q., and Liu, Z. K., “A first-principles approach to elasticity at finite temperatures”, J. Phys. Condens. Matter 22 (2010) 225404.
29. Slater, J. C., “A simplification of the Hartree–Fock method”, Phys. Rev. 81 (1951) 385–390.
30. Perdew, J. P. and Zunger, A., “Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B 23 (1981) 5048–5079.
31. Perdew, J. P. and Wang, Y., “Accurate and simple analytic representation of the electron-gas correlation-energy”, Phys. Rev. B 45 (1992) 13244–13249.
32. Perdew, J. P., Burke, K., and Ernzerhof, M., “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865–3868.
33. Wallace, D. C., Thermodynamics of Crystals, John Wiley & Sons, New York, 1972.
34. Baroni, S., Gironcoli, S. de, Corso, A. Dal, and Giannozzi, P., “Phonons and related crystal properties from density-functional perturbation theory”, Rev. Mod. Phys. 73 (2001) 515–562.
35. Walle, A. van de and Ceder, G., “The effect of lattice vibrations on substitutional alloy thermodynamics”, Rev. Mod. Phys. 74 (2002) 11–45.
36. Baroni, S., Giannozzi, P., and Testa, A., “Elastic-constants of crystals from linear-response theory”, Phys. Rev. Lett. 59 (1987) 2662–2665.
37. Kern, G., Kresse, G., and Hafner, J., “Ab initio calculation of the lattice dynamics and phase diagram of boron nitride”, Phys. Rev. B 59 (1999) 8551–8559.
38. Wang, Y., Wang, J. J., Wang, W. Y., Mei, Z. G., Shang, S. L., Chen, L. Q. et al., “A mixed-space approach to first-principles calculations of phonon frequencies for polar materials”, J. Phys. Condens. Matter 11 (2010) 202201.
39. Jiang, C., Ph.D. thesis, Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach, Pennsylvania State University, Philadelphia, PA,2004.
40. Jiang, C., Wolverton, C., Sofo, J., Chen, L. Q., and Liu, Z. K., “First-principles study of binary bcc alloys using special quasirandom structures”, Phys. Rev. B 69 (2004) 214202.
41. Sigli, C., Kosugi, M., and Sanchez, J., “Calculation of thermodynamic properties and phase diagrams of binary transition-metal alloys”, Phys. Rev. Lett. 57 (1986) 253–256.
42. Wolverton, C. and Zunger, A., “Ising-like description of structurally relaxed ordered and disordered alloys”, Phys. Rev. Lett. 75 (1995) 3162–3165.
43. Zunger, A., Wei, S. H., Ferreira, L. G., and Bernard, J. E., “Special quasirandom structures”, Phys. Rev. Lett. 65 (1990) 353.
44. Walle, A. van de, Tiwary, P., Jong, M. de, Olmsted, D. L., Asta, M., Dick, A. et al., “Efficient stochastic generation of special quasirandom structures”, CALPHAD 42 (2013) 13–18.
45. Wang, Y., Zacherl, C. L., Shang, S. L., Chen, L. Q., and Liu, Z. K., “Phonon dispersions in random alloys: a method based on special quasi-random structure force constants”, J. Phys. Condens. Matter 23 (2011) 485403.
46. Dutta, B., Bisht, K., and Ghosh, S., “Ab initio calculation of phonon dispersions in size-mismatched disordered alloys”, Phys. Rev. B 82 (2010) 134207.
47. Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.
48. Saunders, N. and Miodownik, A. P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford, 1998.
49. Lukas, H. L., Fries, S. G., and Sundman, B., Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.
50. Lukas, H. L., Fries, S. G., and Sundman, B., “Software for CALPHAD modeling”, CALPHAD 26(2) (2002).
51. Lukas, H. L., Fries, S. G., and Sundman, B., “Software for CALPHAD modeling”, CALPHAD 33(2) (2009).
52. Dinsdale, A. T., “SGTE data for pure elements”, CALPHAD 15 (1991) 317–425.
53. Wang, Y., Curtarolo, S., Jiang, C., Arroyave, R., Wang, T., Ceder, G. et al., “Ab initio lattice stability in comparison with CALPHAD lattice stability”, CALPHAD 28 (2004) 79–90.
54. Ozolins, V., “First-principles calculations of free energies of unstable phases: the case of fcc W”, Phys. Rev. Lett. 102 (2009) 065702.
55. Hillert, M., “The Compound energy fermalism”. J. Alloys Compd. 320 (2001) 161–176.
56. Sundman, B., Ohnuma, I., Dupin, N., Kattner, U. R., and Fries, S. G., “An assessment of the entire Al–Fe system including D0(3) ordering”, Acta Mater. 57 (2009) 2896–2908.
57. Kusoffsky, A., Dupin, N., and Sundman, B., “On the compound energy formalism applied to fcc ordering”, CALPHAD 25 (2001) 549–565.
58. Abe, T. and Sundman, B., “A description of the effect of short range ordering in the compound energy formalism”, CALPHAD 27 (2003) 403–408.
59. Liu, Z. K., Zhang, H., Ganeshan, S., Wang, Y., and Mathaudhu, S. N., “Computational modeling of effects of alloying elements on elastic coefficients”, Scr. Matter 63 (2010) 686–691.
60. Hillert, M., and Jarl, M. A., “Model for alloying effects in ferromagnatic metals”, CALPHAD 2 (1978) 227–238.
61. Xiong, W., Chen, Q., Korzhavyi, P. A., and Selleby, M., “An improved magnetic model for thermodynamic modelling”, CALPHAD 39 (2012) 11–20.
62. Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A. & Cross, L. E.Thermodynamic theory of PbTiO 3”, J. Appl. Phys. 62 (1987) 3331–8.
63. Scientific Group Thermodata Europe (SGTE), Thermodynamic Properties of Inorganic Materials. Lehrstuhl für Theoretische Hüttenkunde, Ed. Landolt-Boernstein New Series, Group IV, Springer, Berlin, 1999, vol. 19.
64. Andersson, J. O., Helander, T., Hoglund, L. H., Shi, P. F., and Sundman, B., “Thermo-Calc and DICTRA, computational tools for materials science”, CALPHAD 26 (2002) 273–312.
65. Yang, M., Zhong, Y., and Liu, Z. K., “Defect analysis and thermodynamic modeling of LaCoO3−δ”, Solid State Ionics 178 (2007) 1027–1032.
66. Macdonald, D. D., “Passivity – the key to our metals-based civilization”, Pure Appl. Chem. 71 (1999) 951–978.
67. Larcin, J., Maskell, W. C., and Tye, F. L., “Leclanché cell investigations. 1. Zn(NH3)2Cl2 solubility and the formation of ZnCl2⋅4Zn(OH)2⋅H2O”, Electrochim. Acta 42 (1997) 2649–2658.
68. Liu, Z. K., Wang, Y., and Shang, S. L., “Origin of negative thermal expansion phenomenon in solids”, Scripta Mater. 65 (2011) 664–667.
69. Wang, Y., Hector, L. G., Zhang, H., Shang, S. L., Chen, L. Q., and Liu, Z. K., “Thermodynamics of the Ce gamma-alpha transition: density-functional study”, Phys. Rev. 78 (2008) 104113.
70. Wang, Y., Hector, L. G., Zhang, H., Shang, S. L., Chen, L. Q., and Liu, Z. K., “A thermodynamic framework for a system with itinerant-electron magnetism”, J. Phys. Condens. Matter 21 (2009) 326003.
71. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P., “Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study”, Phys. Rev. B 57 (1998) 1505–1509.
72. Liu, Z.-K., Wang, Y., and Shang, S., “Thermal expansion anomaly regulated by entropy”, Sci. Rep. 4 (2014) 7043.
73. Wang, Y., Shang, S. L., Zhang, H., Chen, L. Q., and Liu, Z. K., “Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype”, Philos. Mag. Lett. 90 (2010) 851–859.
74. National Science and Technology Council, “Materials Genome Initiative for Global Competitiveness”, www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf, Office of Science and Technology Policy, Washington DC, June 2011.
75. Kaufman, L. and Agren, J., “CALPHAD, first and second generation – birth of the materials genome”, 70 (2014) 3–6.
76. Liu, Z. K., “Perspective on Materials Genome®”, Chin. Sci. Bull. 59 (2014) 1619–1623.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.