Skip to main content Accessibility help
×
Home
Dynamics of Engineered Artificial Membranes and Biosensors
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Learn about the state of the art in building artificial membranes and synthetic biological devices, and in constructing mathematical models for their dynamics at multiple time and spatial scales with this comprehensive book. Drawing on recent advances in bioengineering and biochemistry, it describes how to engineer tethered bilayer lipid membranes, bioelectronic interfaces, high-resolution biosensors, and diagnostic devices for non-invasive cellular measurements and electroporation. Multi-physics models combining atomistic (molecular dynamics and coarse-grained molecular dynamics), mesoscopic (Poisson–Nernst–Planck), and macroscopic (reaction-rate theory) dynamics provide a complete structure-to-function description of these devices. Experiments and dynamic models explain how anti-microbial peptides penetrate membranes, how molecular machine biosensors built out of artificial membranes can detect femtomolar concentrations, and how electroporation can be controlled. Supported by atomistic simulation code online, this is essential reading for researchers, students and professionals in bioengineering, chemical engineering, biophysics, applied mathematics, and electrical engineering.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.