References
Atwood, J. W., & Sumrall, C. D. (2012). Morphometric investigation of the Pentremites fauna from the Glen Dean Formation, Kentucky. Journal of Paleontology, 86(5), 813–828.
Ax, P. (1996). Multicellular Animals: a new approach to the phylogenetic order in nature, Berlin: Springer Press.
Ax, P. (2000). Multicellular Animals: the phylogenetic system of the Metazoa, Berlin: Springer Press.
Ax, P. (2003). Multicellular Animals: order in nature-system made by man. Berlin: Springer Press.
Ausich, W. I. (1980). A model for niche differentiation in Lower Mississipian crinoid communities. Journal of Paleontology, 54(2), 273–288.
Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542), 173–174.
Ausich, W. I., & Deline, B. (2012). Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Paleoclimatology, Palaeoecology, 361–361, 38–48.
Bambach, R. K., Bush, A. M., & Erwin, D. H. (2007). Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50(1), 1–22.
Bauer, J. E., Waters, J. A., & Sumrall, C. D. (2019). Redescription of Macurdablastus and redefinition of Eublastoidea as a clad of Blastoidea (Echinodermata). Palaeontology, 62(6), 1003–1013.
Baumiller, T. K., & Gahn, F. J. (2002). Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid-crinoid interaction. The Paleontological Society Papers, 8, 195–210.
Baumiller, T. K., & Gahn, F. J. (2004). Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science, 305(5689), 1453–1455.
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. The Paleontological Society Papers, 3, 147–190.
Briggs, D. E. G., Fortey, R. A., & Wills, M. A. (1992). Morphological Disparity in the Cambrian. Science, 256(5064), 1670–1673.
Brower, J. C. (1974). Ontogeny of camerate crinoids. University of Kansas Paleontological Contributions Papers, 72, 1–53.
Brusatte, S. L., Montanari, S., Yi, H. Y., & Norell, M. A. (2011). Phylogenetic corrections for morphological disparity analysis: new methodology and case studies. Paleobiology, 37(1), 1–22.
Budd, G. E. (2006). On the origin and evolution of major morphological characters. Biological Reviews, 81(4), 157–165.
Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48(2), 305–308.
Cherry, L. M., Case, S. M., Kunkel, J. G., Wyles, J. S., & Wilson, A. C. (1982). Body shape metrics and organismal evolution. Evolution, 36(5), 914–933.
Ciampaglio, C. N. (2002). Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development, 4(3), 170–188.
Ciampaglio., C. N., Kemp, M., & McShea, D. W. (2001). Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology, 27(4), 695–715.
Cole, S. R. (2018). Phylogeny and evolutionary history od diplobathrid crinoids (Echinodermata). Palaeontology, 62(3), 357–373.
Cole, S. R., Wright, D. F., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 82–98.
Davidson, E. H., & Erwin, D. H. (2006). Gene regulation networks and the evolution of animal body plans. Science, 311(5762), 796–800.
Deline, B. (2009). The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology, 35(2), 175–189.
Deline, B. (2015). Quantifying morphological diversity in early Paleozoic echinoderms. In Zamora, S. & Rabano, I., eds., Progress in Echinoderm Palaeobiology, Madrid: Instituto Geológico y Minero de España, pp. 45–48.
Deline, B., & Ausich, W. I. (2017). Character selection and the quantification of morphological disparity. Paleobiology, 43(1), 68–84.
Deline, B., Ausich, W. I., & Brett, C. E. (2012). Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through Early Silurian Laurentian crinoids. Paleobiology, 38(4), 538–553.
Deline, B., Greenwood, J. M., Clark, J. W., Puttick, M. N., Peterson, K. J., & Donoghue, P. C. J. (2018). Evolution of metazoan morphological disparity. Proceedings of the National Academy of Sciences, 115(38), E8909–E8918.
Deline, B. & Thomka, J. R. (2017). The role of preservation on the quantification of morphology and patterns of disparity within Paleozoic echinoderms. Journal of Paleontology, 91(4), 618–632.
Deline, B., Thompson, J. R., Smith, N. S., et al. (2020). Evolution and development at the origin of a phylum. Current Biology, 30(9), 1672–1679.
Eble, G. J. (2000). Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic Atelostomate echinoids. Paleobiology, 26(1), 56–79.
Erkenback, E. M., & Thompson, J. R. (2019). Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletonogenic cell identity. Nature Communications Biology, 2(1), 10–12.
Erwin, D. H. (2007). Disparity: morphological pattern and developmental context. Palaeontology, 50(1), 57–73.
Ferrón, H. G., Greenwood, J. M., Deline, B., et al. (2020) Categorical versus geometric morphometric approaches to characterizing the evolution of morphological disparity in Osteostraci (Vertebrata, Stem-Gnathostomata). Palaeontology, 63(5), 717–732.
Foote, M. (1991). Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contributions from the University of Michigan Museum of Paleontology, 28(6), 101–140.
Foote, M. (1992). Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, 89(16), 7325–7329.
Foote, M. (1993). Contributions of individual taxa to overall morphological diversity. Paleobiology, 19(4), 3013–419.
Foote, M. (1994a). Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology, 20(3), 320–344.
Foote, M. (1994b). Morphology of Ordovician-Devonian crinoids. Contributions from the University of Michigan Museum of Paleontology, 29(1), 1–39.
Foote, M. (1995a). Morphological diversity of Paleozoic crinoids. Paleobiology, 21(3) 273–299.
Foote, M. (1995b). Morphology of Carboniferous and Permian crinoids. Contributions from the University of Michigan Museum of Paleontology, 29(7), 135–184.
Foote, M. (1996). Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science, 274(5292), 1492–1495.
Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28(1), 129–152.
Foote, M. (1999). Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25(2) supplement, 1–115.
Gerber, S. (2019). Use and misuse of discrete character data for morphospace and disparity analysis. Palaeontology, 62(2), 305–319.
Gerber, S., Eble, G. J., & Neige, P. (2011). Developmental aspects of morphological disparity dynamics: a simple analytical exploration. Paleobiology, 37(2), 237–251.
Gould, S. J. (1989). Wonderful Life: the Burgess Shale and the nature of history, New York: WW Norton & Company.
Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistics analysis: why we must strive to quantify morphospace. Paleobiology, 17(4), 411–423.
Guillerme, T., & Cooper, N. (2018). Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology, 61(4), 481–493.
Hetherington, A. J., Sherratt, E., Ruta, M., Wilkinson, M., Deline, B., & Donoghue, P. C. J. (2015). Do cladistic and morphometric data capture common patterns of morphological disparity? Palaeontology, 58(3), 393–399.
Hopkins, M. J. (2017). How well does a part represent the while? A comparison of cranidial hape evolution with exoskeletal character evolution in the trilobite family Pterocephaliidae. Palaentology, 60(3), 309–318.
Hopkins, M. J., & Gerber, S. (2017). Morphological disparity. In Nuño de la Rosa, L. & Müller, G.B. eds., Evolutionary Developmental Biology. New York: Springer International Publishing, pp. 1–12.
Hopkins, M. J., & Smith, A. B. (2015). Dynamics evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences, 112(12), 3758–3763.
Hoyal Cuthill, J. F., & Hunter, A. W. (2020). Fullerene-like structures of Cretaceous crinoids reveal topologically limited skeletal possibilities. Palaeontology, 63(3), 513–524.
Huelsenbeck, J. P., Nielsen, R., & Bollback, J. P. (2003). Stochastic mapping of morphological characters. Systematic Biology, 52(2), 131–158.
Hughes, M., Gerber, S., & Wills, M. A. (2013). Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Science, 110(3), 13875–13879.
Huttegger, S. M., & Mitteroecker, P. (2011). Invariance and meaningfulness in phenotype spaces. Evolutionary Biology, 38(3), 335–351.
Jaanusson, V. (1981). Functional thresholds in evolutionary progress. Lethaia, 14(3), 251–260.
Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I., Deline, B. (2013). Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PloS one, 8(11), e77989.
Lam, A. R., & Stigall, A. L. (2015). Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica. Estonian Journal of Earth Sciences, 64(1), 62–67.
Lefebvre, B., Eble, G. J., Navarro, N., & David, B. (2006). Diversification of atypical Paleozoic echinoderms: a quantitative survey of patterns of stylophoran disparity, diversity, and geography. Paleobiology, 32(3), 483–510.
Lloyd, G. T. (2016). Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society. 118, 131–151.
Lloyd, G. T. (2018). Journeys through discrete-character morphospace: synthesizing phylogeny, tempo, and disparity. Palaeontology, 61(50), 637–646.
MacLeod, N. (2015). Use of landmark and outline morphometrics to investigate thecal form variation in crushed godiid echinoderms. Palaeoworld, 24(4), 408–429.
Mitteroecker, P., & Huttegger, S. M. (2009). The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biological Theory, 4(1), 54–67.
Mongiardino Koch, N., Ceccarelli, F. S., Ojanguren-Affilastro, A. A., & Ramirez, M. J. (2017). Discrete and morphometric traits reveal contrasting patterns and processes in the macroevolutionary history of a clade of scorpions. Journal of Evolutionary Biology, 30, 814–825.
Mooi, R., & David, B. (1997). Skeletal homologies of echinoderms. The Paleontological Society Papers, 3, 305–335.
Novack-Gottshall, P. M. (2007). Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33(2), 273–294.
Paul, C. R. C., & Smith, A. B. (1984). The early radiation and phylogeny of echinoderms. Biological Reviews, 59(4), 443–481.
Raup, D. M. (1962). Computer as aid in describing form in gastropod shells. Science, 138(3537), 150–152.
Raup, D. M. (1966). Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40(5), 1178–1190.
Raup, D. M. (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41(1), 43–65.
Raup, D. M., & Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147(3663), 1294–1295.
Riedl, R. (1977). A systems-analytical approach to macro-evolutionary phenomena. The Quarterly Review of Biology, 52(4), 351–370.
Romano, M., Brocklehurst, N., Manni, R., & Nicosia, U. (2018). Multiphase morphospace saturation in cyrtocrinid crinoids. Lethaia, 51, 538–546.
Runnegar, B. (1987). Rates and modes of evolution in the Mollusca. In Campbell, K. S. W. & Day, M. F., eds., Rates of evolution. London: Allen and Unwin, pp.39–60.
Salazar-Ciudad, I. (2006). On the origins of morphological disparity and its diverse developmental bases. Bioessays, 28(11), 1112–1122.
Sallan, L. C., Kammer, T. W., Ausich, W. I., & Cook, L. A. (2011). Persistent predator-prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences, 108(20), 8335–8338.
Schaeffer, J., Benton, M. J., Rayfield, E. J., & Stubbs, T. L. (2019). Morphological disparity in theropods jaws: comparing discrete characters and geometric morphometrics. Palaeontology, 63(2), 283–299.
Sheffield, S. L., & Sumrall, C. D. (2019). The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology, 93(4), 740–752.
Sheffield, S. L., Zachos, L. G., & Lewis, R. D. (2012). A morphometric study of Erisocrinus(Crinoidea) using ArcGIS. Geological Society of America Abstracts with Programs, 44, 232.
Sidlauskas, B., (2008). Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution, 62(12), 3135–3156.
Smith, A. B., & Savill, J. J. (2001). Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 92(2), 137–147.
Smith, A. J., Rosario, M. V., Eiting, T. P., & Dumont, E. R. (2014). Joined at the hip: linked characters and the problem of missing data in studies of disparity. Evolution, 68(8), 2386–2400.
Sprinkle, J., & Collins, D. (2006). New eocrinoids from the Burgess Shale, southern British Columbia, Canada, and the Spence Shale, northern Utah, USA. Canadian Journal of Earth Sciences, 43(3), 303–322.
Stigall, A. L. (2019). The invasion hierarchy: ecological and evolutionary consequences of invasions in the fossil record. Annual Reviews of Ecology, Evolution, and Systematics, 50, 355–380.
Stigall, A. L., Bauer, J. E., Lam, A. R., & Wright, D. F. (2017). Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Global and Planetary Change. 148, 242–257.
Sumrall, C. D., & Waters, J. A. (2012). Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoa. Journal of Paleontology, 86(6), 956–972.
Sumrall, C. D., & Wray, G. A. (2007). Ontogeny in the fossil record: diversification of body plans and the evolution of ‘aberrant’ symmetry in Paleozoic echinoderms. Paleobiology, 33(1), 149–163.
Thompson, D’A. W. (1917). On growth and form, London: Cambridge University Press.
Thompson, D’A. W. (1942). On growth and form, London: Cambridge University Press.
Valentine, J. W. (1969). Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology, 12(4), 684–709.
Villier, L., & Eble., G. J. (2004). Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids. Paleobiology, 30(4), 652–665.
Waters, J. A., Horowitz, A. S., & Macurda, D. B. Jr. (1985). Ontogeny and phylogeny of the Carboniferous blastoid. Pentremites. Journal of Paleontology, 59(3), 701–712.
Webster, M., & Sheets, H. D. (2010). A practical introduction to landmark-based geometric morphometrics. The Paleontology Society Papers, 16, 163–188.
Wills, M. A. (1998). Cambrian and recent disparity: the picture from priapulids. Paleobiology, 24(2), 177–199.
Wright, D. F. (2017a). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids. Journal of Paleontology, 91(4), 799–814.
Wright, D. F. (2017b). Phenotypic innovation and adaptive constrains in the evolutionary radiation of Palaeozoic crinoids. Scientific Reports, 7(1), 1–10.
Yochelson, E. L. (1978). An alternative approach to the interpretation of the phylogeny of ancient mollusks. Malacologia, 17(2), 165–191.
Yochelson, E. L. (1979). Early radiation of Mollusca and mollusc-like groups. In House, M. R., ed., The Origin of Major Invertebrate Groups, Vol. 12, New York: Academic Press, pp.323–358.
Zachos, L. G., & Sprinkle, J. (2011). Computational model of growth and development in Paleozoic echinoids. In Elewa, A. M. T., ed., Computational Paleontology. Berlin: Springer, pp.75–93.
Zamora, S., Rahman, I. A., & Smith., A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One, 7(6), e38296.
Zamora, S., Sumrall, C. D. & Vizcaϊno, D. (2013). Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana. Acta Palaeontologica Polonica, 58(3), 545–559.
Zhao, Y., Sumrall, C. D., Parsley, R. L. & Peng., J. (2010). Kalidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili Biota of Guizhou Province, China. Journal of Paleontology, 84(4), 668–680.