Skip to main content
×
×
Home
Eigenvalues, Multiplicities and Graphs
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Eigenvalues, Multiplicities and Graphs
    • Online ISBN: 9781316155158
    • Book DOI: https://doi.org/10.1017/9781316155158
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

Reviews

'The authors offer a unique and modern exploration into the eigenvalues associated with a graph, well beyond the classical treatments. This well-written and comprehensive monograph is ideal for newcomers to this subject and will be beneficial for experienced practitioners as well.'

Shaun M. Fallat - University of Regina, Canada

'The undirected graph of a real symmetric matrix tells you the sparsity structure of the matrix. That seems too little information to constrain the eigenvalues. Nevertheless as the matrix gets sparser some constraints appear, not on the actual eigenvalues but on their (algebraic) multiplicities. When the graph is sparse enough to be a tree there is a lot to say. The authors have collected scattered results, filled in key omissions, imposed systematic notation and concepts so that a rich and subtle theory, blending trees and matrices, unfolds before the reader. I, for one, am grateful.'

Beresford Parlett - University of California, Berkeley

'This book provides a comprehensive survey and fresh perspectives on a fundamental inverse problem: how does the structure of a matrix impact its spectral properties? The inclusion of recently developed techniques, results and open questions will foster future research and applications.'

Bryan Shader - University of Wyoming.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 766 *
Loading metrics...

Book summary page views

Total views: 1118 *
Loading metrics...

* Views captured on Cambridge Core between 9th February 2018 - 17th August 2018. This data will be updated every 24 hours.