Skip to main content
Computational Thermodynamics of Materials
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Computational Thermodynamics of Materials
    • Online ISBN: 9781139018265
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
  • Buy the print book

Book description

This unique and comprehensive introduction offers an unrivalled and in-depth understanding of the computational-based thermodynamic approach and how it can be used to guide the design of materials for robust performances, integrating basic fundamental concepts with experimental techniques and practical industrial applications, to provide readers with a thorough grounding in the subject. Topics covered range from the underlying thermodynamic principles, to the theory and methodology of thermodynamic data collecting, analysis, modeling, and verification, with details on free energy, phase equilibrium, phase diagrams, chemical reactions, and electrochemistry. In thermodynamic modelling, the authors focus on the CALPHAD method and first-principles calculations. They also provide guidance for use of YPHON, a mixed-space phonon code developed by the authors for polar materials based on the supercell approach. Including worked examples, case studies, and end-of-chapter problems, this is an essential resource for students, researchers, and practitioners in materials science.


'The book introduces basic thermodynamic concepts clearly and directs readers to appropriate references for advanced concepts and details of software implementation. The list of references is quite comprehensive. … This book will serve as an excellent reference on computational thermodynamics, and the exercises provided at the end of each chapter make it valuable as a graduate level textbook.'

Ram Devanathan Source: MRS Bulletin

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. M. Hillert , Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge, 2007.

5. M. Hillert , “Principles of phase diagrams”, Int. Met. Rev. 30 (1985) 45–67.

6. Z. K. Liu and Y. A. Chang , “Thermodynamic assessment of the Al–Fe–Si system”, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 30 (1999) 1081–1095.

8. W. Kohn and L. J. Sham , “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140 (1965) A1133–A1138.

13. G. Kresse and D. Joubert , “From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B 59 (1999) 1758–1775.

14. G. Kresse and J. Furthmuller , “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Sci. 6 (1996) 15–50.

15. Y. Wang , L.-Q. Chen , and Z.-K. Liu , “YPHON: a package for calculating phonons of polar materials”, Commun. Comput. Phys. 185 (2014) 2950–2968.

17. D. M. Teter , G. V. Gibbs , M. B. Boisen , D. C. Allan , and M. P. Teter , “First-principles study of several hypothetical silica framework structures”, Phys. Rev. B 52 (1995) 8064–8073.

18. S. L. Shang , Y. Wang , D. Kim , and Z. K. Liu , “First-principles thermodynamics from phonon and Debye model: application to Ni and Ni3Al”, Comput. Mater. Sci. 47 (2010) 1040–1048.

19. J. J. Xie , S. de Gironcoli , S. Baroni , and M. Scheffler , “First-principles calculation of the thermal properties of silver”, Phys. Rev. B 59 (1999) 965–969.

21. D. Alfe , “PHON: A program to calculate phonons using the small displacement method”, Comput. Phys. Commun. 180 (2009) 2622–2633.

22. M. Kresch , O. Delaire , R. Stevens , J. Y. Y. Lin , and B. Fultz , “Neutron scattering measurements of phonons in nickel at elevated temperatures”, Phys. Rev. B 75 (2007) 104301.

24. B. Fultz , L. Anthony , L. J. Nagel , R. M. Nicklow , and S. Spooner , “Phonon densities of states and vibrational entropies of ordered and disordered Ni3Al”, Phys. Rev. B 52 (1995) 3315–3321.

25. M. Mostoller , R. M. Nicklow , D. M. Zehner , S. C. Lui , J. M. Mundenar , and E. W. Plummer , “Bulk and surface vibrational-modes in NiAl”, Phys. Rev. B 40 (1989) 2856–2872.

27. M. E. Manley , G. H. Lander , H. Sinn , A. Alatas , W. L. Hults , R. J. McQueeney , J. L. Smith , and J. Willit , “Phonon dispersion in uranium measured using inelastic x-ray scattering”, Phys. Rev. B 67 (2003) 052302.

28. Y. Wang , J. J. Wang , H. Zhang , V. R. Manga , S. L. Shang , L. Q. Chen , and Z. K. Liu , “A first-principles approach to elasticity at finite temperatures”, J. Phys. Condens. Matter 22 (2010) 225404.

29. J. C. Slater , “A simplification of the Hartree–Fock method”, Phys. Rev. 81 (1951) 385–390.

30. J. P. Perdew and A. Zunger , “Self-interaction correction to density-functional approximations for many-electron systems”, Phys. Rev. B 23 (1981) 5048–5079.

31. J. P. Perdew and Y. Wang , “Accurate and simple analytic representation of the electron-gas correlation-energy”, Phys. Rev. B 45 (1992) 13244–13249.

32. J. P. Perdew , K. Burke , and M. Ernzerhof , “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865–3868.

34. S. Baroni , S. de Gironcoli , A. Dal Corso , and P. Giannozzi , “Phonons and related crystal properties from density-functional perturbation theory”, Rev. Mod. Phys. 73 (2001) 515–562.

36. S. Baroni , P. Giannozzi , and A. Testa , “Elastic-constants of crystals from linear-response theory”, Phys. Rev. Lett. 59 (1987) 2662–2665.

37. G. Kern , G. Kresse , and J. Hafner , “Ab initio calculation of the lattice dynamics and phase diagram of boron nitride”, Phys. Rev. B 59 (1999) 8551–8559.

40. C. Jiang , C. Wolverton , J. Sofo , L. Q. Chen , and Z. K. Liu , “First-principles study of binary bcc alloys using special quasirandom structures”, Phys. Rev. B 69 (2004) 214202.

41. C. Sigli , M. Kosugi , and J. Sanchez , “Calculation of thermodynamic properties and phase diagrams of binary transition-metal alloys”, Phys. Rev. Lett. 57 (1986) 253–256.

42. C. Wolverton and A. Zunger , “Ising-like description of structurally relaxed ordered and disordered alloys”, Phys. Rev. Lett. 75 (1995) 3162–3165.

43. A. Zunger , S. H. Wei , L. G. Ferreira , and J. E. Bernard , “Special quasirandom structures”, Phys. Rev. Lett. 65 (1990) 353.

45. Y. Wang , C. L. Zacherl , S. L. Shang , L. Q. Chen , and Z. K. Liu , “Phonon dispersions in random alloys: a method based on special quasi-random structure force constants”, J. Phys. Condens. Matter 23 (2011) 485403.

46. B. Dutta , K. Bisht , and S. Ghosh , “Ab initio calculation of phonon dispersions in size-mismatched disordered alloys”, Phys. Rev. B 82 (2010) 134207.

49. H. L. Lukas , S. G. Fries , and B. Sundman , Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.

52. A. T. Dinsdale , “SGTE data for pure elements”, CALPHAD 15 (1991) 317–425.

53. Y. Wang , S. Curtarolo , C. Jiang , R. Arroyave , T. Wang , G. Ceder et al., “Ab initio lattice stability in comparison with CALPHAD lattice stability”, CALPHAD 28 (2004) 79–90.

54. V. Ozolins , “First-principles calculations of free energies of unstable phases: the case of fcc W”, Phys. Rev. Lett. 102 (2009) 065702.

55. M. Hillert , “The Compound energy fermalism”. J. Alloys Compd. 320 (2001) 161–176.

56. B. Sundman , I. Ohnuma , N. Dupin , U. R. Kattner , and S. G. Fries , “An assessment of the entire Al–Fe system including D0(3) ordering”, Acta Mater. 57 (2009) 2896–2908.

57. A. Kusoffsky , N. Dupin , and B. Sundman , “On the compound energy formalism applied to fcc ordering”, CALPHAD 25 (2001) 549–565.

58. T. Abe and B. Sundman , “A description of the effect of short range ordering in the compound energy formalism”, CALPHAD 27 (2003) 403–408.

60. M. Hillert , and M. A. Jarl , “Model for alloying effects in ferromagnatic metals”, CALPHAD 2 (1978) 227–238.

61. W. Xiong , Q. Chen , P. A. Korzhavyi , and M. Selleby , “An improved magnetic model for thermodynamic modelling”, CALPHAD 39 (2012) 11–20.

62. M. J. Haun , E. Furman , S. J. Jang , H. A. McKinstry & L. E. Cross Thermodynamic theory of PbTiO 3”, J. Appl. Phys. 62 (1987) 3331–8.

64. J. O. Andersson , T. Helander , L. H. Hoglund , P. F. Shi , and B. Sundman , “Thermo-Calc and DICTRA, computational tools for materials science”, CALPHAD 26 (2002) 273–312.

65. M. Yang , Y. Zhong , and Z. K. Liu , “Defect analysis and thermodynamic modeling of LaCoO3−δ”, Solid State Ionics 178 (2007) 1027–1032.

66. D. D. Macdonald , “Passivity – the key to our metals-based civilization”, Pure Appl. Chem. 71 (1999) 951–978.

67. J. Larcin , W. C. Maskell , and F. L. Tye , “Leclanché cell investigations. 1. Zn(NH3)2Cl2 solubility and the formation of ZnCl2⋅4Zn(OH)2⋅H2O”, Electrochim. Acta 42 (1997) 2649–2658.

68. Z. K. Liu , Y. Wang , and S. L. Shang , “Origin of negative thermal expansion phenomenon in solids”, Scripta Mater. 65 (2011) 664–667.

69. Y. Wang , L. G. Hector , H. Zhang , S. L. Shang , L. Q. Chen , and Z. K. Liu , “Thermodynamics of the Ce gamma-alpha transition: density-functional study”, Phys. Rev. 78 (2008) 104113.

70. Y. Wang , L. G. Hector , H. Zhang , S. L. Shang , L. Q. Chen , and Z. K. Liu , “A thermodynamic framework for a system with itinerant-electron magnetism”, J. Phys. Condens. Matter 21 (2009) 326003.

71. S. L. Dudarev , G. A. Botton , S. Y. Savrasov , C. J. Humphreys , and A. P. Sutton , “Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study”, Phys. Rev. B 57 (1998) 1505–1509.

72. Z.-K. Liu , Y. Wang , and S. Shang , “Thermal expansion anomaly regulated by entropy”, Sci. Rep. 4 (2014) 7043.

73. Y. Wang , S. L. Shang , H. Zhang , L. Q. Chen , and Z. K. Liu , “Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype”, Philos. Mag. Lett. 90 (2010) 851–859.

76. Z. K. Liu , “Perspective on Materials Genome®”, Chin. Sci. Bull. 59 (2014) 1619–1623.


Full text views

Total number of HTML views: 0
Total number of PDF views: 777 *
Loading metrics...

Book summary page views

Total views: 1168 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.