This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.