Skip to main content Accessibility help
Continuum Mechanics and Thermodynamics
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Salvadori, A. and Fantoni, F. 2013. Minimum theorems in 3D incremental linear elastic fracture mechanics. International Journal of Fracture, Vol. 184, Issue. 1-2, p. 57.

    Möller, Johannes J Prakash, Aruna and Bitzek, Erik 2013. FE2AT—finite element informed atomistic simulations. Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue. 5, p. 055011.

    Miller, Ronald E. Tadmor, Ellad B. Gibson, Joshua S. Bernstein, Noam and Pavia, Fabio 2016. Molecular dynamics at constant Cauchy stress. The Journal of Chemical Physics, Vol. 144, Issue. 18, p. 184107.

    Grazioli, D. Magri, M. and Salvadori, A. 2016. Computational modeling of Li-ion batteries. Computational Mechanics, Vol. 58, Issue. 6, p. 889.


Book description

Continuum mechanics and thermodynamics are foundational theories of many fields of science and engineering. This book presents a fresh perspective on these fundamental topics, connecting micro- and nanoscopic theories and emphasizing topics relevant to understanding solid-state thermo-mechanical behavior. Providing clear, in-depth coverage, the book gives a self-contained treatment of topics directly related to nonlinear materials modeling. It starts with vectors and tensors, finite deformation kinematics, the fundamental balance and conservation laws, and classical thermodynamics. It then discusses the principles of constitutive theory and examples of constitutive models, presents a foundational treatment of energy principles and stability theory, and concludes with example closed-form solutions and the essentials of finite elements. Together with its companion book, Modeling Materials, (Cambridge University Press, 2011), this work presents the fundamentals of multiscale materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.


'I find it quite impressive that despite writing about such an old subject, these authors were able to present it with a very distinct personal style and perspective. The book is written in a very contemporary style and is full of well-thought out (solved) examples. I found it very enjoyable to read. Nearly every other page has footnotes which are in turns quirky, humorous or just plain factual but always informative and add an exceptional value to the text.'

Pradeep Sharma Source: iMechanica (

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


[Adk83] C. J., Adkins. Equilibrium Thermodynamics. Cambridge: Cambridge University Press, third edition, 1983.
[AF73] R. J., Atkin and N., Fox. On the frame-dependence of stress and heat flux in polar fluids. J. Appl. Math. Phys. (ZAMP), 24:853–860, 1973.
[AK86] P. G., Appleby and N., Kadianakis. A frame-independent description of the principles of classical mechanics. Arch. Ration. Mech. Anal., 95:1–22, 1986.
[Ale56] H. G., Alexander. The Leibniz–Clarke Correspondence. Manchester: Manchester University Press, 1956.
[Art95] R. T. W., Arthur. Newton's fluxions and equably flowing time. Stud. Hist. Phil. Sci., 26:323–351, 1995.
[AS02] S. N., Atluri and S. P., Shen. The meshless local Petrov–Galerkin (MLPG) method: A simple less-costly alternative to the finite element and boundary element methods. Comput. Model. Eng. Sci., 3(1):11–51, 2002.
[AT11] N. C., Admal and E. B., Tadmor. Stress and heat flux for arbitrary multi-body potentials: A unified framework. J. Chem. Phys., 134:184106, 2011.
[AW95] G. B., Arfken and H. J., Weber. Mathematical Methods of Physicists. San Diego: Academic Press, Inc., fourth edition, 1995.
[AZ00] S. N., Atluri and T., Zhu. New concepts in meshless methods. Int. J. Numer. Methods Eng., 47:537–556, 2000.
[Bal76] J. M., Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal., 63(4):337–403, 1976.
[Ban84] W., Band. Effect of rotation on radial heat flow in a gas. Phys. Rev. A, 29:2139–2144, 1984.
[BBS04] A. Bóna, I., Bucataru, and M. A., Slawinski. Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math., 57(4):583–598, 2004.
[BdGH83] R. B., Bird, P. G., de Gennes, and W. G., Hoover. Discussion. Physica A, 118:43–47, 1983.
[Bea67] M. F., Beatty. On the foundation principles of general classical mechanics. Arch. Ration. Mech. Anal., 24:264–273, 1967.
[BG68] R. L., Bishop and S. I., Goldberg. Tensor Analysis on Manifolds. New York: Macmillan, 1968.
[Bil86] E. W., Billington. The Poynting effect. Acta Mech., 58:19–31, 1986.
[BJ96] G. I., Barenblatt and D. D., Joseph, editors. Collected Papers of R. S. Rivlin, volumes I & II. New York: Springer, 1996.
[BK62] P. J., Blatz and W. L., Ko. Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6:223–251, 1962.
[BKO+ 96] T., Belytschko, Y., Krongauz, D., Organ, M., Fleming, and P., Krysl. Meshless methods: An overview and recent developments. Comput. Meth. Appl. Mech. Eng., 139:3–47, 1996.
[BLM00] T., Belytschko, W. K., Liu, and B., Moran. Nonlinear Finite Elements for Continua and Structures. Chichester: Wiley, 2000.
[BM80] F., Bampi and A., Morro. Objectivity and objective time derivatives in continuum mechanics. Found. Phys., 10:905–920, 1980.
[BM97] I., Babuska and J. M., Melenk. The partition of unity method. Int. J. Numer. Methods Eng., 40(4):727–758, 1997.
[BSL60] R. B., Bird, W. E., Stewart, and E. N., Lightfoot. Transport Phenomena. New York: Wiley, 1960.
[BT03] B., Buffoni and J., Toland. Analytic Theory of Global Bifurcation: An Introduction. Princeton Series in Applied Mathematics. Princeton: Princeton University Press, first edition, 2003.
[Cal85] H. B., Callen. Thermodynamics and an Introduction to Thermostatics. New York: John Wiley and Sons, second edition, 1985.
[Car67] M. M., Carroll. Controllable deformations of incompressible simple materials. Int. J. Eng. Sci., 5:515–525, 1967.
[CG95] M., Como and A., Grimaldi. Theory of Stability of Continuous Elastic Structures. Boca Raton: CRC Press, 1995.
[CG01] P., Cermelli and M. E., Gurtin. On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids, 49:1539–1568, 2001.
[Cha99] P., Chadwick. Continuum Mechanics: Concise Theory and Problems. Mineola: Dover, second edition, 1999.
[CJ93] C., Chu and R. D., James. Biaxial loading experiments on Cu–Al–Ni single crystals. In K. S., Kim, editor, Experiments in Smart Materials and Structures, volume 181, pages 61–69. New York: ASME-AMD, 1993.
[CM87] S. C., Cowin and M. M., Mehrabadi. On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math., 40:451–476, 1987.
[CN63] B. D., Coleman and W., Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal., 13:167–178, 1963.
[CR07] D., Capecchi and G. C., Ruta. Piola's contribution to continuum mechanics. Arch. Hist. Exact Sci., 61:303–342, 2007.
[CVC01] P., Chadwick, M., Vianello, and S. C., Cowin. A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids, 49:2471–2492, 2001.
[dGM62] S. R., de Groot and P., Mazur. Non-Equilibrium Thermodynamics. Amsterdam: North-Holland Publishing Company, 1962.
[DiS91] R., DiSalle. Conventionalism and the origins of the inertial frame concept. In A., Fine, M., Forbes, and L., Wessels, editors, PSA 1990, volume 2 of PSA - Philosophy of Science Association Proceedings Series. Biennial Meeting of the Philosophy of Science Assoc, Minneapolis, MN, 1990, pages 139–147. Chicago: University of Chicago Press, 1991.
[DiS02] R., DiSalle. Space and time: Inertial frames. In E. N., Zalta, editor, The Stanford Encyclopedia of Philosophy. Stanford University, Summer 2002.
[DiS06] R., DiSalle. Understanding Space-Time. Cambridge: Cambridge University Press, 2006.
[Duf84] J. W., Dufty. Viscoelastic and non-Newtonian effects in shear-flow. Phys. Rev. A, 30:622–623, 1984.
[Ear70] J., Earman. Who's afraid of absolute space? Australasian J. Philosophy, 48:287–319, 1970.
[EH89] M. W., Evans and D. M., Heyes. On the material frame indifference controversy: Some results from group theory and computer simulation. J. Mol. Liq., 40:297–304, 1989.
[Ein16] A., Einstein. Die Grundlage der allgemeinen Relativitätstheorie. Ann. der Phys., 49:769– 822, 1916.
[EM73] D. G. B., Edelen and J. A., McLennan. Material indifference: A principle or convenience. Int. J. Eng. Sci., 11:813–817, 1973.
[EM90a] A. C., Eringen and G. A., Maugin. Electrodynamics of Continua I: Foundations and Solid Media. New York: Springer, 1990.
[EM90b] A. C., Eringen and G. A., Maugin. Electrodynamics of Continua II: Fluids and Complex Media. New York: Springer, 1990.
[EM90c] D. J., Evans and G. P., Morriss. Statistical Mechanics of Nonequilibrium Liquids. London: Academic Press, 1990.
[Eri54] J. L., Ericksen. Deformations possible in every isotropic, incompressible, perfectly elastic body. J. Appl. Math. Phys. (ZAMP), 5:466–488, 1954.
[Eri55] J. L., Ericksen. Deformations possible in every isotropic compressible, perfectly elastic body. J. Math. Phys, 34:126–128, 1955.
[Eri77] J. L., Ericksen. Special topics in elastostatics. In C.-S., Yih, editor, Advances in Applied Mechanics, volume 17, pages 189–244. New York: Academic Press, 1977.
[Eri02] A. C., Eringen. Nonlocal Continuum Field Theories. New York: Springer, 2002.
[Eu85] B. C., Eu. On the corotating frame and evolution equations in kinetic theory. J. Chem. Phys., 82:3773–3778, 1985.
[Eu86] B. C., Eu. Reply to “comment on ‘on the corotating frame and evolution equations in kinetic theory’”. J. Chem. Phys., 86:2342–2343, 1986.
[FF77] R., Fletcher and T. L., Freeman. A modified Newtonmethod forminimization. J. Optimiz. Theory App., 23:357–372, 1977.
[FMAH94] N. A., Fleck, G. M., Muller, M. F., Ashby, and J. W., Hutchinson. Strain gradient plasticity: Theory and experiment. Acta Metall. Mater., 42:475–487, 1994.
[Fre09] M., Frewer. More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech., 202:213–246, 2009.
[FV89] R. L., Fosdick and E. G., Virga. A variational proof of the stress theorem of Cauchy. Arch. Ration. Mech. Anal., 105:95–103, 1989.
[FV96] S., Forte and M., Vianello. Symmetry classes for elasticity tensors. J. Elast., 43:81–108, 1996.
[Gen96] A. N., Gent. A new constitutive relation for rubber. Rubber Chemistry Tech., 69:59–61, 1996.
[GFA10] M. E., Gurtin, E., Fried, and L., Anand. The Mechanics and Thermodynamics of Continua. Cambridge: Cambridge University Press, 2010.
[GR64] A. E., Green and R. S., Rivlin. On Cauchy's equations of motion. J. Appl. Math. Phys. (ZAMP), 15:290–292, 1964.
[Gra91] H., Grandin. Fundamentals of the Finite Element Method. Prospect Heights: Waveland Press, 1991.
[Gre04] B., Greene. The Fabric of the Cosmos. New York: Vintage Books, 2004.
[Gur65] M. E., Gurtin. Thermodynamics and the possibility of spatial interaction in elastic materials. Arch. Ration. Mech. Anal., 19:339–352, 1965.
[Gur81] M. E., Gurtin. An Introduction to Continuum Mechanics, volume 158 of Mathematics in Science and Engineering. New York: Academic Press, 1981.
[Gur95] M. E., Gurtin. The nature of configurational forces. Arch. Ration. Mech. Anal., 131:67–100, 1995.
[GW66] M. E., Gurtin and W. O., Williams. On the Clausius–Duhem inequality. J. Appl. Math. Phys. (ZAMP), 17:626–633, 1966.
[HM83] M., Heckl and I., Müller. Frame dependence, entropy, entropy flux, and wave speeds in mixtures of gases. Acta Mech., 50:71–95, 1983.
[HMML81] W. G., Hoover, B., Moran, R. M., More, and A. J. C., Ladd. Heat conduction in a rotating disk via nonequilibrium molecular dynamics. Phys. Rev. B, 24:2109–2115, 1981.
[HO03] F. W., Hehl and Y. N., Obukhov. Foundations of Classical Electrodynamics. Boston: Birkhauser, 2003.
[Hol00] G. A., Holzapfel. Nonlinear Solid Mechanics. Chichester: Wiley, 2000.
[Hug87] T. J. R., Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewood Cliffs: Prentice-Hall, 1987.
[IK50] J. H., Irving and J. G., Kirkwood. The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics. J. Chem. Phys., 18:817–829, 1950.
[IM02] K., Ikeda and K., Murota. Imperfect Bifurcation in Structures and Materials: Engineering Use of Group-Theoretic Bifurcation Theory, volume 149 of Applied Mathematical Sciences. New York: Springer, first edition, 2002.
[Jau67] W., Jaunzemis. Continuum Mechanics. New York: Macmillan, 1967.
[JB67] L., Jansen and M., Boon. Theory of Finite Groups. Applications in Physics. Amsterdam: North Holland, 1967.
[Kem89] L. J. T. M., Kempers. The principle of material frame indifference and the covariance principle. Il Nuovo Cimento B, 103:227–236, 1989.
[Kha02] H. K., Khalil. Nonlinear Systems. New York: Prentice-Hall, third edition, 2002.
[Kir52] G., Kirchhoff. Über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verscheibungen seiner Theile. Sitzungsberichte der Akademie der Wissenschaften Wien, 9:762–773, 1852.
[Koi63] W. T., Koiter. The concept of stability of equilibrium for continuous bodies. Proc. Koninkl. Nederl. Akademie van Wetenschappen, 66(4):173–177, 1963.
[Koi65a] W. T., Koiter. The energy criterion of stability for continuous elastic bodies. – I. Proc. of the Koninklijke Nederlandse Akademie Van Wetenschappen, Ser. B, 68(4):178–189, 1965.
[Koi65b] W. T., Koiter. The energy criterion of stability for continuous elastic bodies. – II. Proc. of the Koninklijke Nederlandse Akademie Van Wetenschappen, Ser. B, 68(4):190–202, 1965.
[Koi65c] W. T., Koiter. On the instability of equilibrium in the absence of a minimum of the potential energy. Proc. of the Koninklijke Nederlandse Akademie Van Wetenschappen, Ser. B, 68(3):107–113, 1965.
[Koi71] W. T., Koiter. Thermodynamics of elastic stability. In P. G., Glockner, editor, Proceedings [of the] Third Canadian Congress of Applied Mechanics May 17–21, 1971 at the University of Calgary, pages 29–37, Calgary: University of Calgary.
[Kov00] A., Kovetz. Electromagnetic Theory. New York: Oxford University Press, 2000.
[KW73] R., Knops and W., Wilkes. Theory of elastic stability. In C., Truesdell, editor, Handbook of Physics, volume VIa/3, pages 125–302. Berlin: Springer-Verlag, 1973.
[Lan70] C., Lanczos. The Variational Principles of Mechanics. Mineola: Dover, fourth edition, 1970.
[Lap51] Pierre, Simon Laplace. A Philosophical Essay on Probabilities [English translation by F. W., Truscott and F. L., Emery]. Dover, New York, 1951.
[LBCJ86] A. S., Lodge, R. B., Bird, C. F., Curtiss, and M. W., Johnson. A comment on “on the corotating frame and evolution equations in kinetic theory”. J. Chem. Phys., 85:2341–2342, 1986.
[Lei68] D. C., Leigh. Nonlinear Continuum Mechanics. New York: McGraw-Hill, 1968.
[Les74] A. M., Lesk. Do particles of an ideal gas collide? J. Chem. Educ., 51:141–141, 1974.
[Liu04] I.-S., Liu. On Euclidean objectivity and the principle of material frame-indifference. Continuum Mech. Thermodyn., 16:177–183, 2004.
[Liu05] I.-S., Liu. Further remarks on Euclidean objectivity and the principle of material frameindifference. Continuum Mech. Thermodyn., 17:125–133, 2005.
[LJCV08] G., Lebon, D., Jou, and J., Casas-Vázquez. Understanding Non-equilitrium Thermodynamics: Foundations, Applications, Frontiers. Berlin: Springer-Verlag, 2008.
[LL09] S., Lipschutz and M., Lipson. Schaum's Outline for Linear Algebra. New York:McGraw-Hill, fourth edition, 2009.
[LRK78] W. M., Lai, D., Rubin, and E., Krempl. Introduction to Continuum Mechanics. New York: Pergamon Press, 1978.
[Lub72] J., Lubliner. On the thermodynamic foundations of non-linear solid mechanics. Int. J. Nonlinear Mech., 7:237–254, 1972.
[Lum70] J. L., Lumley. Toward a turbulent constitutive relation. J. Fluid Mech., 41:413–434, 1970.
[Mac60] E., Mach. The Science of Mechanics: A Critical and Historical Account of its Development. Translated by Thomas J., McCormack. La Salle: Open Court, sixth edition, 1960.
[Mal69] L. E., Malvern. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs: Prentice-Hall, 1969.
[Mar90] E., Marquit. A plea for a correct translation of Newton's law of inertia. Am. J. Phys., 58:867–870, 1990.
[Mat86] T., Matolcsi. On material frame-indifference. Arch. Ration. Mech. Anal., 91:99–118, 1986.
[McW02] R., McWeeny. Symmetry: An Introduction to Group Theory and its Applications. Mineola: Dover, 2002.
[Mei03] L., Meirovitch. Methods of Analytical Dynamics. Mineola: Dover, 2003.
[MH94] J. E., Marsden and T. J. R., Hughes. Mathematical Foundations of Elasticity. New York: Dover, 1994.
[Mil72] W., Miller, Jr. Symmetry Groups and Their Applications, volume 50 of Pure and Applied Mathematics. New York: Academic Press, 1972. Available online at∼miller/.
[MM98] P., Moin and K., Mahesh. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech., 30:539–578, 1998.
[Moo90] D. M., Moody. Unsteady expansion of an ideal gas into a vacuum. J. Fluid Mech., 214:455–468, 1990.
[MR08] W., Muschik and L., Restuccia. Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example. Arch. Appl. Mech, 78:837–854, 2008.
[Mül72] I., Müller. On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal., 45:241–250, 1972.
[Mül76] I., Müller. Frame dependence of electric-current and heat flux in a metal. Acta Mech., 24:117–128, 1976.
[Mur82] A. I., Murdoch. On material frame-indifference. Proc. R. Soc. London, Ser. A, 380:417–426, 1982.
[Mur83] A. I., Murdoch. On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch. Ration. Mech. Anal., 83:185–194, 1983.
[Mur03] A. I., Murdoch. Objectivity in classical continuum physics: a rationale for discarding the principle of invariance under superposed rigid body motions in favour of purely objective considerations. Continuum Mech. Thermodyn., 15:209–320, 2003.
[Mur05] A. I., Murdoch. On criticism of the nature of objectivity in classical continuum physics. Continuum Mech. Thermodyn., 17:135–148, 2005.
[Nan74] E. J., Nanson. Note on hydrodynamics. Messenger of Mathematics, 3:120–121, 1874.
[Nan78] E. J., Nanson. Note on hydrodynamics. Messenger of Mathematics, 7:182–183, 18771878.
[New62] I., Newton. Philosophiae Naturalis Principia Mathematica [translated by A. Motte revised by F. Gajori], volume I. Berkeley: University of California Press, 1962.
[Nio87] E. M. S., Niou. A note on Nanson's rule. Public Choice, 54:191–193, 1987.
[Nol55] W., Noll. Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statischen Mechanik. J. Ration. Mech. Anal., 4:627–646, 1955.
[Nol58] W., Noll. A mathematical theory of the mechanical behaviour of continuous media. Arch. Ration. Mech. Anal., 2:197–226, 1958.
[Nol63] W., Noll. La mécanique classique, basée sur un axiome d'objectivité. In La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles, pages 47–56, Paris: Gauthier-Villars, 1963.
[Nol73] W., Noll. Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal., 52:62–92, 1973.
[Nol87] W., Noll. Finite-Dimensional Spaces: Algebra, Geometry and Analysis, volume I. Dordrecht: Kluwer, 1987. Available online at∼wn0g/.
[Nol04] W., Noll. Five contributions to natural philosophy, 2004. Available online at∼wn0g/noll.
[Nol06] W., Noll. A frame-free formulation of elasticity. J. Elast., 83:291–307, 2006.
[NW99] J., Nocedal and S. J., Wright. Numerical Optimization. New York: Springer Verlag, 1999.
[Nye85] J. F., Nye. Physical Properties of Crystals. Oxford: Clarendon Press, 1985.
[Ogd84] R. W., Ogden. Non-linear Elastic Deformations. Ellis Horwood, Chichester, 1984.
[OIZT96] E., Onate, S., Idelsohn, O. C., Zienkiewicz, and R. L., Taylor. A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng., 39(22):3839–3866, 1996.
[Old50] J. G., Oldroyd. On the formulation of rheological equations of state. Proc. R. Soc. London, Ser. A, 200:523–541, 1950.
[PC68] H. J., Petroski and D. E., Carlson. Controllable states of elastic heat conductors. Arch. Ration. Mech. Anal., 31(2):127–150, 1968.
[Pio32] G., Piola. La meccanica de' corpi naturalmente estesi trattata col calcolo delle variazioni. In Opuscoli Matematici e Fisici di Diversi Autori, volume 1, pages 201–236. Milano: Paolo Emilio Giusti, 1832.
[PM92] A. R., Plastino and J. C., Muzzio. On the use and abuse of Newton's second law for variable mass problems. Celestial Mech. and Dyn. Astron., 53:227–232, 1992.
[Pol71] E., Polak. Computational Methods in Optimization: A Unified Approach, volume 77 of Mathematics in Science and Engineering. New York: Academic Press, 1971.
[Poy09] J. H., Poynting. On pressure perpendicular to the shear-planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. London, Ser. A, 82:546–559, 1909.
[PTVF92] W. H., Press, S. A., Teukolsky,W. T., Vetterling, and B. P., Flannery. Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge: Cambridge University Press, second edition, 1992.
[PTVF08] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery. Numerical recipes: The art of scientific computing., 2008.
[Rei45] M., Reiner. A mathematical theory of dilatancy. Am. J. Math., 67:350–362, 1945.
[Rei59] H., Reichenbach. Modern Philosophy of Science. New York: Routledge & Kegan Paul, 1959.
[Riv47] R. S., Rivlin. Hydrodynamics of non-newtonian fluids. Nature, 160:611–613, 1947.
[Riv48] R. S., Rivlin. Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, homogeneous deformation. Philos. Trans. R. Soc. London, Ser. A, 240:491–508, 1948.
[Riv74] R. S., Rivlin. Stability of pure homogeneous deformations of an elastic cube under dead loading. Q. Appl. Math., 32:265–271, 1974.
[Ros08] J., Rosen. Symmetry Rules: How Science and Nature are Founded on Symmetry. The Frontiers Collection. Berlin: Springer, 2008.
[RS51] R. S., Rivlin and D. W., Saunders. Large elastic deformations of isotropic materials VII. experiments on the deformation of rubber. Philos. Trans. R. Soc. London, Ser. A, 243:251–288, 1951.
[Rub00] M. B., Rubin. Cosserat Theories: Shells, Rods and Points, volume 79 of Solid Mechanics and its Applications. Dordrecht: Kluwer, 2000.
[Rue99] D., Ruelle. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys., 95:393–468, 1999.
[Rus06] A., Ruszczyński. Nonlinear Optimization. Princeton: Princeton University Press, 2006.
[Rys85] G., Ryskin. Misconception which led to the “material frame-indifference” controversy. Phys. Rev. A, 32:1239–1240, 1985.
[SA04] S., Shen and S. N., Atluri. Multiscale simulation based on the meshless local Petrov–Galerkin (MLPG) method. Comput. Model. Eng. Sci., 5:235–255, 2004.
[Saa03] Y., Saad. Iterative Methods for Sparse Linear Systems. Philadelphia: Society for Industrial and Applied Mathematics, 2003.
[Sac01] Giuseppe, Saccomandi. Universal results in finite elasticity. In Y. B., Fu and R. W., Ogden, editors, Nonlinear Elasticity: Theory and Applications, number 283 in London Mathematical Society Lecture Note Series, chapter 3, pages 97–134. Cambridge: Cambridge University Press, 2001.
[Sal01] J., Salençon. Handbook of Continuum Mechanics: General Concepts, Thermoelasticity. Berlin: Springer, 2001.
[SB99] B., Svendsen and A., Bertram. On frame-indifference and form-invariance in constitutive theory. Acta Mech., 132:195–207, 1999.
[SG63] R. T., Shield and A. E., Green. On certain methods in the stability theory of continuous systems. Arch. Ration. Mech. Anal., 12(4):354–360, 1963.
[SH96] A., Sadiki and K., Hutter. On the frame dependence and form invariance of the transport equations for the Reynolds stress tensor and the turbulent heat flux vector: Its consequences on closure models in turbulence modelling. Continuum Mech. Thermodyn., 8:341–349, 1996.
[Shi71] R. T., Shield. Deformations possible in every compressible isotropic perfectly elastic material. J. Elast., 1:145–161, 1971.
[Sil02] S. A., Silling. The reformulation of elasiticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids, 48:175–209, 2002.
[SK95] F. M., Sharipov and G. M., Kremer. On the frame dependence of constitutive equations. I. Heat transfer through a rarefied gas between two rotating cylinders. Continuum Mech. Thermodyn., 7:57–71, 1995.
[SL09] R., Soutas-Little. History of continuum mechanics. In J., Merodio and G., Saccomandi, editors, Continuum Mechanics, EOLSS-UNESCO Encyclopedia, chapter 2. Paris: UNSECO, 2009. Available online at
[SMB98] N., Sukumar, B., Moran, and T., Belytschko. The natural element method in solid mechanics. Int. J. Numer. Methods Eng., 43(5):839+, 1998.
[Söd76] L. H., Söderholm. The principle of material frame-indifference and material equations of gases. Int. J. Eng. Sci., 14:523–528, 1976.
[Sok56] I. S., Sokolnikoff. Mathematical Theory of Elasticity. New York: McGraw-Hill, second edition, 1956.
[SP65] M., Singh and A. C., Pipkin. Note on Ericksen's problem. Z. angew. Math. Phys., 16:706–709, 1965.
[Spe81] C. G., Speziale. Some interesting properties of two-dimensional turbulence. Phys. Fluids, 24:1425–1427, 1981.
[Spe87] C. G., Speziale. Comments on the “material frame-indifference” controversy. Phys. Rev. A, 36:4522–4525, 1987.
[Ste54] E., Sternberg. On Saint-Venant's principle. Q. Appl. Math., 11(4):393–402, 1954.
[TA86] N., Triantafyllidis and E. C., Aifantis. A gradient approach to localization of deformation. 1. Hyperelastic materials. J. Elast., 16:225–237, 1986.
[TG51] S. P., Timoshenko and J. N., Goodier. Theory of Elasticity. New York: McGraw-Hill, 1951.
[TG61] S. P., Timoshenko and J., Gere. Theory of Elastic Stability. New York: McGraw-Hill, second edition, 1961. Note: A new Dover edition came out in 2009.
[TG06] Z., Tadmor and C. G., Gogos. Principles of Polymer Processing. Hoboken: Wiley, second edition, 2006.
[Tho82] J. M. T., Thompson. Instabilities and Catastrophes in Science and Engineering. Chichester: Wiley, 1982.
[TM04] P. A., Tipler and G., Mosca. Physics for Scientists and Engineers, volume 2. New York: W. H.|Freeman, fifth edition, 2004.
[TM11] E. B., Tadmor and R. E., Miller. Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge: Cambridge University Press, 2011.
[TN65] C., Truesdell and W., Noll. The non-linear field theories of mechanics. In S., Flügge, editor, Handbuch der Physik, volume III/3, pages 1–603. Springer, 1965.
[TN04] C., Truesdell and W., Noll. In S. S., Antman, editor, The Non-linear Field Theories of Mechanics. Berlin: Springer-Verlag, third edition, 2004.
[Tre48] L. R. G., Treloar. Stress and birefringence in rubber subjected to general homogeneous strain. Proc. Phys. Soc. London, 60:135–144, 1948.
[Tru52] C., Truesdell. The mechanical foundations of elasticity and fluid dynamics. J. Ration. Mech. Anal., 1(1):125–300, 1952.
[Tru66a] C., Truesdell. The Elements of Continuum Mechanics. New York: Springer-Verlag, 1966.
[Tru66b] C., Truesdell. Thermodynamics of deformation. In S., Eskinazi, editor, Modern Developments in the Mechanics of Continua, pages 1–12, New York: Academic Press, 1966.
[Tru68] C., Truesdell. Essays in the History of Mechanics. New York: Springer-Verlag, 1968.
[Tru76] C., Truesdell. Correction of two errors in the kinetic theory of gaseswhich have been used to cast unfounded doubt upon the principle of material frame-indifference. Meccanica, 11:196–199, 1976.
[Tru77] C., Truesdell. A First Course in Rational Continuum Mechanics. New York: Academic Press, 1977.
[Tru84] C., Truesdell. Rational Thermodynamics. New York: Springer-Verlag, second edition, 1984.
[TT60] C., Truesdell and R., Toupin. The classical field theories. In S., Flügge, editor, Handbuch der Physik, volume III/1, pages 226–793. Berlin: Springer, 1960.
[Voi10] W., Voigt. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Leipzig: Teubner, 1910.
[Wal72] D. C., Wallace. Thermodynamics of Crystals. Mineola: Dover, 1972.
[Wal03] D. J., Wales. Energy Landscapes. Cambridge: Cambridge University Press, 2003.
[Wan75] C. C., Wang. On the concept of frame-indifference in continuum mechanics and in the kinetic theory of gases. Arch. Ration. Mech. Anal., 45:381–393, 1975.
[Wei11] E. W., Weisstein. Einstein summation. Mathworld – A Wolfram Web Resource, 2011.
[Wik10] Wikipedia. Leopold, Kronecker – Wikipedia, the free encyclopedia. kronecker, 2010. Online; accessed 30 May 2010. Based on E. T. Bell, Men of Mathematics. New York: Simon and Schuster, 1968, p. 477.
[Woo83] L. C., Woods. Frame-indifferent kinetic theory. J. Fluid Mech., 136:423–433, 1983.
[ZM67] H., Ziegler and D., McVean. On the notion of an elastic solids. In B., Broberg, J., Hult, and F., Niordson, editors, Recent Progress in Applied Mechanics (The Folke Odquist Volume), pages 561–572. Stockholm: Almquist and Wiksell, 1967.
[ZT89] O. C., Zienkiewicz and R. L., Taylor. The Finite Element Method, volume I, Basic Formulations and Linear Problems. London: McGraw-Hill, 1989.
[ZT91] O. C., Zienkiewicz and R. L., Taylor. The Finite Element Method, volume II, Solid and Fluid Mechanics: Dynamics and Non-Linearity. London: McGraw-Hill, fourth edition, 1991.
[ZT05] O. C., Zienkiewicz and R. L., Taylor. The Finite Element Method. London: McGraw-Hill, sixth edition, 2005.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed