Skip to main content Accessibility help
×
  • Cited by 22
Publisher:
Cambridge University Press
Online publication date:
September 2020
Print publication year:
2020
Online ISBN:
9781108688604

Book description

How oxygen levels in Earth's atmosphere and oceans evolved has always been a central question in Earth System Science. Researchers have developed numerous tracers to tackle this question, utilizing geochemical characteristics of different elements. Iodine incorporated in calcium carbonate (including biogenic) minerals, reported as I/Ca, is a proxy for dissolved oxygen in seawater. Here we review the rationale behind this proxy, its recent applications and some potential future research directions.

References

Alegret, L., Molina, E., and Thomas, E. (2003) Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences. Marine Micropaleontology 48: 251279.
Algeo, T. J., Chen, Z.-Q., and Bottjer, D. J. (2015) Global review of the Permian–Triassic mass extinction and subsequent recovery: Part II. Earth-Science Reviews 100: 14.
Amachi, S., Kawaguchi, N., Muramatsu, Y., Tsuchiya, S., Watanabe, Y., Shinoyama, H., and Fujii, T. (2007) Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Applied and Environmental Microbiology 73: 57255730.
Bachan, A., Lau, K. V., Saltzman, M. R., Thomas, E., Kump, L. R., and Payne, J. L. (2017) A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic. American Journal of Science 317: 641676.
Barker, S., Greaves, M., and Elderfield, H. (2003) A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems 4: 8407.
Bartlett, R., Elrick, M., Wheeley, J. R., Polyak, V., Desrochers, A., and Asmerom, Y. (2018) Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences of the USA 115: 58965901.
Bekker, A., and Holland, H. (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth and Planetary Science Letters 317: 295304.
Berner, R. A. (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70: 56535664.
Bowman, C. N., Lindskog, A., Kozik, N. P., Richbourg, C. G., Owens, J. D., & Young, S. A. (2020). Integrated sedimentary, biotic, and paleoredox dynamics from multiple localities in southern Laurentia during the late Silurian (Ludfordian) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 553, 109799.
Brennecka, G. A., Herrmann, A. D., Algeo, T. J., and Anbar, A. D. (2011) Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the USA 108: 1763117634.
Broecker, W., and Peng, T. (1982) Tracers in the sea. Palisades, NY: Lamont-Doherty Geological Observatory.
Chai, J. Y., and Muramatsu, Y. (2007) Determination of bromine and iodine in twenty‐three geochemical reference materials by ICP‐MS. Geostandards and Geoanalytical Research 31: 143150.
Chance, R., Baker, A. R., Carpenter, L., and Jickells, T. D. (2014) The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts 16: 18411859.
Chun, C. O., Delaney, M. L., and Zachos, J. C. (2010) Paleoredox changes across the Paleocene‐Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from Mn and U enrichment factors. Paleoceanography 25: PA4202.
Clarkson, M. O., Stirling, C. H., Jenkyns, H. C., et al. (2018) Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the USA 115: 29182923.
Cutter, G. A., Moffett, J. W., Nielsdóttir, M. C., and Sanial, V. (2018) Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Marine Chemistry 201: 7789.
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., et al. (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the USA 107: 1791117915.
Diamond, C., Planavsky, N., Wang, C., and Lyons, T. (2018) What the~ 1.4 Ga Xiamaling Formation can and cannot tell us about the mid‐Proterozoic ocean. Geobiology 16: 219236.
Dickson, A. J., Cohen, A. S., and Coe, A. L. (2012) Seawater oxygenation during the Paleocene-Eocene thermal maximum. Geology 40: 639642.
Dickson, A. J., Rees‐Owen, R. L., März, C., et al. (2014) The spread of marine anoxia on the northern Tethys margin during the Paleocene‐Eocene Thermal Maximum. Paleoceanography 29: 471488.
Edwards, C. T., Fike, D. A., Saltzman, M. R., Lu, W., and Lu, Z. (2018) Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. Earth and Planetary Science Letters 481: 125135.
Elderfield, H., and Ganssen, G. (2000) Past temperature and δ 18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405: 442445.
Elrick, M., Polyak, V., Algeo, T. J., et al. (2017) Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45: 163166.
Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther, G. W., and Nealson, K. H. (1997a) Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Marine Chemistry 57: 347354.
Farrenkopf, A. M., and Luther, G. W. (2002) Iodine chemistry reflects productivity and denitrification in the Arabian Sea: Evidence for flux of dissolved species from sediments of western India into the OMZ: Deep Sea Research Part II. Topical Studies in Oceanography 49: 23032318.
Farrenkopf, A. M., Luther, G. W., Truesdale, V. W., and Van der Weijden, C. H. (1997b) Sub-surface iodide maxima: Evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon: Deep Sea Research Part II. Topical Studies in Oceanography 44: 13911409.
Feng, X., and Redfern, S. A. (2018) Iodate in calcite, aragonite and vaterite CaCO3: Insights from first-principles calculations and implications for the I/Ca geochemical proxy. Geochimica et Cosmochimica Acta 236: 351360.
Glock, N., Liebetrau, V., and Eisenhauer, A. (2014) I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: analytical methodology and evaluation as proxy for redox conditions. Biogeosciences 11: 70777095.
Glock, N., Liebetrau, V., Eisenhauer, A., and Rocholl, A. (2016) High resolution I/Ca ratios of benthic foraminifera from the Peruvian oxygen-minimum-zone: A SIMS derived assessment of a potential redox proxy. Chemical Geology 447: 4053.
Hardisty, D. S., Horner, T. J., Wankel, S. D., Blusztajn, J., and Nielsen, S. G. (2020) Experimental observations of marine iodide oxidation using a novel sparge-interface MC-ICP-MS technique. Chemical Geology 532: 11936.
Hardisty, D. S., Lu, Z., Bekker, A., et al. (2017) Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters 463: 159170.
Hardisty, D. S., Lu, Z., Planavsky, N. J., et al. (2014) An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42: 619622.
He, R., Lu, W., Junium, C. K., Ver Straeten, C. A., others Lu, Z. (2019). Paleo-redox context of the Mid-Devonian Appalachian Basin and its relevance to biocrises. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.12.019
Holland, H. D. (2006) The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences 361: 903915.
Hoogakker, B. A., Elderfield, H., Schmiedl, G., McCave, I. N., and Rickaby, R. E. (2015) Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin. Nature Geoscience 8: 40.
Hoogakker, B. A., Lu, Z., Umling, N., et al. (2018) Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562: 410.
Isson, T. T., Love, G. D., Dupont, C. L., et al. (2018) Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 16: 341352.
Jenkyns, H. C. (2010) Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11: Q03004.
Kast, E. R., Stolper, D. A., Auderset, A., et al. (2019) Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364: 386389.
Keeling, R. F., Körtzinger, A., and Gruber, N. (2009) Ocean deoxygenation in a warming world. Annual Review of Marine Science 2: 463493.
Kennedy, H., and Elderfield, H. (1987a) Iodine diagenesis in non-pelagic deep-sea sediments. Geochimica et Cosmochimica Acta 51: 25052514.
Kennedy, H., and Elderfield, H. (1987b) Iodine diagenesis in pelagic deep-sea sediments. Geochimica et Cosmochimica Acta 51: 24892504.
Kerisit, S. N., Smith, F. N., Saslow, S. A., Hoover, M. E., Lawter, A. R., and Qafoku, N. P. (2018) Incorporation modes of iodate in calcite. Environmental Science & Technology 52: 59025910.
Knoll, A. H. (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology 6: a016121.
Lau, K. V., Maher, K., Altiner, D., et al. (2016) Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proceedings of the National Academy of Sciences of the USA 113: 23602365.
Lenton, T. M., Daines, S. J., and Mills, B. J. (2018) COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178: 128.
Liu, J., Luo, G., Lu, Z., Lu, W., Qie, W., Zhang, F., Wang, X., & Xie, S. (2019). Intensified ocean deoxygenation during the end Devonian mass extinction. Geochemistry, Geophysics, Geosystems, 20(12), 6187–6198.
Loope, G. R., Kump, L. R., and Arthur, M. A. (2013) Shallow water redox conditions from the Permian–Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chemical Geology 351: 195208.
Lowery, C. M., Bralower, T. J., Owens, J. D., et al. (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558: 288.
Lu, W., Dickson, A. J., Thomas, E., Rickaby, R. E., Chapman, P., & Lu, Z. (2019). Refining the planktic foraminiferal I/Ca proxy: Results from the Southeast Atlantic Ocean. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.10.025
Lu, W., Rickaby, R., Hoogakker, B., et al. 2020 I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. Earth and Planetary Science Letters 533: 116055.
Lu, W., Ridgwell, A., Thomas, E., et al. (2018) Late inception of a resiliently oxygenated upper ocean. Science 361: 174177.
Lu, W., Wörndle, S., Halverson, G., et al. (2017) Iodine proxy evidence for increased ocean oxygenation during the Bitter Springs Anomaly. Geochemical Perspective Letters 5: 5357.
Lu, Z., Hensen, C., Fehn, U., and Wallmann, K. (2008) Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling. Geochemistry, Geophysics, Geosystems 9: Q10006.
Lu, Z., Hoogakker, B. A., Hillenbrand, C.-D., et al. (2016) Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nature Communications 7: 11146.
Lu, Z., Jenkyns, H. C., and Rickaby, R. E. (2010) Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38: 11071110.
Luther, G. W., and Campbell, T. (1991) Iodine speciation in the water column of the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers 38.
Luther, G. W., Wu, J., and Cullen, J. B. (1995) Redox chemistry of iodine in seawater: frontier molecular orbital theory considerations. Advances in Chemistry 244: 135.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J. (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506: 307315.
McInerney, F. A., and Wing, S. L. (2011) The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences 39: 489516.
Meyer, K., Ridgwell, A., and Payne, J. (2016) The influence of the biological pump on ocean chemistry: Implications for long‐term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology 14: 207219.
Muramatsu, Y., and Wedepohl, K. H. (1998) The distribution of iodine in the earth’s crust. Chemical Geology 147: 201216.
Olson, S. L., Kump, L. R., and Kasting, J. F. (2013) Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology 362: 3543.
Owens, J. D., Lyons, T. W., Hardisty, D. S., Lowery, C. M., Lu, Z., Lee, B., and Jenkyns, H. C. (2017) Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology 64: 168185.
Pälike, C., Delaney, M. L., and Zachos, J. C. (2014) Deep‐sea redox across the Paleocene‐Eocene thermal maximum. Geochemistry, Geophysics, Geosystems 15: 10381053.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H. (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305: 506509.
Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A. (2018) Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362: eaat1327.
Podder, J., Lin, J., Sun, W., et al. (2017) Iodate in calcite and vaterite: Insights from synchrotron X-ray absorption spectroscopy and first-principles calculations. Geochimica et Cosmochimica Acta 198: 218228.
Price, N., and Calvert, S. (1973) The geochemistry of iodine in oxidised and reduced recent marine sediments. Geochimica et Cosmochimica Acta 37: 21492158.
Rathburn, A. E., Willingham, J., Ziebis, W., Burkett, A. M., and Corliss, B. H. (2018) A new biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera. Scientific Reports 8: Article 9456.
Rue, E. L., Smith, G. J., Cutter, G. A., and Bruland, K. W. (1997) The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Research Part I: Oceanographic Research Papers 44: 113134.
Sahoo, S. K., Planavsky, N., Jiang, G., et al. (2016) Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14: 457468.
Saltzman, M., and Thomas, E. (2012) Carbon isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M. B., and Ogg, G. M. (eds.), The geologic time scale, Vol. 1 (pp. 207232). Oxford: Elsevier BV.
Saltzman, M. R. (2005) Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33: 573576.
Saltzman, M. R., Edwards, C. T., Adrain, J. M., and Westrop, S. R. (2015) Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43: 807810.
Schulte, P., Alegret, L., Arenillas, I., et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327: 12141218.
Sepkoski, J. J. (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7: 3653.
Shang, M., Tang, D., Shi, X., Zhou, L., Zhou, X., Song, H., and Jiang, G. (2019) A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth and Planetary Science Letters 527: 115797.
Shi, W., Li, C., Luo, G., et al. (2018) Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology 46: 267270.
Song, H., Song, H., Algeo, T. J., et al. (2017) Uranium and carbon isotopes document global-ocean redoxproductivity relationships linked to cooling during the Frasnian-Famennian mass extinction. Geology 45: 887890.
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al. (2015) Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523: 451.
Taylor, M., Hendy, I., and Chappaz, A. (2017) Assessing oxygen depletion in the Northeastern Pacific Ocean during the last deglaciation using I/Ca ratios from multiple benthic foraminiferal species. Paleoceanography 32: 746762.
Them, T. R., Gill, B. C., Caruthers, A. H., et al. (2018) Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proceedings of the National Academy of Sciences of the USA 115: 65966601.
Thomas, E. (1990) Late Cretaceous–early Eocene mass extinctions in the deep sea. Geological Society of America Special Publication 247: 481495.
Tostevin, R., Clarkson, M. O., Gangl, S., et al. (2019) Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters 506: 104112.
Truesdale, V., and Bailey, G. (2000) Dissolved iodate and total iodine during an extreme hypoxic event in the Southern Benguela system. Estuarine, Coastal and Shelf Science 50: 751760.
Vellekoop, J., Woelders, L., van Helmond, N. A., et al. (2018) Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact. Geology 46: 683686.
Wallace, M. W., Shuster, A., Greig, A., Planavsky, N. J., and Reed, C. P. (2017) Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters 466: 1219.
Wei, H., Wang, X., Shi, X., Jiang, G., Tang, D., Wang, L., and An, Z. (2019) Iodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform, South China. Precambrian Research 322: 160169.
Wei, W., Frei, R., Gilleaudeau, G. J., Li, D., Wei, G.-Y., Chen, X., and Ling, H.-F. (2018a) Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: Clues from Cr-isotope and Ce-anomaly in carbonates. Precambrian Research 313: 7890.
Wei, W., Frei, R., Klaebe, R., Li, D., Wei, G.-Y., and Ling, H.-F. (2018b) Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. Precambrian Research 319: 198210.
Wong, G. T., and Brewer, P. G. (1977) The marine chemistry of iodine in anoxic basins. Geochimica et Cosmochimica Acta 41: 151159.
Wong, G. T., and Cheng, X. H. (2008) Dissolved inorganic and organic iodine in the Chesapeake Bay and adjacent Atlantic waters: Speciation changes through an estuarine system. Marine Chemistry 111: 221232.
Wong, G. T., Takayanagi, K., and Todd, J. F. (1985) Dissolved iodine in waters overlying and in the Orca Basin, Gulf of Mexico. Marine Chemistry 2: 177183.
Wong, G. T., and Zhang, L. S. (2003) Seasonal variations in the speciation of dissolved iodine in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 56: 10931106.
Wörndle, S., Crockford, P. W., Kunzmann, M., Bui, T. H., and Halverson, G. P. (2019) Linking the Bitter Springs carbon isotope anomaly and early Neoproterozoic oxygenation through I/[Ca+Mg] ratios. Chemical Geology 524: 119135.
Yang, S., Kendall, B., Lu, X., Zhang, F., and Zheng, W. (2017) Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flo. Precambrian Research 298: 187201.
Yao, W., Paytan, A., and Wortmann, U. G. (2018) Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum. Science 361: 804806.
Young, S. A., Kleinberg, A., and Owens, J. (2019) Geochemical evidence for expansion of marine euxinia during an early Silurian (Llandovery–Wenlock boundary) mass extinction. Earth and Planetary Science Letters 513: 187196.
Zhang, F., Romaniello, S. J., Algeo, T. J., et al. (2018) Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science Advances 4: e1602921.
Zhou, X., Jenkyns, H. C., Lu, W., Hardisty, D. S., Owens, J. D., Lyons, T. W., and Lu, Z. (2017) Organically bound iodine as a bottom-water redox proxy: Preliminary validation and application. Chemical Geology 457: 95106.
Zhou, X., Jenkyns, H. C., Owens, J. D., et al. (2015) Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian‐Turonian OAE 2. Paleoceanography 30: 510526.
Zhou, X., Thomas, E., Rickaby, R. E., Winguth, A. M., and Lu, Z. (2014) I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29: 964975.
Zhou, X., Thomas, E., Winguth, A., (2016) Expanded oxygen minimum zones during the late Paleocene‐early Eocene: Hints from multiproxy comparison and ocean modeling. Paleoceanography and Paleoclimatology 31: 15321546.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.