Skip to main content Accessibility help
×
  • Cited by 2
Publisher:
Cambridge University Press
Online publication date:
February 2021
Print publication year:
2021
Online ISBN:
9781108893374
Subjects:
Humanities, Palaeontology and Life History, Evolutionary Biology, General

Book description

The history of life on earth is largely reconstructed from time-averaged accumulations of fossils. A glimpse at ecologic-time attributes and processes is relatively rare. However, the time-sensitive and predictability of echinoderm disarticulation makes them model organisms to determine post-mortem transportation and allows recognition of ecological-time data within paleocommunity accumulations. Unlike many other fossil groups, this has allowed research on many aspects of echinoderms and their paleocommunities, such as the distribution of soft tissues, assessment of the amount of fossil transportation prior to burial, determination of intraspecific variation, paleocommunity composition, estimation of relative abundance of taxa in paleocommunities, determination of attributes of niche differentiation, etc. Crinoids and echinoids have received the most amount of taphonomic research, and the patterns present in these two groups can be used to develop a more thorough understanding of all echinoderm clades.

References

Adkins, W. S. (1928). Handbook of Texas Cretaceous fossils. University of Texas Bulletin, 2838
Aigner, T. (1985). Storm depositional systems: Dynamic stratigraphy in modern and ancient shallow-marine sequences. Lecture Notes in the Earth Sciences, 3, New York, Springer-Verlag.
Allison, P. A. (1990). Variation in rates of decay and disarticulation of Echinodermata: Implications for the application of actualistic data. PALAIOS, 5, 432440.
Aronson, R. B. (1987). Predation on fossil and Recent ophiuroids. Paleobiology, 13, 187192.
Aronson, R. B., & Blake, D. B. (1997). Evolutionary paleoecology of dense ophiuroids populations. In Waters, J. A. & Maples, C. G., eds., Geobiology of Echinoderm. Paleontological Society Papers, 3, pp. 107119.
Aslin, C. J. (1968). Echinoid preservation in Upper Estuarine Limestone of Blisworth Northamptonshire. Geological Magazine, 105, 506518.
Ausich, W. I. (1977). The functional morphology and evolution of Pisocrinus (Crinoidea: Silurian). Journal of Paleontology, 51, 672686.
Ausich, W. I. (1980). A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54, 273288.
Ausich, W. I. (1983). Functional morphology and feeding dynamics of the Early Mississippian crinoid Barycrinus asteriscus. Journal of Paleontology, 57, 3141.
Ausich, W. I. (1997). Regional encrinites: A vanished lithofacies. In Brett, C. E. and Baird, G. C., eds., Paleontological Events: Stratigraphic, Ecologic and Evolutionary Implications. New York: Columbia University Press, pp. 509519.
Ausich, W. I. (2001). Echinoderm taphonomy. In Lawrence, J. and Jangoux, M., eds., Echinoderm Studies, Vol. 6. Rotterdam: A. A. Balkema Press, pp. 171227.
Ausich, W. I. (2016). Fossil species as data: A perspective from echinoderms. In Allmon, W. D. & Yacobucci, M. M., eds., Species and Speciation in the Fossil Record. Chicago, IL: University of Chicago Press, pp. 301311.
Ausich, W. I. , & Baumiller, T. K. (1993a). Taphonomic method for determining muscular articulations in fossil crinoids. PALAIOS, 8, 477484.
Ausich, W. I., & Baumiller, T. K. (1993b). Column regeneration in an Ordovician crinoid (Echinodermata): Paleobiologic implications. Journal of Paleontology, 67, 10681070.
Ausich, W. I. , & Baumiller, T. K. (1998). Disarticulation patterns in Ordovician crinoids: Implications for the evolutionary history of connective tissue in the Crinoidea. Lethaia, 31: 113123.
Ausich, W. I. , & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216, 173174.
Ausich, W. I. , & Lane, N. G. (1980). Platform communities and rocks of the Borden Siltstone Delta (Mississippian) along the south shore of Monroe Reservoir, Monroe County, Indiana. In Shaver, R. H., ed., Field Trips 1980 from the Indiana University Campus, Bloomington: Indiana University, pp. 3667.
Ausich, W. I. , & Meyer, D. L. (1990). Origin and composition of carbonate buildups and associated facies in the Fort Payne Formation (Lower Mississippian, south-central Kentucky): An integrated sedimentologic and paleoecologic analysis. Geological Society of America Bulletin, 102, 129146.
Ausich, W. I. , & Sevastopulo, G. D. (1994). Taphonomy of Lower Carboniferous crinoids from the Hook Head Formation, Ireland. Lethaia, 27, 245256.
Balaústegui, Z, Muñiz, F., Nebelsick, J. H., Domènech, R., & Martinell, J. (2012). Echinoderm ichnology: Bioturbation, bioerosion and related processes. Journal of Paleontology, 91, 643661.
Bantz, H. –U. (1969). Echinoidea uns Plattenkalken der Altmühlabhre Biostratyinomie. Erlanger Geologische Abhandlunge, 78, 135.
Bathurst, R. G. C. (1976). Carbonate Sediments and Their Diagensis, 2nd ed. Amsterdam: Elsevier.
Baumiller, T. K. (2003). Experimental and biostratinomic disarticulation of crinoids: Taphonomic implications In Echinoderm Research 2001. In Féral, J.-P. & David, B., eds., Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. Lisse: Swets and Zietlinger, pp. 243248.
Baumiller, T. K. (2008). Crinoid ecological morphology. Annual Reviews in the Earth Sciences, 36, 221249.
Baumiller, T. K., & Ausich, W. I. (1992). The “broken stick” model as a null hypothesis for crinoid stalk taphonomy and as a guide to the distribution of connective tissues in fossils. Paleobiology, 18, 288298.
Baumiller, T. K. , & Hagdorn, H. (1995). Taphonomy as a guide to functional morphology of Holocrinus, the first post-Paleozoic crinoid. Lethaia, 28, 221228.
Baumiller, T. K., Gahn, F. J., Hess, H. , & Messing, C. G. (2008). Taphonomy as an indicator of behavior among fossil crinoid. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology, Bloomington: Indiana University Press, pp. 720.
Baumiller, T. K., Llewellyn, G., Messing, C. G., & Ausich, W. I. (1995). Taphonomy and autotomy of isocrinid stalks: Influence of decay and autotomy. Palaios, 10, 8795.
Bell, B. M. (1976). A study of North American Edrioasteroidea. New York State Museum Memoir, 21, 447 p.
Bernardi, M., Boschele, S., Ferretti, P., & Avanzini, M. (2010). Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontologica Polonica, 55, 479486.
Birkenmajer, K. (1977). Jurassic and Cretaceous lithostratigraphic unites of the Leinny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45, 1158.
Blake, D. B. (1967). Pre-burial abrasion of articulated asteroid skeletons. Paleobios, 2, 4 p.
Blake, D. B. (1975). A new west American Miocene species of the modern Australian ophiuroids. Ophiocrassota. Journal of Paleontology, 49, 501506.
Blake, D. B., & Zinsmeister, W. J. (1979). Two early Cenozoic sea stars (Class Asteroidea) from Seymour Island, Antarctica Peninsula. Journal of Paleontology, 53, 11451154.
Blake, D. B., Guensburg, T. E., Sprinkle, J. , & Sumrall, C. D. (2007). A new phylogenetically significant Early Ordovician asteroid (Echinodermata). Journal of Paleontology, 81, 11001101.
Blumer, M. (1951). Fossile Kohlenwassertoffe und Farbstoffe in Kalketeinen. Mikrochemie, 36/37, 10481055
Blumer, M. (1960). Pigments of a fossil echinoderm. Nature, 188, 11001101.
Blumer, M. (1962a). The organic chemistry of a fossil – I: The structure of fringelite-pigments. Geochimica et Cosmochimica Acta, 26, 225227.
Blumer, M. (1962b). The organic chemistry of a fossil – II: Some rare polynuclear hydrocarbons. Geochimica et Cosmochimica Acta, 26, 228230.
Blumer, M. (1965). Organic pigments: Their long-term fate. Science, 149, 722726.
Blyth Cain, J. D. (1968). Aspects of the depositional environment and paleoecology of crinoidal limestones. Scottish Journal of Geology, 4, 191208.
Bottjer, D. J. , & Ausich, W. I.. (1987). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12, 400420.
Breton, G. (1997). Deux étoiles de mer du Bajocien du nord-est du basin de Paris (France): leur allies actuels sond des fossils vivants. Bulletin trimestriel de la Société Géologique de Normandie et des Amis du Museum du Havre, 84, 2334.
Brett, C. E. (1985). Pelmatozoan echinoderms on Silurian bioherms in western New York and Ontario. Journal of Paleontology, 59, 820838.
Brett, C. E. (1995). Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. PALAIOS, 10, 597616.
Brett, C. E., & Baird, G. (1986). Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. PALAIOS, 1, 207227.
Brett, C. E., & Baird, G. (1997). Epiboles, outages, and ecological evolutionary bioevents: Taphonomy, ecological, and biogeographic factors. In Brett, C. E. & Baird, G., eds., Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. New York: Columbia University Press, pp. 249284.
Brett, C. E., & Liddell, W. D. (1978). Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4, 329348.
Brett, C. E., & Seilacher, A. (1991). Fossil-Lagerstätten: a taphonomic consequence of event sedimentation. In Einsele, G., Ricken, W. & Seilacher, A., eds., Cycles and Events in Stratigraphy. New York, Berlin: Springer Verlag, pp. 283297.
Brett, C. E., & Taylor, W. L. (1997). The Homocrinus beds: Silurian Lagerstätten of western New York and southern Ontario. In Brett, C. E. & Baird, G., eds., Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. New York: Columbia University Press, pp. 181499.
Brett, C. E., Deline, B. L., & McLaughlin, P. I. (2008). Attachment, facies distribution, and life history strategies in crinoids from the Upper Ordovician of Kentucky. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology. Bloomington: Indiana University Press, pp. 2352.
Brett, C. E., Dick, V. E., & Baird, G. C. (1991). Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shale facies from Western New York. In E. Landing & C. E. Brett, eds., Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part II. New York State Museum Bulletin, 469, pp. 536.
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. In J. A. Waters & C. G. Maples, eds., Geobiology of Echinoderms. Paleontological Society Papers, 3, p147190.
Bridges, P. H., Gutteridge, P., & Pickard, N. A. H. (1995). The environmental setting of Early Carboniferous mud-mounds. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H. & Pratt, B. R., eds., Carbonate Mud-mounds Their Origin and Evolution. Oxford: Blackwell Science, pp. 171190.
Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological Magazine, 123, 5965.
Brower, J. C. (1974). Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7, 259499.
Brower, J. C., & Veinus, J. (1978). Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bulletins of American Paleontology, 74, 369506.
Carozzi, A. V., & Soderman, J. G. (1962). Petrography of Mississippian (Borden) crinoidal limestones at Stobo, Indiana. Journal of Sedimentary Petrology, 32, 397414.
Cassa, M. R., & Kissling, D. L. (1982). Carbonate facies of the Onondaga and Boise Blanc Formations Niagara Peninsula, Ontario. In Buehler, E. J. & Calkin, P. E., eds., Guidebook for Field Trips in Western New York, Northern Pennsylvania, and Adjacent Southern Ontario. New York State Geological Association 54th Annual Meeting, 55–97. Rocky Mountain Paleogeography Symposium I, Paleozoic Paleogeography of the West-Central United States, pp. 111128.
Cole, S. R. (2017). Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91, 815828.
Cole, S. R. (2018). Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology, 62, 357373.
Cole, S. R. (2019). Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny. Paleobiology, doi: https://doi.org/10.1017/pab.2019.37.
Cole, S. R., Wright, D. W., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 8298.
Cornell, S. R., Brett, C. E., & Sumrall, C. D. (2003). Paleoecology and taphonomy of an edrioasteroid-dominated hardground association from tentaculitid limestones in the Early Devonian of New York: A Paleozoic rocky peritidal community. PALAIOS, 18, 212224.
Desrocher, A. (2006). Rocky shoreline deposits in the Lower Silurian (upper Llandovery, Telychian) Chicotte Formation, Anticosti Island, Quebec. Canadian Journal of Earth Sciences, 43, 12051214.
Dickson, J. A. D. (1995). Paleozoic Mg calcite preserved: Implications for the Carboniferous ocean. Geology, 23, 535538.
Dickson, J. A. D. (2001a). Diagenesis and crystal caskets: Echinoderm Mg calcite transformation. Dry Canyon, New Mexico, U.S.A. Journal of Sedimentary Research, 71, 764777.
Dickson, J. A. D. (2001b). Transformation of echinoid Mg calcite skeletons by heating. Geochimica, Geocosmochimica, Acta, 65, 443454.
Dickson, J. A. D. (2002). Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science, 298, 12221224.
Dickson, J. A. D. (2004). Echinoderm skeletal preservation: Calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research, 74, 355365.
Dickson, J. A. D. (2009). Mississippian paleocean chemistry from biotic and abiotic carbonate, Muleshoe Mound, Lake Valley Formation, New Mexico, U.S.A. – discussion. Journal of Sedimentary Research, 79, 4041.
Donovan, S. K. (1991). Taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment. In Donovan, S. K., ed., The Process of Fossilization. London: Belhaven, pp. 241269.
Donovan, S. K., & Pawson, D. L. (1997). Proximal growth of the column in bathycrinid crinoids (Echinodermata) following decapitation. Bulletin of Marine Science, 61, 571579.
Donovan, S. K., & Schmidt, D. A. (2001). Survival of crinoid stems following decapitation: Evidence from the Ordovician and palaeobiological implications. Lethaia, 34, 263370.
Durham, J. W. (1978). Polymorphism in the Pliocene sand dollar Merriamaster (Echinodermata). Journal of Paleontology, 52, 275286.
Durham, J. W. (1993). Observations on the Early Cambrian helicoplacoid echinoderms. Journal of Paleontology, 67, 590604.
Emson, R. H., & Wilkie, I. C. (1980). Fission and autotomy in echinoderms. Oceanography and Marine Biology, 18, 155250.
Franzén, C. (1982). A Silurian crinoid thanatotope from Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 103, 469490.
Ginsburg, R. N. (2005). Disobedient sediments can feedback on their transportation, deposition, and geomorphology. Sedimentary Geology, 175, 918.
Gahn, F. J., & Baumiller, T. K. (2004). A bootstrap analysis for comparative taphonomy as applied to Early Mississippian (Kinderhookian) crinoids from the Wassonville cycle of Iowa. PALAIOS, 19, 1738.
Gale, A. S. (1986). Goniasteridae (Asteroidea, Echinodermata) from the Late Cretaceous of north-west Europe. I. Introduction. The genera Metopaster and Recurvaster. Mesozoic Research, 1, 169.
Glass, A. (2005). Two isorophid edrioasteroids (Echinodermata) encrusting conularids from the Hunsrück Slate (Lower Devonian, Emsian; Rheinisches Schiefergebirge) of Germany. Senckenbergiana lethaea, 85, 3137.
Glynn, P. W. (1984). An amphionid worm predator of the crown-of-thorns sea star and general predation on asteroids in eastern and western Pacific coral reefs. Bulletin of Marine Science, 35, 5471.
Goldring, R., & Laggenstrassen, F. (1979). Open shelf and near-shore clastic facies in the Devonian. Special Papers in Palaeontology, 23, 8197.
Goldring, B., & Stephenson, D. G. (1972). The depositional environment of three starfish beds. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 10, 611624.
Gorzelak, P. (2018). Microstructural evidence for stalk autotomy in Holocrinus: The oldest stem-group isocrinid. Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 202207. DOI: doi.org/10.1016/j.palaeo.2018.06.036.
Gorzelak, P., Głuchowski, E., & Salamon, M. (2014). Reassessing the improbability of a muscular crinoid stem. Scientific Reports, 4. DOI: 10:1038/srep06049.
Gorzelak, P., Krzykawski, T., & Stolarski, J. (2016). Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions. Global and Planetary Change, 144, 142157.
Gorzelak, P., Stolarski, J., Mazur, M., & Meibom, A. (2012). Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons. Geobiology. DOI: 10:1111/gbi.12012.
Greb, S. F., Potter, P. E., Meyer, D. L., & Ausich, W. I. (2009). Mud Mounds, Paleoslumps, Crinoids, and More; The Geology of the Fort Payne Formation at Lake Cumberland, South-central Kentucky. Kentucky Geological Survey Guidebook. www.professionalgeologist.org/guidebook.thtm; last accessed March 27, 2019.
Greenstein, B. J. (1989). Mass mortality of the West-Indian echinoid Diadema antillarum (Echinodermata: Echinoidea): A natural experiment in taphonomy. PALAIOS, 4, 487492.
Greenstein, B. J. (1990). Taphonomic biasing of subfossil echinoid populations adjacent to St. Croix, U.S.V.I. In D. K. Larve, ed., Transactions of the 12th International Caribbean Congress, Miami Geological Society, pp. 290300.
Greenstein, B. J. (1991). An integrated study of echinoid taphonomy: Predictions for the fossil record of four echinoid families. PALAIOS, 6, 519540.
Greenstein, B. J. (1992). Taphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata: Echinoidea). Paleobiology, 18, 5079.
Grun, T. B., Mancosu, A., Bealaústegui, Z., & Nebelsick, J. H. (2018). The taphonomy of Clypeaster: A paleontological tool to identify stable structures in natural shell systems. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 289, 189202. DOI:10.1127/njgpa/2018/0737.
Guensburg, T. E. (1988). Systematics, functional morphology, and life modes of late Ordovician edrioasteroids, Orchard Creek Shale, southern Illinois. Journal of Paleontology, 62, 110126.
Guensburg, T. E., & Sprinkle, J. (1994). Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early Ordovician of eastern Utah. Fieldiana (Geology), 29, 43 p.
Guensburg, T. E., & Sprinkle, J. (1995). Origin of echinoderms in the Paleozoic evolutionary fauna: The role of substrates. PALAIOS, 10, 437453.
Gutschick, R. C., Sandberg, C. A., & Sando, W. J. (1980). Mississippian shelf margin and carbonate platform from Montana to Nevada. In T. D. Fouch & E. R. Magathan, eds., Rocky Mountain Paleogeography Symposium I, Paleozoic Paleogeography of the West-Central United States, pp. 111128.
Hagdorn, H., & Schulz, M. (1996). Echinodermen-Konservatlagerstätten im Unteren Muschelkalk Osthessens, 1. Die Bimbacher Seelilienbank von Grossenlüder-Bimbach. Geologisches Jahrbuch Hessen, 124, 97122.
Hagdorn, H., Berra, F., & Tintori, A. (2018). Encrinus aculeatus von Meyer, 1849 (Crinoidea, Echinodermata) from the Middle Triassic of Bal Brembana (Alpi Orobie, Bergamo, Italy). Swiss Journal of Paleontology, 137, 211224. DOI: doi.org/10.1007/s13358-018-1270-0.
Hess, H. (1972a). Chariocrinus n. gen. für Isocrinus andraea Desor aus dem unteren Hauptrogenstein (Bajocien) des Basler Juras. Eclogae Geologicae Helvetiae, 65, 197210.
Hess, H. (1972b). The fringilites of the Jurassic Sea. CIBA-GEIGY Journal, 2, 1417.
Hess, H. (1985). Schlangensterne und Seelilien aus dem unteren Lias von Hallau (Kanton Schaffhausen). Sonderdruck aus den Mitteilungen der Naturforschenden Gesellschoft Schaffhausen, 33, 115.
Jackson, W. D., & De Keyser, T. (1984). Microfacies analysis of Muleshoe Mound (Early Mississippian), Sacramento Mountains, New Mexico: A point-source depositional model Part II. West Texas Geological Society Bulletin, 23 (6), 610.
Jaekel, O. (1894). Über die Morphogenie und Phylogenic der Crinoiden. Sitzungsberichten der Gesellschaft Naturforschender Freunde, Jargang 1894, 4, 101121.
Jagt, J. W. M., Thuy, B., Donovan, S. K., et al. (2014). A starfish bed in the middle Miocene Grand Bay Formation of Carriacou, The Grenadines (West Indies). Geological Magazine, 151, 381393.
James, N. P., Desrochers, A., & Kyser, T. K. (2015). Polygenetic (polyphase) karsted hardground omission surfaces in lower Silurian neritic limestones: Anticosti Island, eastern Canada. Journal of Sedimentary Research, 85, 11381154.
Kammer, T. W., Tissue, E. C., & Wilson, M. A. (1987). Neoisorophusella, a new edrioasteroid genus from the Upper Mississippian of the Eastern United States. Journal of Paleontology, 61, 10331042.
Kent, W. N., & Rawson, R. R. (1980). Depositional environments of the Mississippian Redwall Limestone in northeastern Arizona. In T. D. Fouch & E. R. Magathan, eds., Rocky Mountain Paleogeography Symposium I, Paleozoic Paleogeography of the West-Central United States, pp. 101–109.
Kesling, R. V. (1969). A new brittle-star from the Middle Devonian Arkona Shale of Ontario. University of Michigan Museum of Paleontology Contributions, 23, 3751.
Kesling, R. V., & Le Vasseur, D. (1971). Strataster ohioensis, a new Early Mississippian brittle-star, and the paleoecology of its community. Contributions to the Museum of Paleontology, University of Michigan, 23, 305341.
Kidwell, S. M., & Baumiller, T. K. (1990). Experimental disintegration of regular echinoids: Roles of temperature, oxygen, and decay thresholds. Paleobiology, 16, 247271.
Kidwell, S. M., & Jablonski, D. (1983). Taphonomic feedback: Ecological consequences of shell accumulation. In Tevesz, M. J. S. & McCall, P. L., eds., Biotic Interactions in Recent and Fossil Communities. New York: Plenum Press, pp. 195248.
Kidwell, S. M., Fürsich, & T. Aigner, . (1986). Conceptual framework for the analysis and classification of fossil concentrations. PALAIOS, 1, 228238.
Kier, P. M. (1968). Triassic echinoids from the North America. Journal of Paleontology, 42, 10001006
Kier, P. M. (1977). The poor fossil record of the regular echinoid. Paleobiology, 3, 168174.
Koch, D. L., & Strimple, H. L. (1968). A new upper Devonian cystoid attached to a discontinuity surface. Iowa Geological Survey Report of Investigations, 5, 49 p.
Kotake, N. (1993). Tiering of trace fossil assemblages in Plio-Pleistocene bathyal deposits of Boso Peninsula, Japan. PALAIOS, 8, 544553.
Krivicich, E. B., Ausich, W. I., & Meyer, D. L. (2014). Crinoid assemblages from the Fort Payne Formation (late Osagean, early Viséan, Mississippian) from Kentucky, Tennessee, and Alabama. Journal of Paleontology, 88, 11541162.
Kroh, A., & Nebelsick, J. H. (2003). Echinoid assemblages as a tool for palaeoenvironmental reconstruction – An example from the early Miocene of Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 201, 157177.
Kühl, G., Bartels, C., Briggs, D. E. G., & Rust, J. (2012). Visions of a Vanished World. New Haven: Yale University Press, 128 p.
Lane, H. R. (1978). The Burlington Shelf (Mississippian, north-central North America). Geologica et Paleontologica, 12, 165176.
Lane, H. R., & DeKeyser, T. L. (1980). Paleogeography of the late Early Mississippian (Tournaisian 3) in the central and southwestern United States. In T. D. Fouch and Magathan, E., eds., Paleozoic paleogeography of west-central United States: West-central United States. West-Central United States Paleogeographic Symposium, 1, pp. 149162.
Lane, N. G. (1963). The Berkeley crinoid collection from Crawsfordsville, Indiana. Journal of Paleontology, 3, 10011008.
Lane, N. G. (1971). Crinoids and reefs. Proceedings of the First North American Paleontological convention, 1, 14301443.
Lane, N. G. (1973). Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian. Indiana). California University Publications in the Geological Sciences, 99, 141 p.
Lane, N. G., & Ausich, W. I. (1995). Interreef crinoid faunas from the Mississinewa Shale Member of the Wabash Formation (northern Indiana: Silurian; Echinodermata). Journal of Paleontology, 69, 10901106.
Lane, N. G., & Macurda, D. B., Jr. (1975). New evidence for muscular articulations in Paleozoic crinoids. Paleobiology, 1, 5962.
Lapham, K. E., Ausich, W. I., & Lane, N. G. (1976). A technique for developing the stereom of fossil crinoid ossicles. Journal of Paleontology, 50, 245248.
Latch, R., Trzęsoik, D., & Szopa., P. (2014). Life and death: an intriguing history of a Jurassic crinoid. Paleontological Journal, 18, 4044.
Laudon, L. R., & Beane, B. H. (1937). The crinoid fauna of the Hampton Formation at LeGrand, Iowa. University of Iowa Studies, 17, 227272.
Le Clare, E. E. (1993). Effects of anatomy and environment on the relative preservation of asteroids: a biomechanical observation. PALAIOS, 8, 233243.
Lees, A., & Miller, J. (1995). Waulsortian banks. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., & Pratt, B. R., eds. Carbonate Mudmounds Their Origin and Evolution Oxford: Blackwell Science, pp. 191271.
Lewis, R. (1980). Taphonomy. In Broadhead, T. W. and Waters, J. A., eds., Echinoderms: Notes for a Short Course. Knoxville: University of Tennessee Department of Geological Sciences Studies in Geology, pp. 4058.
Lewis, R. (1986). Relative rates of skeletal disarticulation in modern ophiuroids and Paleozoic crinoids. Geological Society of America Abstracts with Programs, 18, 672.
Liddell, W. D. (1975). Recent crinoid biostratinomy. Geological Society of America, Abstracts with Programs, 7, 1169.
Lin, J.-P., Ausich, W. I., & Zhao, Y.-L. (2008). Settling strategy of stalked echinoderms from the Kaili Biota (middle Cambrian), Guizhou Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 213221.
Lin, J.-P., Ausich, W. I., Zhao, Y.-L., & Peng, J. (2007). Taphonomy, palaeocological implications, and colouration of Cambrian gogiid echinoderms from Guizhou Province, China. Geological Magazine, 145, 1736. doi:10.1017/S0016756807003901 (published on paper in 2008 volume)
Lin, J.-P., Ausich, W. I., Zhao, Y.-L., Peng, J., & Tai, T. S. (2015). Crypto-helical body plan in partially disarticulated gogiids from the Cambrian of South China. Palaeoworld, 24, 393399.
Lowenstam, H. A. (1957). Niagaran reefs in the Great Lakes region. Geological Society of America Memoir, 67, 215248.
MacQueen, R. W., Ghent, E. D., & Davies, G. R. (1974). Magnesium distribution in living and fossil specimens of the echinoid Peronella lesueuia Agassiz, Shark Bay, Western Australia. Journal of Sedimentary Petrology, 44, 6069.
Macurda, D. B., Jr., & Meyer, D. L. (1975). The microstructure of the crinoid endoskeleton. University of Kansas Paleontological Institute Paper, 74, 22 p.
Macurda, D. B., Jr., Meyer, D. L., & Roux, M. (1978). The crinoid stereom. In Moore, R. C. & Teichert, C, eds., Treatise on Invertebrate Paleontology, Part T., Echinodermata 2, 1. Lawrence, KS, and Boulder, CO: University of Kansas Press and Geological Society of America, pp. 217232.
Mancousa, A., & Nebelsick, J. H. (2013). Multiple routes to mass accumulations of clypeasteroid echinoids: a comparative analysis of Miocene echinoids beds of Sardinia. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 173186.
Mancousa, A., & Nebelsick, J. H. (2015). The origin and paleoecology of clypeasteroid assemblages from different shelf settings of the Miocene of Sardinia, Italy. PALAIOS, 30, 273287.
Mancousa, A., & Nebelsick, J. H. (2017). Ecomorphological and taphonomic gradients in clypeasteroid-dominated echinoderm assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy. Acta Palaeontologica Polonica, 62, 627646.
Maples, C. G., & Archer, A. W. (1989). Paleoecological and sedimentological significance of bioturbated crinoid calyces. PALAIOS, 4, 379383.
Meyer, D. L. (1971). Post-mortem disarticulation of Recent crinoids and ophiuroids under natural conditions. Geological Society of America, Abstracts with Programs, 3, 645.
Meyer, D. L. (1990). Population paleoecology and comparative taphonomy of two edrioasteroid (Echinodermata) pavements: Upper Ordovician of Kentucky and Ohio. Historical Biology, 4, 155178.
Meyer, D. L., & Ausich, W. I. (2019). Ecological and taphonomic fidelity in fossil crinoid accumulations. PALAIOS, 34, 575583. DOI: http://dx.doi.org/10.2110/palo.2019.032.
Meyer, D. L., & Meyer, K. B. (1986). Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. PALAIOS, 1, 294301.
Meyer, D. L., & Weaver, T. R. (1980). Biostratinomy of crinoid-dominated communities in the lower Bull Fork Formation (Upper Ordovician) of southwestern Ohio. Geological Society of America Abstracts with Programs, 12, 251.
Meyer, D. L., Ausich, W. I., Bohl, D. T., Norris, W. A., & Potter, P. E. (1995). Carbonate mud-mounds in the Fort Payne Formation (lower Carboniferous) Cumberland Saddle region, Kentucky and Tennessee USA. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., & Pratt, B. R., eds., Carbonate Mudmounds Their Origin and Evolution Oxford: Blackwell Science, pp. 273287.
Meyer, D. L., Ausich, W. I., & Terry, R. E. (1990). Comparative taphonomy of echinoderms in carbonate facies: Fort Payne Formation (Lower Mississippian) of Kentucky and Tennessee. PALAIOS, 4, 533552. (this 1989 issue not published until 1990).
Meyer, D. L., Tobin, R. C., Pryor, W. A., et al. (eds.) (1981). Stratigraphy, sedimentology, and paleoecology of the Cincinnatian Series (Upper Ordovician) in the vicinity of Cincinnati, Ohio. In Roberts, T. G., (ed.), Geological Society of America Cincinnati 1981, Field Trip Guidebooks, Falls Church, VA: American Geological Institute pp. 3172.
Milam, M. J., Meyer, D. L., Dattilo, B. J., & Hunda, B. R. (2017). Taphonomy of an Ordovician crinoid Lagerstätte from Kentucky. Palaios, 32: 166180, figs. 115.
Miller, J. S. (1821). A natural history of the Crinoidea, or lily-shaped animals; with observations on the genera, Asteria, Euryale, Comatula and Marsupites. Bristol, UK: Bryan and Co.
Moore, R. C., & Laudon, L. R. (1943). Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 151 p.
Moran, P. J. (1992). Preliminary observations of the decomposition of crown-of-thorns starfish, Acanthaster planci (L.). Coral Reefs, 11, 115118.
Müller, A. H. (1963). Lehrbuch der Paläozoologie I. Allgemeine Grudlagen, Second Edition. Jena: G. Fisher.
Nagle, J. S. (1967). Wave and current orientation of shells. Journal of Sedimentary Petrology, 37, 11241138.
Nebelsick, J. H. (1992). The northern bay of Safaga (Red Sea, Egypt): An actuopaläontological approach, III distribution of echinoids. Beiträge zut Paläontologie von Österreich, 17, 579
Nebelsick, J. H. (1995a). Actuopalaeontological investigations of echinoids: The potential for taphonomic interpretations. In Emson, R., Smith, A. & Campbell, A., eds., Echinoderm Research, 1995, Rotterdam: Balkema Press, pp. 209214.
Nebelsick, J. H. (1995b). Uses and limitations of actuopalaeontological investigations on echinoids. Geobios, 18, 329336.
Nebelsick, J. H. (1995c). Comparative taphonomy of Clypeasteroids. Ecologae Geologicue Helvetiae 88, 685693.
Nebelsick, J. H. (1996). Biodiversity of shallow-water Red Sea echinoids: implications for the fossil record. Journal of the Marine Biological Association. U.K. 76, 185194.
Nebelsick, J. H. (2008). Taphonomy of the irregular echinoid Clypeaster humilis from the Red Sea: Implications for taxonomic resolution along taphonomic gradients. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology. Bloomington: Indiana University Press, pp. 115128.
Nebelsick, J. H., Dynowski, J. F., Grossmann, J. N., & Tötzke, C. (2015). Echinoderms: Hierarchically organized light weight skeletons. In Hamm, C., ed., Evolution of Lightweight Structures: Analyses and Technical Applications, Biologically-Inspired Systems, Vol. 6, London: Springer-Verlag, 141156. DOI 10.1007/978–017-9398–8_8. ISBN-10: 9401793972.
Nebelsick, J. H., & Kampfer, S. (1994). Taphonomy of Cypeaster humilis and Echinodiscus auritus (Echinoidea, Clypeateroide) from the Red Sea. In David, B., Guille, A., Feral, J.-P., and Roux, M., eds., Echinoderms Through Time, Rotterdam: Balkema, pp. 803808.
Nebelsick, J. H., & Kroh, A. (1999). Palaeoecology and taphonomy of Parascutella bed from the lower Miocene of the Eastern Desert, Egypt. In Candia Carnevali, M. D. & Bonasoro, F, eds., Echinoderm Research 1998. Rotterdam: A.A. Balkema Press, p.353.
Nebelsick, J. H., & Mancosu, A. (2021). The taphonomy of echinoids: skeletal morphologies, environmental factors, and preservational pathways. Element in preparation.
Newell, N. D., Imbie, J., Purdy, E. G., & Thurber, D. L. (1959). Organism communities and bottom facies, Great Bahamas Bank. Bulletin of the American Museum of Natural History, 117, 177228.
Oji, T., & Amemiya, S. (1998). Survival of crinoid stalk fragments and its taphonomic implications. Paleontological Research, 2, 6770.
Okulitch, V. J., & Tovell, W. M. (1941). A crinoidal marking in the Dundas Formation at Toronto. Journal of Paleontology, 15, 89.
O’Malley, C. E., Ausich, W. I., & Chin., Y-P. (2008). Crinoid biomarkers (Borden Group, Mississippian): Implications for phylogeny. In Ausich, W. I. and Webster, G. D., eds., Echinoderm Paleobiology, Bloomington: Indiana University Press, pp. 290306.
O’Malley, C. E., Ausich, W. I., & Chin., Y-P. (2013). Isolation and characterization of the earliest taxon-specific organic molecules (Mississippian, Crinoidea). Geology, 41, 347350. (doi:10.1130/G33792.1)
O’Malley, C. E., Ausich, W. I., & Chin., Y-P. (2016). Deep echinoderm phylogeny preserved in organic molecules from Paleozoic fossils. Geology, 4, 379382. [doi:10.1130/G37761.1]
Parsley, R. (2009). Morphology, ontogeny, and heterochrony in Lower and Middle Cambrian gogiids (Eocrinoidea, Echinodermata) from Guizhou Province, China. Palaeontological Journal, 43, 14061414.
Parsley, R. L., & Zhou, Y. (2006). Long stalked eocrinoids in the basal Middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China. Journal of Paleontology, 80, 10581071.
Pawson, D. L. (1980). Holothurians. In Broadhead, T. W. & Waters, J. A., eds., Echinoderm Notes for a Short Course. Knoxville: University of Tennessee Studies in Geology, 3, 175189.
Purdy, E. G. (1963). Recent calcium carbonate facies on the Great Bahamas Bank, 2, sedimentary facies. Journal of Geology, 71, 472497.
Régis, M. B. (1977). Organisation microstructurale du stéréome de l’Echinoïde Paracentrotus lifidus Lamarck et ses éventuelles incidences physiologiques. Comptes Rendus de l’Académie des Sciences Paris, Séries D, 285, 189192.
Reid, M., Bordy, E. M., & Taylor, W. (2015). Taphonomy and sedimentology of an echinoderm obrution bed in the Lower Devonian Voorstehoek Formation (Bokkeveld Group, Cape Supergroup) of South Africa. Journal of African Earth Sciences, 110, 135149.
Rhenberg, E. C., Ausich, W. I., & Meyer, D. L. (2016). Actinocrinitidae from the Lower Mississippian Fort Payne Formation of Kentucky and Alabama. Journal of Paleontology, 90,11481159. dx.doi.org/10.1017/jpa.2016.85
Riddle, S. W., Wulff, J. I. & Ausich, W. I. (1988). Biomechanics and stereomic microstructure of the Gilbertsocrinus tuberosus column. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L., eds., Echinoderm Biology. Rotterdam: A.A. Balkema, pp. 641648.
Rosenkranz, D. (1971). Zur sedimentology und Okölogie von Echinoderm-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 138, 221258.
Rousseau, J., Gale, A. S., & Thuy, B. (2018). New articulated asteroids (Echinodermata, Asteroidea) and ophiuroids (Echinodermata, Ophiuroidea) from the Late Jurassic (Volgian/Tithian) of central Spitsbergen. European Journal of Taxonomy, 411, 16.
Roux, M. (1970). Introduction à l’etude des microstructures des tiges de crinöids. Geobios, 3, 7998.
Roux, M. (1974a). Les principaux modes d’articulation des ossicules du squelete des Crinöides pédonculés actuels, Observations microstructurales et consequences pour l’interprétation des fossils. Compte Rendu de l’Academie des Sciences, Paris, 278, 20152018.
Roux, M. (1974b). Observations au microscope électronique à bakayage de quelques articulations entre les ossicules de sequelette des Crinöides pédonculés actuels (Bathycrinidae et Isocrinina). Travaux du Labroratoire de Paléontologie, Orsay, 10 p.
Roux, M. (1975). Microstructural analysis of the crinoid stem. University of Kansas Paleontological Contributions, Paper, 75, 17.
Sadler, M., & Lewis, R. D. (1996). Actualistic studies of taphonomy and ichnology the of irregular echinoid Meoma verntricosa at San Salvador, Bahamas. Geological Society of America Abstracts with Programs, 28, 293294.
Savarese, M., Dodd, J. R., & Lane, N. G. (1997). Taphonomic and sedimentologic implications of crinoid intraskeletal porosity. Lethaia, 29, 141156.
Schäfer, W. (1972). Ecology and Paleoecology of Marine Environments. Chicago: University of Chicago Press.
Schneider, C. L., Sprinkle, J., & Ryder, D. (2005). Pennsylvanian (Late Carboniferous) echinoids from the Winchell Formation, North-Central Texas, USA. Journal of Paleontology, 79, 745762.
Schumacher, G. A. (1986). Storm processes and crinoid preservation. Abstracts, Fourth North American Paleontological Convention, Boulder, 12–15 August, p. A41.
Schwarzacher, W. (1961). Petrology and structure of some Loer Carboniferous reefs in northwestern Ireland. Journal of Sedimentary Petrology, 45, 481503.
Schwarzacher, W. (1963). Orientation of crinoid by current action. Journal of Sedimentary Geology, 33, 580586.
Seilacher, A. (1960). Strömumgsanzeichen in Hunsrückshiefer Notizblatt des Hessischen. Landesant für Bodenforschung zu Wiesbaden, 88, 88106.
Seilacher, A. (1968). Origin and diagenesis of the Oriskany Sandstone (Lower Devonian, Appalachians) as reflected in the fossil shells. In Müller, B. & Friedman, G. M., eds., Recent Developments in Sedimentary Geology in Central Europe, New York: Springer-Verlag, pp. 175185.
Seilacher, A. (1979). Constructional morphology of sand dollars. Paleobiology, 5, 120.
Sevastopulo, G. D., & Keegan, J. B. (1980). A technique for revealing the stereom structure of fossil crinoids. Palaeontology, 23, 749756.
Shroat-Lewis, R. A., McKinney, M. L., Brett, C. E., Meyer, D. L., & Sumrall, C. D. (2011). Paleoecological assessment of an edrioasteroid (Echinodermata)-encrusted hardground from the Upper Ordovician (Maysvillian) Bellevue Member, Maysville, Kentucky. PALAIOS, 26, 470483.
Shroat-Lewis, R. A., Sumrall, C. D., McKinney, M. L., & Meyer, D. L. (2014). A paleoecological comparison of two edrioasteroid (Echinodermata) encrusted pavements from the Upper Ordovician Correyville Formation of Florence, Kentucky and the Miamitown Shale of Sharonville, Ohio, U.S.A. PALAIOS, 29, 154169.
Shroat-Lewis, R. A., Greenwood, E. N., & Sumrall, C. D. (2019). Paleoecological analysis of edrioasteroid (Echinodermata) encrusted slabs from the Chesterian (Upper Mississippian) Kinkaid Limestone of southern Illinois. PALAIOS, 34, 146158.
Smith, A. B. (1980). Stereom microstructure of echinoid tests. Special Papers in Palaeontology, 25, 181.
Smith, A. B. (1984). Echinoid Paleobiology. London:George Allen and Unwin.
Smith, A. B., & Gallemí, J. (1991). Middle Triassic holothurians from northern Spain. Palaeontology, 34, 4976.
Smith, A. B., & Paul, C. R. C. (1982). Revision of the class Cyclocystoidea (Echinodermata). Philosophical Transactions of the Royal Society of London, B, Biological Series, 296, 577684.
Smith, A. B., & Rader, W. L. (2009). Echinoid diversity, preservation potential and sequence stratigraphic cycles in the Glen Rose Formation (early Albian, Early Cretaceous), Texas, USA. Palaeobiodiversity and Palaeoenvironments, 89, 752.
Smith, A. B., Reich, M., & Zamora, A. (2009). Morphology and ecological setting of the basal echinoid genus Rhenechinus from the early Devonian of Spain. Acta Palaeontologica Polonica, 58, 751762.
Smosma, R. (1988). Paleogeographic reconstruction of the Lower Devonian Helderberg Group in the Appalachian Basin. In N. J. McMillan, A. F. Embry & D. J. Glass, eds., Devonian of the World, Proceedings of the Second International Symposium on the Devonian of the World, Calgary, Canada, 1, 265275. Canadian Society of Petroleum Geologists.
Spencer, W. K., & Wright, C. W. (1966). Asterozoans. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Part V, Echinodermata 3. Lawrence, KS, Boulder, CO: University of Kansas Paleontological Institute and Geological Society of America, pp. U4U107.)
Sprinkle, J. (1973). Morphology and evolution of blastozoan echinoderms. Harvard Museum of Comparative Zoology Special Publication, 283 p.
Sprinkle, J. (1982). Echinoderm zones and faunas of the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1, 4656.
Sprinkle, J., and Guensburg, T. E. (1995). Origin of echinoderms in the Paleozoic Evolutionary Fauna: The role of substrates. PALAIOS, 10, 437453.
Sprinkle, J., & Gutschick, R. C. (1967). Costaloblastus, a channel fill blastoids from the Sappington Formation of Montana. Journal of Paleontology, 41, 385402.
Sroka, S. D. (1988). Preliminary studies on a complete fossil holothurian from the Middle Pennsylvanian Francis Shale of Illinois. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L., eds., Echinoderm Biology, Proceedings of the Sixth International Echinoderm Conference, Victoria, British Columbia. 23–28 August, 1987. Rotterdam: Balkema Press, pp. 159160.
Sroka, S. D., & Blake, D. B. (1997). Echinodermata. In Shabica, C. W., and Hay, A. A., eds., Richardson’s Guide to the Fossil Fauna of Mazon Creek. Chicago, IL: Northeastern University Press, pp. 223225.
Stevenson, A., Gahn, F. J., Baumiller, T. K., & Sevastopulo, G. D. (2017). Predation on feather stars by regular echinoids as evidenced by laboratory and field observations and its paleobiological implications. Paleobiology, 43, 274285.
Stolarski, J., Gorzelak, P., Mazur, M., Marrocchi, Y., & Meibon, A. (2009). Nanostructural and geochemical features of the Jurassic isocrinids columnal ossicles. Acta Palaeontological Polonica, 54, 6975.
Strimple, H. L., & Moore, R. C. (1971). Crinoids from the LaSalle Limestone (Pennsylvanian) Illinois. University of Kansas Paleontological Institute, Echinodermata Article 11, 48 p.
Sumrall, C. D. (2000). The biologic implications of an edrioasteroid attached to a pleurocystitid rhombiferan. Journal of Paleontology, 84, 356359.
Sumrall, C. D. (2001). Paleoecology and taphonomy of two new edrioasteroids from a Mississippian hardground in Kentucky. Journal of Paleontology, 75, 136146
Sumrall, C. D. (2010). The systematics of a new upper Ordovician edrioasteroid pavement from northern Kentucky. Journal of Paleontology, 84, 783794.
Sumrall, C. D., Brett, C. E., Work, P. T., & Meyer, D. L. (2001). Taphonomy and paleoecology of an edrioasteroid encrusted hardground in the Bellevue Formation at Maysville, Kentucky. In T. J. Algeo & C. E. Brett, eds., Sequence, Cycle, and Event Stratigraphy of Upper Ordovician and Silurian Strata of the Cincinnati Arch Region. Kentucky Geological Survey, Kentucky Guidebook Series 12, 1, 123131.
Sumrall, C. D., Sprinkle, J., & Bonem, R. M. (2006). An edrioasteroid-dominated echinoderm assemblage from a Lower Pennsylvanian marine conglomerate in Oklahoma. Journal of Paleontology, 80, 229244.
Taylor, W. L., & Brett, C. E. (1996). Taphonomy and paleoecology of echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale. PALAIOS, 11, 118140.
Telford, M. (1985a). Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology, 105, 114124.
Telford, M. (1985b). Structural analysis of the test of Echinocyamus pusillus (O. F. Müller). In Keegan, B. F. and O’Conner, B. D. S., eds., Proceedings of the Fifth International Echinoderm Conference. Rotterdam: Balkema, pp. 353360.
Thompka, J. R., Lewis, R.D., Mosher, D., Pabian, R. K., & Holterhoff, P. F. (2011). Genus-level taphonomic variation within cladid crinoids from the Upper Pennsylvanian Barnsdall Formation, northeastern Oklahoma. PALAIOS, 26, 377389.
Tetreault, D. K. (1995). An unusual Silurian arthropod/echinoderm dominated soft-bodied fauna from the Eramosa Member (Ludlow) of the Guelph Formation, southern Bruce Peninsula, Ontario, Canada. Geological Society of America Abstracts with Programs, 27, A114.
Ubaghs, G. (1963). Rhopalocystis detombsei n. gen., n. sp. Eocrinoïde de l’Ordovicien inférieur (Trémadocien supériur de Sud marocain. Notes du Service Géologique du Marocain, 23, 2545.
Veitch, M. A., Messing, C. G., & Baumiller, T. K. (2015). Contractile connective tissue (CCT) in the stalk of the bourgueticrinid crinoid, Democrinus: functional, ecological, and evolutionary implications. Geological Society of America Abstracts with Programs, 47(7), 855.
Wachsmuth, C., & Springer, F. (1880–1886). Revision of the Palaeocrinoidea. Proceedings of the Academy of Natural Sciences of Philadelphia Pt. I. The families Ichthyocrinidae and Cyathocrinidae (1880), pp. 226–378, (separate repaged pp. 1–153). Pt. II. Family Sphaeroidocrinidae, with the sub-families Platycrinidae, Rhodocrinidae, and Actinocrinidae (1881), pp. 177–411, (separate repaged, pp. 1–237). Pt. III, Sec. 1. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions (1885), pp. 225–364 (separate repaged, pp. 1–138). Pt. III, Sec. 2. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions (1886), pp. 64226 (separate repaged to continue with section 1, pp. 139–302).
Waddington, J. B. (1980). A soft substrata community with edrioasteroids from the Verulum Formation (Middle Ordovician) at Gambridge, Ontario. Canadian Journal of Earth Sciences, 17, 674749.
Weber, J. N. (1969). The incorporation of magnesium into the skeletal calcite of echinoderms. American Journal of Science, 267, 537566.
Welch, J. R. (1984). The asteroid Lepidasterella montanaensis n. sp., from the upper Mississippian Bear Gulch Formation of Montana. Journal of Paleontology, 58, 843851.
Wilson, J. L. (1975). Carbonate Facies in Geologic History. New York: Springer-Verlag, 471 p.
Witzke, B. J., Tassier-Surine, S. A., Anderson, R. R., Bunker, B. J., & Artz, J. A. (2002). Pleistocene, Mississippian, and Devonian Stratigraphy of the Burlington, Iowa, area. Iowa Geological Survey Guidebook, 23, 23–51 p.
Wolkenstein, K., Głuchowski, E., Gross, J. H., & Marynowski, L. (2008). Hypericrinoid pigments in millericrinids from the lower Kimmeridgian of the Holy Cross Mountains (Poland). PALAIOS, 23, 773777.
Wolkenstein, K., Gross, J. H., Heinz, F., & Schöler, H. F. (2006). Preservation of hypericine and related polycyclic quinone pigments in fossil crinoids. Proceedings of the Royal Society, B–Biological Sciences, 273, 451456, doi:10.1098/rspb.2005.3358
Wright, D. F. (2017a). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91, 799814. doi: 10.1017/jpa.2016.141.
Wright, D. F. (2017b). Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Scientific Reports, 7: 13745 | DOI:10.1038/s41598-017-13979-9.
Wright, D. F., Ausich, W. I., Cole, S. R., Peter, M. E., & Rhenberg, E. C., (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata): Journal of Paleontology, 91, 829846. doi 10.1917/jpa.2016.142; published online 02–22-17.
Zhao, Y., Parsley, R. L., & Peng, J. (2008). Basal middle Cambrian short-stalked eocrinoids from the Kaili Biota: Guizhou Province, China. Journal of Paleontology, 82, 415422.
Zamora, S., Gozalo, R. & Linñán, E. (2009). Middle Cambrian gogiid echinoderms from Northeastern Spain: Taxonomy, palaeoecology, and palaeogeographic implications. Acta Palaeontologica Polonica, 54, 253265.
Zittel, K. A. von. (1895). Grundzüge der Palaeontologie (Palaeozoologie), 1st edit. München: R. Oldenbourg.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.