Skip to main content Accessibility help
×
  • Additional resources for this publication available here.
  • Cited by 35
  • Lei Lei, Shanghai Jiao Tong University, China, Dilin Liu, University of Alabama
Publisher:
Cambridge University Press
Online publication date:
August 2021
Print publication year:
2021
Online ISBN:
9781108909679
Subjects:
Research Methods in Linguistics, Applied Linguistics, Language and Linguistics
Series:
Elements in Corpus Linguistics

Book description

This Element provides a basic introduction to sentiment analysis, aimed at helping students and professionals in corpus linguistics to understand what sentiment analysis is, how it is conducted, and where it can be applied. It begins with a definition of sentiment analysis and a discussion of the domains where sentiment analysis is conducted and used the most. Then, it introduces two main methods that are commonly used in sentiment analysis known as supervised machine-learning and unsupervised learning (or lexicon-based) methods, followed by a step-by-step explanation of how to perform sentiment analysis with R. The Element then provides two detailed examples or cases of sentiment and emotion analysis, with one using an unsupervised method and the other using a supervised learning method.

References

Ali, N. M., Abd El Hamid, M. M., & Youssif, A. (2019). Sentiment analysis for movies reviews dataset using deep learning models. International Journal of Data Mining & Knowledge Management Process, 9(2/3), 1927.
Ambrose, S. (1983). Eisenhower: Soldier, general of the army, president-elect (1893–1952). New York: Simon & Schuster.
Antonakaki, D., Spiliotopoulos, D., Samaras, C. V., Pratikakis, P., Ioannidis, S., & Fragopoulou, P. (2017). Social media analysis during political turbulence. PLoS ONE, 12(10), e0186836.
Biber, D. (2006) Stance in spoken and written university registers. Journal of English for Academic Purposes, 5, 97116.
Brookhiser, R. (2002). America’s first dynasty: The Adamses, 1735–1918. New York: Simon & Schuster.
Cambria, E., Poria, S., Bajpai, R., & Schuller, B. (2016). SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. In Y. Matsumoto & R. Prasad (eds.), Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers (pp. 2666–2677). Osaka, Japan.
Cao, X., Lei, L., & Wen, J. (2020). Promoting science with linguistic devices: A large-scale study of the use of positive and negative words in academic writing. Learned Publishing, https://doi.org/10.1002/leap.1322.
Chen, Y., & Skiena, S. (2014). Building sentiment lexicons for all major languages. In K. Toutanova & H. Wu (eds.), Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (short papers) (pp. 383–389). Baltimore, MD.
Collins COBUILD English Dictionary. (1987). Glasgow, UK: HarperCollins.
Conrad, S., & Biber, D. (2000). Adverbial marking of stance in speech and writing. In Hunston, S. & Thompson, G. (eds.), Evaluation in text: Authorial stance and the construction of discourse (p. 5673). Oxford: Oxford University Press.
Cooper, J. (2008). The Reagan years: The Great Communicator as diarist. Intelligence and National Security, 23(6), 892901.
D’Andrea, A., Ferri, F., Grifoni, P., & Guzzo, T. (2015). Approaches, tools and applications for sentiment analysis implementation. International Journal of Computer Applications, 125(3), 2633.
Davenport, T. H., & Harris, J. G. (2009). What people want (and how to predict it). MIT Sloan Management Review, 50(2), 2331.
Davies, M. (2008–) The corpus of contemporary American English. www.english-corpora.org/coca/ (last accessed April 2021).
Denecke, K., & Deng, Y. (2015). Sentiment analysis in medical settings: New opportunities and challenges. Artificial Intelligence in Medicine, 64(1), 1727.
Desjardins, L. (January 30, 2018). The word nearly every president uses to describe the state of the union. PBS NewsHour. www.pbs.org/newshour/politics/the-word-nearly-every-president-uses-to-describe-the-state-of-the-union (accessed August 13, 2020).
Dipper, S. (2008). Theory-driven and corpus-driven computational linguistics, and the use of corpora. In Lüdeling, A. & Kytö, M. (eds). Corpus linguistics: An international handbook (pp. 6896). Berlin/New York: de Gruyter.
Eggertsson, G. B. (2008). Great expectations and the end of the Depression. American Economic Review, 98(4), 14761516.
Ekman, P. (1999). Basic emotions. In Dalgleish, T. & Power, M. J. (eds.), Handbook of cognition and emotion (pp. 4560). Hoboken, NJ: Wiley.
Federal Reserve Bank of Minneapolis Quarterly Review, Vol. 4, No. 1 (1980). https://ideas.repec.org/s/fip/fedmqr2.html (accessed August 15, 2020).
Feldman, R. (2013). Techniques and applications for sentiment analysis. Communication of the ACM, 56(4), 8289.
Garcia, D. (2013). Sentiment during recessions. The Journal of Finance, 68(3), 12671300.
Gayo-Avello, D. (2012a). I wanted to predict elections with Twitter and all I got was this lousy paper: A balanced survey on election prediction using Twitter data. arXiv preprint arXiv:1204.6441.
Gayo-Avello, D. (2012b). No, you cannot predict elections with Twitter. Internet Computing, IEEE, 16(6), 9194.
Giuntini, F. T., Cazzolato, M. T., dos Reis, M. d. J. D., Campbell, A. T., Traina, A. J. M., & Ueyama, J. (2020). A review on recognizing depression in social networks: Challenges and opportunities. Journal of Ambient Intelligence and Humanized Computing, Advance online publication. https://doi.org/10.1007/s12652-020-01726-4.
Gonçalves, P., Benevenuto, F., & Cha, M. (2013). Panas-t: A psychometric scale for measuring sentiments on twitter. arXiv preprint:1308.1857.
Gopaldas, A. (2014). Marketplace sentiments. Journal of Consumer Research, 41(4), 9951014.
Hajek, P., Olej, V., & Myskova, R. (2014). Forecasting corporate financial performance using sentiment in annual reports for stakeholders’ decision-making. Technological and Economic Development of Economy, 20(4), 721738.
Hamilton, W. L., Clark, K., Leskovec, J., & Jurafsky, D. (2016). Inducing domain-specific sentiment lexicons from unlabeled corpora. In J. Su, K. Duh, & X. Carreras (eds.), Proceedings of the conference on empirical methods in natural language processing, (pp. 595605). Austin, TX.
Homburg, C., Ehm, L., & Artz, M. (2015). Measuring and managing consumer sentiment in an online community environment. Journal of Marketing Research, 52(5), 629641.
Hu, Y., Hsiau, W., Shih, S., & Chen, C. (2018). Considering online consumer reviews to predict movie box-office performance between the years 2009 and 2014 in the US. The Electronic Library 36(6), 10101026.
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Kim, W., Kohavi, R., Gehrke, J., & DuMouchel, W. (eds.), The 2004 ACM SIGKDD international conference (pp. 168–177). Seattle, WA.
Hunston, S. (2011). Corpus approaches to evaluation: Phraseology and evaluative language. London: Routledge.
Hur, M., Kang, P., & Cho, S. (2016). Box-office forecasting based on sentiments of movie reviews and independent subspace method. Information Sciences, 372, 608624.
Ikoro, V., Sharmina, M., Malik, K., & Batista-Navarro, R. (2018). Analyzing sentiments expressed on Twitter by UK energy company consumers. In 2018 fifth international conference on social networks analysis, management and security (SNAMS 2018). (pp. 95–98). Valencia, Spain: IEEE. https://doi.org/10.1109/SNAMS.2018.8554619.
Jockers, M. (2017a). Syuzhet (Version 1.04) [Computer software]. https://github.com/mjockers/syuzhet.
Jockers, M. (2017b). Syuzhet sentiment lexicon [Computer software]. https://github.com/mjockers/syuzhet.
Jungherr, A., Schoen, H., Posegga, O., & Jürgens, P. (2017). Digital trace data in the study of public opinion: An indicator of attention toward politics rather than political support. Social Science Computing, 35, 336356.
Katti, R. (2016). Naïve Bayes classification for sentiment analysis of movie reviews. https://rpubs.com/cen0te/naivebayes-sentimentpolarity.
Keller, B. (2003). God and George W. Bush. New York Times May 17. www.nytimes.com/2003/05/17/opinion/god-and-george-w-bush.html (accessed August 16, 2020).
Kohn, R. H. (1972). The Washington administration’s decision to crush the Whiskey Rebellion. The Journal of American History, 59(3), 567584.
Lei, L., & Wen, J. (2019). Is dependency distance experiencing a process of minimization? A diachronic study based on the State of the Union addresses. Lingua, S002438411930511X. https://doi.org/10.1016/j.lingua.2019.102762.
Liang, T. P., Li, X., Yang, C. T., & Wang, M. (2015). What in consumer reviews affects the sales of mobile apps: A multifacet sentiment analysis approach. International Journal of Electronic Commerce, 20(2), 236260.
Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer. In A. Ellis & T. Hagino (eds.), The 14th international world wide web conference (WWW2005) (pp. 342–351). Chiba, Japan. https://doi.org/10.1145/1060745.1060797.
Liu, D., & Lei, L. (2018). The appeal to political sentiment: An analysis of Donald Trump’s and Hillary Clinton’s speech themes and discourse strategies in the 2016 US presidential election. Discourse, Context & Media, 25, 143152.
Loureiro, S. M. C., Bilro, R. G., & Japutra, A. (2019), The effect of consumer-generated media stimuli on emotions and consumer brand engagement. Journal of Product & Brand Management, 29(3), 387408.
Lu, X. (2010). Automatic analysis of syntactic complexity in second language writing. International Journal of Corpus Linguistics, 15, 474496.
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. In D. Lin, Y. Matsumoto, & R. Mihalcea (eds.), Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human language technologies (pp. 142–150). Portland, Oregon, USA. www.aclweb.org/anthology/P11-1015.
Martin, J. R., & White, P. R. R. (2005). The language of evaluation: Appraisal in English, London & New York: Palgrave/Macmillan.
Mäntylä, M., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis: A review of research topics, venues, and top cited papers. Computer Science Review, 27, 1632.
Mohammad, S. M., & Turney, P. (2010). Emotions evoked by common words and phrases: Using mechanical Turk to create an emotion lexicon. In D. Inkpen & C. Strapparava (eds.), Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text (pp. 26–34). Los Angeles, CA. www.aclweb.org/anthology/W10-0204.
Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word-emotion association lexicon. Computational Intelligence, 29(3), 436465.
Mohammad, S. M., Zhu, X., Kiritchenko, S., & Martin, J. (2015). Sentiment, emotion, purpose, and style in electoral tweets. Information Processing & Management, 51(4), 480499. https://doi.org/10.1016/j.ipm.2014.09.003.
Mukhtar, N., Khan, M. A., & Chiragh, N. (2018). Lexicon-based approach outperforms supervised machine Learning approach for Urdu sentiment analysis in multiple domains. Telematics and Informatics, 35(8), 21732183.
Murthy, D. (2015). Twitter and elections: Are tweets, predictive, reactive, or a form of buzz? Information, Communication & Society, 18, 816831.
Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. In B. Porter & J. Gennari (eds.), Proceedings of the 2nd international conference on knowledge capture, (pp. 7077). Florida, USA.
Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In M. Rowe, M. Stankovic, A. Dadzie, & M. Hardey (eds.), Proceedings of the ESWC2011 Workshop on “Making Sense of Microposts”: Big things come in small packages. (pp. 93–98). Heraklion, Crete, Greece. https://arxiv.org/pdf/1103.2903.
Oscar, N, Fox, P. A., Croucher, R., Wernick, R., Keune, J., & Hooker, K. (2017). Machine learning, sentiment analysis, and tweets: An examination of Alzheimer’s disease stigma on Twitter. Journal of Gerontology Series B: Psychological Science Social Science, 72(5), 742751.
Pagolu, V. S., Reddy, K. N., Panda, G. & Majhi, B. (2016). Sentiment analysis of Twitter data for predicting stock market movements. International conference on Signal Processing, Communication, Power and Embedded System (SCOPES) (pp.1345–1350). Paralakhemundi, India.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on empirical methods in natural language processing (pp. 7986). Stroudsburg, PA.
Parkhe, V. & Biswas, B. (2016). Sentiment analysis of movie reviews: Finding most important movie aspects using driving factors. Soft Computing, 20, 33733379.
Rambocas, M. & Pacheco, B. G. (2018). Online sentiment analysis in marketing research: A review. Journal of Research in Interactive Marketing, 12(2), 146163.
Ramteke, J., Shah, S., Godhia, D., & Shaikh, A. (2016). Election result prediction using Twitter sentiment analysis. In Proceedings of the 2016 international conference on inventive computation technologies; ICICT’16 (pp. 1–5). Coimbatore, India. https://doi.org/10.1109/INVENTIVE.2016.7823280.
Ren, F., & Quan, C. (2012). Linguistic-based emotion analysis and recognition for measuring consumer satisfaction: an application of affective computing. Information Technology and Management, 13(4), 321332.
Rinker, T. (2018). Sentimentr (Version 2.6.1) [Computer software]. http://github.com/trinker/sentimentr.
Rout, J. K., Choo, K.-K. R., Dash, A. K., Bakshi, S., Jena, S. K., & Williams, K. L. (2018). A model for sentiment and emotion analysis of unstructured social media text. Electronic Commerce Research, 18(1), 181199.
Savoy, J. (2015). Text clustering: An application with the State of the Union addresses. Journal of the Association for Information Science and Technology, 66(8), 16451654.
Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of Facebook and Twitter status updates. Journal of Medical Internet Research, 20(5), e168. https://doi.org/10.2196/jmir.9267.
Shalev-Shwartz, S. & Ben-David, D. (2014). Understanding machine learning. Cambridge: Cambridge University Press.
Shogan, C. J. (2016). The president’s State of the Union address: Tradition, function, and policy implications (updated version). Congressional Research Service, R40132. https://crsreports.congress.gov/product/pdf/R/R40132 (last assessed August 14, 2020).
Sinclair, J. (1991) Corpus Concordance Collocation. Oxford: Oxford University Press.
Sinclair, J. (2004) Trust the Text: Language, Corpus and Discourse. London: Routledge.
Singh, V. K., Piryani, R., Uddin, A., & Waila, P. (2013). Sentiment analysis of movie reviews: A new feature-based heuristic for aspect-level sentiment classification. International mutli-conference on automation, computing, communication, control and compressed sensing (iMac4s), Kottayam (pp. 712–717). Kottayam, Kerala, India. https://doi.org/10.1109/iMac4s.2013.6526500.
Sonnier, G.P., McAlister, L. & Rutz, O.J. (2011). A dynamic model of the effect of online communications on firm sales. Marketing Science, 30(4), pp. 702716.
Strapparava, C., & Valitutti, A. (2004). WordNet Affect: An affective extension of WordNet. In Proceedings of the fourth international conference on language resources and evaluation (LREC’04). European Language Resources Association (ELRA). www.lrec-conf.org/proceedings/lrec2004/pdf/369.pdf.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267307.
Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29, 2454.
Thet, T. T., Na, J., & Khoo, C.S.G. (2010). Aspect-based sentiment analysis of movie reviews on discussion boards. Journal of Information Science, 36(6), 823848.
Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. W. (2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. Social Science Computer Review, 29(4), 402418.
Turney, P. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classication of reviews. In P. Isabelle, E. Charniak, & D. Lin (eds.), Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (pp. 417–424), Philadelphia, PA.
Unankard, S., Li, X., Sharaf, M., Zhong, J., & Li, X. (2014). Predicting elections from social networks based on sub-event detection and sentiment analysis. In Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., & Zhang, Y. (eds.), Web information systems engineering – WISE 2014: 15th international conference, proceedings, Part II (pp. 1–16). Thessaloniki, Greece & Switzerland: Springer International Publishing.
Vinkers, C. H., Tijdink, J. K., & Otte, W. M. (2015). Use of positive and negative words in scientific PubMed abstracts between 1974 and 2014: Retrospective analysis. BMJ, h6467. https://doi.org/10.1136/bmj.h6467.
Wang, L., Liu, H., & Zhou, T. (2020). A sequential emotion approach for diagnosing mental disorder on social media. Applied Sciences, 10(5), 1–191-19.
Weidmann, N. B., Otto, S., & Kawerau, L. (2018). The use of positive words in political science language. PS-Political Science and Politics, 51(3), 625628.
Weissman, G. E., Ungar, L. H., Harhay, M. O., Courtright, K. R., & Halpern, S. D. (2019). Construct validity of six sentiment analysis methods in the text of encounter notes of patients with critical illness. Journal of Biomedical Informatics, 89, 114121.
Wilks, Y. (2010). Corpus linguistics and computational linguistics. International Journal of Corpus Linguistics, 15(3), 408411.
Wilson, T. Wilder, J, & Hoffmann, p. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In R. Mooney, C. Brew, L. Chien, & K. Kirchhoff (eds.), Proceedings of human language technology conference and conference on empirical methods in natural language processing (pp. 347–354). Vancouver, Canada.
Yekrangi, M. & Abdolvand, N. (2020). Financial markets sentiment analysis: developing a specialized lexicon. Journal of Intelligent Information Systems. https://doi.org/10.1007/s10844-020-00630-9.
Yuan, B. (2017). Sentiment analytics: Lexicons construction and analysis. Unpublished thesis, University of Missouri of Science and Technology. https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=8668&context=masters_theses.
Zhang, H., Gan, W., & Jiang, B. (2014). Machine learning and lexicon based methods for sentiment classification: A survey. In L. O’Conner (ed.), Proceedings of 11th Web information system and application conference (pp. 262–265), Tianjin, China.
Zunic, A, Corcoran, P., & Spasic, I. (2020). Sentiment analysis in health and well-being: Systematic review. JMIR Medical Informatics, 8(1): e16023. https://doi.org/10.2196/16023.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.