Skip to main content Accessibility help
×
  • Cited by 41
Publisher:
Cambridge University Press
Online publication date:
September 2012
Print publication year:
2012
Online ISBN:
9780511978760

Book description

Presenting a systematic model reduction and hierarchical controller design framework for broad classes of integrated process systems encountered in practice, this book first studies process systems with large material recycle and/or with small purge streams, followed by systems with energy integration. Step-by-step model reduction procedures are developed to derive nonlinear reduced models of the dynamics in each time scale. Hierarchical control architectures consisting of coordinated levels of control action in different time scales are proposed for each class of process systems considered to enforce stability, tracking performance and disturbance rejection. Numerous process applications are discussed in detail to illustrate the application of the methods and their potential to improve process operations. MATLAB codes are also presented to guide further application of the methods developed and facilitate practical implementations.

Reviews

'The book should be useful to practitioners and researchers involved in dynamics and control, and as a reference for students of process systems engineering or process control.'

Source: CEP

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Adams, J.P., Collis, A. J., Henderson, R. K., and Sutton, P.W. (2009). Biotransformations in small-molecule pharmaceutical development. In J., Whittall and P., Sutton, eds., Practical Methods for Biocatalysis and Biotransformations, pp. 1–82. New York: John Wiley & Sons.
Ali, E. and Alhumaizi, K. L. (2000). Temperature control of ethylene to butene-1 dimerization reactor. Ind. Eng. Chem. Res., 39, 1320–1329.
Andrecovich, M. J. and Westerberg, A.W. (1985a). A simple synthesis method based on utility bounding for heat-integrated distillation sequences. AIChE J., 31, 363–375.
Andrecovich, M. J. and Westerberg, A.W. (1985b). An MILP formulation for heat-integrated distillation sequence synthesis. AIChE J., 31, 1461–1474.
Annakou, O. and Mizsey, P. (1996). Rigorous comparative study of energyintegrated distillation schemes. Ind. Eng. Chem. Res., 35, 1877–1885.
Antelo, L. T., Otero-Muras, I., Banga, J. R., and Alonso, A.A. (2007). A systematic approach to plant-wide control based on thermodynamics. Comput. Chem. Eng., 31, 677–691.
Antoniades, C. and Christofides, P. D. (2001). Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport–reaction processes. Chem. Eng. Sci., 56, 4517–4535.
Baldea, M. and Daoutidis, P. (2005). Dynamics and control of integrated process networks with multi-rate reactions. In Proceedings of the 16th IFAC World Congress, Prague.
Baldea, M. and Daoutidis, P. (2006). Model reduction and control of reactor–heat exchanger networks. J. Proc. Contr., 16, 265–274.
Baldea, M. and Daoutidis, P. (2007). Control of integrated process networks – a multi-time scale perspective. Comput. Chem. Eng., 31, 426–444.
Baldea, M., Daoutidis, P., and Kumar, A. (2006). Dynamics and control of integrated networks with purge streams. AIChE J., 52, 1460–1472.
Baldea, M., Daoutidis, P., and Nagy, Z.K. (2010). Nonlinear Model Predictive Control of integrated process systems. In Proceedings Nonlinear Control Systems (NOLCOS 2010).
Banerjee, A. and Arkun, Y. (1995). Control con.guration design applied to the Tennessee Eastman plant-wide control problem. Comput. Chem. Eng., 19, 453–480.
Bao, J. and Lee, P. L. (2007). Process Control: The Passive Systems Approach. New York: Springer.
Belanger, P. W. and Luyben, W. L. (1998). Plantwide design and control of processes with inerts. 1. Light inerts. Ind. Eng. Chem. Res., 37, 516–527.
Bildea, C. S. and Dimian, A.C. (1998). Stability and multiplicity approach to the design of heat integrated PFR. AIChE J., 44, 2703–2712.
Bildea, C. S., Dimian, A. C., and Iedema, P. D. (2000). Nonlinear behavior of reactor–separator–recycle systems. Comput. Chem. Eng., 24, 209–214.
Buckley, P. S. (1964). Techniques of Process Control. New York: Wiley.
Chen, J. J. J. (1987). Comments on improvements on a replacement for the logarithmic mean. Chem. Eng. Sci., 42, 2488–2489.
Chen, R. and McAvoy, T. J. (2003). Plantwide control system design: methodology and application to a vinyl acetate process. Ind. Eng. Chem. Res., 42, 4753–4771.
Chen, R., McAvoy, T. J., and Zafiriou, E. (2004). Plantwide control system design: extension to multiple-forcing and multiple-steady-state operation. Ind. Eng. Chem. Res., 43, 3685–3694.
Chen, Y. H. and Yu, C. C. (2003). Design and control of heat integrated reactors. Ind. Eng. Chem. Res., 42, 2791–2808.
Chow, J.H. and Kokotović, P. V. (1976). A decomposition of near optimum regulators for systems with slow and fast modes. IEEE Trans. Automat. Contr., 21, 701–705.
Chow, J.H. and Kokotović, P. V. (1978). Two-time-scale feedback design of a class of nonlinear systems. IEEE Trans. Automat. Contr., 23, 438–443.
Christofides, P. D. and Daoutidis, P. (1996a). Feedback control of two-time-scale nonlinear systems. Int. J. Contr., 63, 965–994.
Christofides, P.D. and Daoutidis, P. (1996b). Compensation of measurable disturbances in two-time-scale nonlinear systems. Automatica, 32, 1553–1573.
Christofides, P.D., Davis, J. F., El-Farra, N.H., Clark, D., Harris, K. R. D., and Gipson, J.N. (2007). Smart plant operations: vision, progress and challenges. AIChE J., 53, 2734–2741.
Contou-Carrère, M. N., Baldea, M., and Daoutidis, P. (2004). Dynamic precompensation and output feedback control of integrated process networks. Ind. Eng. Chem. Res., 43, 3528–3538.
Dadebo, S. A., Bell, M. L., McLellan, P. J., and McAuley, K.B. (1997). Temperature control of industrial gas phase polyethylene reactors. J. Proc. Contr., 7, 83–95.
Daoutidis, P. and Kravaris, C. (1992). Dynamic output feedback control of minimum-phase nonlinear processes. Chem. Eng. Sci., 47, 837–849.
Daoutidis, P. and Kravaris, C. (1994). Dynamic output feedback control of minimum-phase multivariable nonlinear processes. Chem. Eng. Sci., 49, 433–447.
Denn, M. M. and Lavie, R. (1982). Dynamics of plants with recycle. Chem. Eng. J., 24, 55–59.
Desoer, C. A. and Shahruz, S. M. (1986). Stability of nonlinear systems with three time scales. Circ. Syst. Sig. Proc., 5, 449–464.
Desoer, C.A. and Vidyasagar, M. (2009). Feedback Systems: Input–Output Properties. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Diehl, M., Amrit, R., and Rawlings, J.B. (2011). A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Automat. Contr., 56, 703–707.
Diez, E., Langston, P., Ovejero, G., and Romero, M.D. (2009). Economic feasibility of heat pumps in distillation to reduce energy use. Appl. Therm. Eng., 29, 1216–1223.
Dimian, A. C., Groenendijk, A. J., and Iedema, P. D. (2001). Recycle interaction effects on the control of impurities in a complex plant. Ind. Eng. Chem. Res., 40, 5784–5794.
Douglas, J. M. (1988). Conceptual Design of Chemical Processes. New York: McGraw-Hill.
Downs, J. J. and Vogel, E. F. (1993). A plant-wide industrial process control problem. Comput. Chem. Eng., 17, 245–255.
Downs, J. J. and Skogestad, S. (2009). An industrial and academic perspective on plantwide control. In IFAC Symposium on Advanced Control of Chemical Processes, pp. 119–130.
Edgar, T. F. (2004). Control and operations: when does controllability equal profitability?Comput. Chem. Eng., 29, 41–49.
Edgar, T. F. and Davis, J. F. (2009). Smart process manufacturing – a vision of the future. In A. A., Linninger and M.M., El-Halwagi, eds., Design for Energy and the Environment: Proceedings of the Seventh International Conference on the Foundations of Computer-Aided Process Design, pp. 149–165. Boca Raton, FL: CRC Press.
El-Farra, N.H., Gani, A., and Christofides, P.D. (2005). Fault-tolerant control of process systems using communication networks. AIChE J., 51, 1665–1682.
El-Halwagi, M. M. (2006). Process Integration. Amsterdam: Elsevier Academic Press.
Farschman, C. A., Viswanath, K. P., and Ydstie, B. E. (1998). Process systems and inventory control. AIChE J., 44, 1841–1857.
Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equat., 31, 53.
Floudas, C. A. and Paules, G. E. (1988). A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences. Comput. Chem. Eng., 12, 531–546.
Foss, A. S. (1973). Critique of chemical process control theory. AIChE J., 19, 209–214.
Georgakis, C. (1986). On the use of extensive variables in process dynamics and control. Chem. Eng. Sci., 41, 1471–1484.
Gerdtzen, Z.P., Daoutidis, P., and Hu, W. S. (2004). Non-linear reduction for kinetic models of metabolic reaction networks. Metabolic Eng., 6(2), 140–154.
Gilliland, E. R., Gould, L. A., and Boyle, T. J. (1964). Dynamic effects of material recycle. In Preprints of the Joint American Control Conference, pp. 140–146.
Haberman, R. (1998). Elementary Applied Partial Differential Equations, third edition. Upper Saddle River, NJ: Prentice-Hall.
Henderson, L. S. and Cornejo, R. A. (1989). Temperature control of continuous, bulk styrene polymerization reactors and the influence of viscosity: an analytical study. Ind. Eng. Chem. Res., 28, 1644–1653.
Hoppensteadt, F. (1971). Properties of solutions of ordinary differential equations with small parameters. Commun. Pure Appl. Math., XXIV, 807–840.
Illanes, A. (2008). Enzyme Biocatalysis: Principles and Applications. New York: Springer.
Isidori, A. (1995). Nonlinear Control Systems. Berlin: Springer-Verlag.
Jacobsen, E. and Berezowski, M. (1998). Chaotic dynamics in homogeneous tubular reactors with recycle. Chem. Eng. Sci., 23, 4023–4029.
Jacobsen, E. W. (1999). On the dynamics of integrated plants – non-minimum phase behavior. J. Proc. Contr., 9, 439–451.
Jillson, K.R. and Ydstie, Y.B. (2007). Process networks with decentralized inventory and flow control. J. Proc. Contr., 17, 399–413.
Jogwar, S. S. and Daoutidis, P. (2010). Energy flow patterns and control implications for integrated distillation networks. Ind. Eng. Chem. Res., 49, 8048–8061.
Jogwar, S. S., Baldea, M., and Daoutidis, P. (2009). Dynamics and control of process networks with large energy recycle. Ind. Eng. Chem. Res., 48, 6087–6097.
Jogwar, S. S., Torres, A. I., and Daoutidis, P. (2011). Networks with large solvent recycle: dynamics, hierarchical control and a biorefinery application. AIChE J., DOI:10.1002/aic.12708.
Kanadibhotla, R. S. and Riggs, J. B. (1995). Nonlinear model based control of a recycle reactor process. Comput. Chem. Eng., 19, 933–948.
Kapoor, N., McAvoy, T. J., and Marlin, T. E. (1986). Effect of recycle structure on distillation tower time constants. AIChE J., 32, 411–418.
Kevorkian, J. and Cole, J.D. (1996). Multiple Scale and Singular Perturbation Methods. New York: Springer.
Khalil, H. K. (2002). Nonlinear Systems, third edition. Upper Saddle River, NJ: Prentice-Hall.
King, C. J. (1980). Separation Processes. New York: McGraw-Hill.
Kiss, A. A., Bildea, C. S., Dimian, A. C., and Iedema, P. D. (2002). State multiplicity in CSTR–separator–recycle polymerization systems. Chem. Eng. Sci., 57, 535–546.
Kiss, A. A., Bildea, C. S., Dimian, A. C., and Iedema, P. D. (2005). Design of recycle systems with parallel and consecutive reactions by nonlinear analysis. Ind. Eng. Chem. Res., 44, 576–587.
Kobayashi, S. (2009). Recent developments in lipase-catalyzed synthesis of polyesters. Macromol. Rapid Commun., 30, 237–266.
Kokotović, P. V., Khalil, H. K., and O'Reilly, J. (1986). Singular Perturbations in Control: Analysis and Design. London: Academic Press.
Kothare, M. V., Shinnar, R., Rinard, I., and Morari, M. (2000). On defining the partial control problem: concepts and examples. AIChE J., 46, 2456–2474.
Kravaris, C. and Kantor, J.C. (1990). Geometric methods for nonlinear process control, parts 1–2. Ind. Eng. Chem. Res., 29, 2295–2323.
Kravaris, C., Niemiec, M., Berber, R., and Brosilow, C. B. (1998). Nonlinear model-based control of nonminimum-phase processes. In R., Berber and C., Kravaris, eds., Nonlinear Model Based Process Control, pp. 115–143. Dordrecht: Kluwer Academic Publishers.
Kumar, A. and Daoutidis, P. (1996). Feedback regularization and control of nonlinear differential-algebraic-equation systems. AIChE J., 42, 2175–2198.
Kumar, A. and Daoutidis, P. (1999a). Control of Nonlinear Di.erential Equation Systems. Boca Raton, FL: Chapman & Hall/CRC Press.
Kumar, A. and Daoutidis, P. (1999b). Modeling, analysis and control of ethylene glycol reactive distillation column. AIChE J., 45, 51–68.
Kumar, A. and Daoutidis, P. (2002). Dynamics and control of process networks with recycle. J. Proc. Contr., 12, 475–484.
Kumar, A. and Daoutidis, P. (2003). Nonlinear model reduction and control for high-purity distillation columns. Ind. Eng. Chem. Res., 42, 4495–4505.
Kumar, A., Christofides, P. D., and Daoutidis, P. (1998). Singular perturbation modeling of nonlinear processes with non-explicit time-scale separation. Chem. Eng. Sci., 53, 1491–1504.
Kuster, B. F. M. and Temmink, H. M. G. (1977). The in.uence of pH and weak-acid anions on the dehydration of fructose. Carbohyd. Res., 54, 185–191.
Ladde, G. S. and Siljak, D.D. (1983). Multiparameter singular perturbation of linear systems with multiple time scales. Automatica, 19, 385–394.
Lakshminarayanan, S., Onodera, K., and Madhukar, G.M. (2004). Recycle effect index: a measure to aid in control system design for recycle processes. Ind. Eng. Chem. Res., 43, 1499–1511.
Larsson, T. and Skogestad, S. (2000). Plantwide control – a review and a new design procedure. Modeling, Identification Contr., 21, 209–240.
Larsson, T., Hestetun, K., Hovland, E., and Skogestad, S. (2001). Self-optimizing control of a large-scale plant: the Tennessee Eastman process. Ind. Eng. Chem. Res., 40(22), 4889–4901.
Larsson, T., Govatsmark, M. S., Skogestad, S., and Yu, C. C. (2003). Control structure selection for reactor, separator, and recycle processes. Ind. Eng. Chem. Res., 42(6), 1225–1234.
Linnhoff, B. and Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chem. Eng. Sci., 38, 745–763.
Linnhoff, B., Dunford, H., and Smith, R. (1983). Heat integration of distillation-columns into overall processes. Chem. Eng. Sci., 38, 1175–1188.
Liu, J., Muñoz de la Peña, D., Ohran, B. J., Christofides, P.D., and Davis, J. F. (2008). A two-tier architecture for networked process control. Chem. Eng. Sci., 63, 5394–5409.
Liu, J., Muñoz de la Peña, D., and Christofides, P.D. (2009). Distributed model predictive control of nonlinear process systems. AIChE J., 55, 1171–1184.
Luyben, M. L. and Tyreus, B. D. (1998). An industrial design/control study for the vinyl acetate monomer process. Comput. Chem. Eng., 22(7–8), 867–877.
Luyben, M. L., Tyreus, B. D., and Luyben, W. L. (1997). Plantwide control design procedure. AIChE J., 43, 3161–3174.
Luyben, W. L. (1993a). Dynamics and control of recycle systems. Parts 1–4. Ind. Eng. Chem. Res., 32, 466–486, 1142–1162.
Luyben, W. L. (1993b). Dynamics and control of recycle systems. 3. Alternative process designs in a ternary system. Ind. Eng. Chem. Res., 32, 1142–1153.
Luyben, W. L. (1994). Snowball effects in reactor/separator processes with recycle. Ind. Eng. Chem. Res., 33, 299–305.
Luyben, W. L. (2000). Design and control of gas-phase reactor/recycle processes with reversible exothermic reactions. Ind. Eng. Chem. Res., 39, 1529–1538.
Lyman, P. R. and Georgakis, C. (1995). Plant-wide control of Tennessee Eastman problem. Comput. Chem. Eng., 19, 321–331.
Marroquin, G. and Luyben, W. L. (1973). Practical control studies of batch reactors using realistic mathematical models. Chem. Eng. Sci., 28, 993–1003.
Mayne, D. Q., Rawlings, J.B., Rao, C. V., and Scokaert, P. O. (2000). Constrained model predictive control: stability and optimality. Automatica, 36, 789–814.
McAvoy, T. J. and Ye, N. (1994). Base control for the Tennessee Eastman problem. Comput. Chem. Eng., 18, 383.
McAvoy, T. J. (1999). Synthesis of plantwide control systems using optimization. Ind. Eng. Chem. Res., 38, 2984–2994.
Mészáros, I. and Fonyó, Z. (1986). A new bounding strategy for synthesizing distillation schemes with energy integration. Comput. Chem. Eng., 10, 545–550.
Mhaskar, P., Gani, A., McFall, C., Christofides, P.D., and Davis, J. F. (2007). Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J., 53, 654–668.
Mizsey, P. and Kalmar, I. (1996). Effects of recycle on control of chemical processes. Comput. Chem. Eng., 20, S883–S888.
Mizsey, P., Hau, N. T., Benko, N., Kalmar, I., and Fonyó, Z. (1998). Process control for energy integrated distillation schemes. Comput. Chem. Eng., 22, 427–434.
Morari, M. and Faith, D.C. III, (1980). The synthesis of distillation trains with heat integration. AIChE J., 26, 916–928.
Morari, M., Arkun, Y., and Stephanopoulos, G. (1980). Studies in the synthesis of control structures for chemical processes. Part 1. AIChE J., 26, 220–232.
Morud, J. and Skogestad, S. (1994). Effects of recycle on dynamics and control of chemical processing plants. Comput. Chem. Eng., 18, S529–S534.
Morud, J. and Skogestad, S. (1996). Dynamic behavior of integrated plants. J. Proc. Contr., 6, 145–156.
Morud, J. and Skogestad, S. (1998). Analysis of instability in an industrial ammonia reactor. AIChE J., 44, 888–895.
Muhrer, C.A., Collura, M.A., and Luyben, W. L. (1990). Control of vapor recompression distillation columns. Ind. Eng. Chem. Res., 29, 59–71.
Ng, C. and Stephanopoulos, G. (1996). Synthesis of control systems for chemical plants. Comput. Chem. Eng., 20, S999–S1004.
Nishida, N., Stephanopoulos, G., and Westerberg, A. W. (1981). A review of process synthesis. AIChE J., 27, 321–351.
Paterson, W.R. (1984). A replacement for the logarithmic mean. Chem. Eng. Sci., 39, 1635–1636.
Ponton, J. W. and Laing, D. M. (1993). A hierarchical approach to the design of process control systems. Chem. Eng. Res. Des., 71, 181–188.
Prett, D. M. and Garcia, C. E. (1988). Fundamental Process Control. London: Butterworths.
Price, R. M. and Georgakis, C. (1993). Plantwide regulatory control design procedure using a tiered framework. Ind. Eng. Chem. Res., 32, 2693–2705.
Pushpavanam, S. and Kienle, A. (2001). Nonlinear behavior of an ideal reactor separator network with mass recycle. Chem. Eng. Sci., 57, 2837–2849.
Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Contr. Eng. Prac., 11, 733–764.
Ramchandran, B., Riggs, J. B., and Heichelheim, H. R. (1992). Nonlinear plantwide control: application to a supercritical fluid extraction process. Ind. Eng. Chem. Res., 31, 290–300.
Rathore, R. N. S., Van Wormer, K.A., and Powers, G. J. (1974). Synthesis strategies for multicomponent separation systems with energy integration. AIChE J., 20, 491–502.
Rawlings, J.B. and Stewart, B. T. (2008). Coordinating multiple optimization-based controllers: new opportunities and challenges. J. Proc. Contr., 18, 839–845.
Reyes, F. and Luyben, W. L. (2000a). Steady-state and dynamic e.ects of design alternatives in heat-exchanger/furnace/reactor processes. Ind. Eng. Chem. Res., 39, 3335–3346.
Reyes, F. and Luyben, W. L. (2000b). Steady-state and dynamic e.ects of design alternatives in heat-exchanger/furnace/reactor processes. Ind. Eng. Chem. Res., 39, 3335–3346.
Ricker, N. L. (1996). Decentralized control of the Tennessee Eastman challenge process. J. Proc. Contr., 6, 205.
Ricker, N. L. and Lee, J. H. (1995). Nonlinear model predictive control of the Tennessee Eastman challenge process. Comput. Chem. Eng., 19, 961.
Rojas, O. J., Setiawan, R., Bao, J., and Lee, P. L. (2009). Dynamic operability analysis of nonlinear process networks based on dissipativity. AIChE J., 55, 963–982.
Roman-Leshkov, Y., Chheda, J.N., and Dumesic, J.A. (2006). Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 312, 1933–1937.
Saberi, A. and Khalil, H. (1985). Stabilization and regulation of non-linear singularly perturbed systems-composite control. IEEE Trans. Automat. Contr., 30, 739–747.
Scali, C. and Ferrari, F. (1999). Performance of control systems based on recycle compensators in integrated plants. J. Proc. Contr., 9, 425.
Scattolini, R. (2009). Architectures for distributed and hierarchical Model Predictive Control – a review. J. Proc. Contr., 19, 723–731.
Seider, W.D., Seader, J.D., and Lewin, D.R. (1999). Process Design Principles. New York: Wiley.
Skogestad, S. (2000). Plantwide control: the search for the self-optimizing control structure. J. Proc. Contr., 10, 487–507.
Skogestad, S. (2004). Control structure design for complete chemical plants. Comput. Chem. Eng., 28, 219–234.
Sophos, A., Stephanopoulos, G., and Morari, M. (1978). Synthesis of optimum distillation sequences with heat integration schemes. In National AIChE Meeting, Miami, FL.
Stephanopoulos, G. (1983). Synthesis of control systems for chemical plants – a challenge for creativity. Comput. Chem. Eng., 7, 331.
Stewart, B. T., Venkat, A. N., Rawlings, J.B., Wright, S. J., and Pannocchia, G. (2010). Cooperative distributed model predictive control. Syst. Contr. Lett., 59, 460–469.
Sun, Y. and El-Farra, N.H. (2008). Quasi-decentralized model-based networked control of process systems. Comput. Chem. Eng., 32, 2016–2029.
Sun, Y. and El-Farra, N.H. (2010). A quasi-decentralized approach for networked state estimation and control of process systems. Ind. Eng. Chem. Res., 49, 7957–7971.
Sureshkumar, M. and Lee, C. K. (2009). Biocatalytic reactions in hydrophobic ionic liquids. J. Mol. Catal. B – Enzym., 60, 1–12.
Tatara, E., Cinar, A., and Teymour, F. (2007). Control of complex distributed systems with distributed intelligent agents. J. Proc. Contr., 17, 415–427.
Tetiker, M.D., Artel, A., Teymour, F., and Cinar, A. (2008). Control of grade transitions in distributed chemical reactor networks – an agent-based approach. Comput. Chem. Eng., 32, 19841994.
Tian, Z. and Hoo, K. A. (2005). Multiple model-based control of the Tennessee–Eastman process. Ind. Eng. Chem. Res., 44, 3187–3202.
Tikhonov, A. N. (1948). On the dependence of the solutions of differential equations on a small parameter. Mat. Sb., 22, 193–204.
Torres, A. I., Daoutidis, P., and Tsapatsis, M. (2010). Continuous production of 5-hydroxymethylfurfural from fructose: a design case study. Energy Environ. Sci., 3, 1560–1572.
Tyreus, B.D. (1999). Dominant variables for partial control. 1. A thermodynamic method for their identification. Ind. Eng. Chem. Res., 38, 1432–1443.
Umeda, T., Kuriyama, T., and Ichikawa, A. (1978). A logical structure for process control system synthesis. In Proceedings of the IFAC Congress, Helsinki.
Underwood, A.J.V. (1970). Simple formula to calculate mean temperature difference. Chem. Eng., 77, 192.
van Rantwijk, F., Madeira Lau, R., and Sheldon, R. A. (2003). Biocatalytic transformations in ionic liquids. Trends Biotechnol., 21, 131–138.
Vasudevan, S. and Rangaiah, G.P. (2009). Development of guidelines for plantwide control of gas-phase industrial processes, from reactor–separator–recycle results. Ind. Eng. Chem. Res., 50, 297–337.
Vasudevan, S. and Rangaiah, G.P. (2010). Criteria for performance assessment of plantwide control systems. Ind. Eng. Chem. Res., 49, 5955–5970.
Venkat, A. N., Rawlings, J.B., and Wright, S. J. (2006). Implementable distributed model predictive control with guaranteed performance properties. In Proceedings of the 2006 American Control Conference, Minneapolis, MN.
Venkat, A. N., Hiskens, I.A., Rawlings, J.B., and Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Contr. Syst. Tech., 16, 1192–1206.
Verhulst, F. (2005). Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. New York: Springer.
Verykios, X. and Luyben, W. L. (1978). Steady-state sensitivity and dynamics of reactor/distillation column system with recycle. ISA Trans., 17, 49–55.
Vinson, D.R. (2006). Air separation control technology. Comput. Chem. Eng., 30, 1436–1446.
Vora, N.P. (2000). Nonlinear Model Reduction and Control of Multiple Time Scale Chemical Processes: Chemical Reaction Systems and Reactive Distillation Columns. PhD thesis, University of Minnesota – Twin Cities.
Vora, N.P. and Daoutidis, P. (2001). Dynamics and control of an ethyl acetate reactive distillation column. Ind. Eng. Chem. Res., 40, 833–849.
Vora, N.P., Contou-Carrère, M. N., and Daoutidis, P. (2006). Model reduction of multiple time scale processes in non-standard singularly perturbed form. In A. N., Gorban, N., Kazantzis, I.G., Kevrekidis, H. C., Öttinger, and K., Theodoropoulos, eds., Coarse Graining and Model Reduction Approaches for Multiscale Phenomena, pp. 99–116. Berlin: Springer-Verlag.
Wang, K., Qian, Y., Yuan, Y., and Yao, P. (1998). Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm. Comput. Chem. Eng., 23, 125–136.
Wang, P. and McAvoy, T. J. (2001). Synthesis of plantwide control systems using a dynamic model and optimization. Ind. Eng. Chem. Res., 40, 5732–5742.
Wang, X.H., Li, Y.G., Hu, Y.D., and Wang, Y. L. (2008). Synthesis of heat-integrated complex distillation systems via Genetic Programming. Comput. Chem. Eng., 32, 1908–1917.
Wei-Zhong, A. and Xi-Gang, Y. (2009). A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences. Comput. Chem. Eng., 33, 199–212.
Westerberg, A.W. (2004). A retrospective on design and process synthesis. Comput. Chem. Eng., 28, 447–458.
Wheeler, C., West, K.N., Eckert, C.A., and Liotta, C. L. (2001). Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem. Commun., 887–888.
Wu, K. and Yu, C. (1997). Operability for processes with recycles: interaction between design and operation with application to the Tennessee Eastman challenge process. Ind. Eng. Chem. Res., 36, 2239–2251.
Yang, Z. and Pan, W. (2005). Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb. Tech., 37, 19–28.
Ydstie, B.E. (2002). Passivity based control via the second law. Comput. Chem. Eng., 26, 1037–1048.
Yee, T. F., Grossmann, I. E., and Kravanja, Z. (1990). Simultaneous optimization models for heat integration – I. Area and energy targeting and modeling of multi-stream exchangers. Comput. Chem. Eng., 14, 1151–1164.
Yeomans, H. and Grossmann, I. E. (1999). Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences. Comput. Chem. Eng., 23, 1135–1151.
Yu, H., Fang, H., Yao, P., and Yuan, Y. (2000). A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Comput. Chem. Eng., 24, 2023–2035.
Zaks, A. and Klibanov, A.M. (1985). Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA, 82, 3192–3196.
Zavala, V. M. and Biegler, L. T. (2009). The advanced-step NMPC controller: optimality, stability and robustness. Automatica, 45, 86–93.
Zheng, A., Mahajanam, R. V., and Douglas, J. M. (1999). Hierarchical procedure for plantwide control system synthesis. AIChE J., 45, 1255–1265.
Zhu, G. Y. and Henson, M.A. (2002). Model predictive control of interconnected linear and nonlinear processes. Ind. Eng. Chem. Res., 41, 801–816.
Zhu, G. Y., Henson, M.A., and Ogunnaike, B. A. (2000). A hybrid model predictive control strategy for nonlinear plant-wide control. J. Proc. Contr., 10, 449–458.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.