Skip to main content
×
Home
Elements of Slow-Neutron Scattering
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Loong, C.-K. Scherillo, A. and Festa, G. 2017. Neutron Methods for Archaeology and Cultural Heritage. p. 183.

    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Elements of Slow-Neutron Scattering
    • Online ISBN: 9781139029315
    • Book DOI: https://doi.org/10.1017/CBO9781139029315
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Page 1 of 2



Page 1 of 2


Abramowitz M. and Stegun I. A. (1967). Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series 55 (AMS-55), 6th printing with corrections. Washington, DC: US Government Printing Office. See Eq. 6.1.37 and Table 6.3 for G(n) and f1(n).
Agamalian M. (2011). The Bonse-Hart USANS instrument. In Neutrons in Soft Matter, Chap. II.1.3.1. ed. Imae T., Kanaya T., Furusaka M. and Toriaki N.. Somerset, NJ: John Wiley & Sons, pp. 7394.
Agamalian M., Carpenter J. M., and Treimer W. (2010). Remarkable precision of the 90-year-old dynamic diffraction theories of Darwin and Ewald. J. Appl. Crystallogr. 43, 900–6.
Alefeld B., Kollmar A., and Dasannacharya B. A. (1975). The one-dimensional CH3-quantumrotator in solid 4-methyl-pyridine studied by inelastic neutron scattering. J. Chem. Phys. 63(10), 4415–7.
Aleksandrov Yu. A., Chalupa B., Kulda J., Machekhina T. A., Michalec R., Mikula P., Seddlakova L. N., J. Vavra J., and Vrana M. (1984). Backscattering diffraction of a pulsed neutron beam on an elastically bent single crystal. Phys. Status Solidi A 88, 455–60.
Alimov S., Buzzetti S., Gebauer B., Petrillo C., Sacchetti F., Schulz Ch., and Wilpert T. (2005). Microstrip detectors with 157Gd converters. Neutron News 16(4), 22–4.
Alvarez L. W. and Bloch F. (1940). A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys. Rev. 57, 111–22.
Anderson I. S. (2003). Neutron Optics. In Neutron Data Booklet, 2nd edn, Chap. 3.2, ed. Dianoux A.-J. and Lander G. H.. Grenoble, France: Institut Laue-Langevin.
Ankner J. F. and Majkrzak C. F. (1992). Subsurface profile refinement for neutron specular reflectivity. Neutron Opt. Devices Appl. Proc. SPIE 1738, 259–69.
Appleby G. A. and Vontoble P. (2008). Optimization of lithium borate-barium chloride glass-ceramic thermal-neutron imaging plates. Nucl. Instrum. Meth. A 594, 253–6.
Arai M., Inamura Y., and Otomo T. (1999). Novel dynamics of vitreous silica and metallic glass. Philos. Mag. B 79(11/12), 1733–9.
Aynajian P. (2010). Electron-phonon interaction in conventional and unconventional superconductors. Ph.D. thesis, Berlin: Springer-Verlag.
Bacon G. E. (1975). Neutron Diffraction, 3rd edn. Oxford: Clarendon Press.
Balucani U. and Zoppi M. (1994). Dynamics of the Liquid State. Oxford: Clarendon Press.
Barrett C. S., Mueller M. H., and Heaton L. (1963). Germanium as a neutron monochromator. Rev. Sci. Instrum. 34, 347.
Basler R., Boskovic C., Chaboussant G., Güdel H. U., Murrie M., Ochsenbein S. T., and Sieber A. (2003). Molecular spin clusters: New synthetic approaches and neutron scattering studies. CHEMPHYSCHEM 4, 910–26.
Baxter D. V., Cameron J. M., Derenchuk V. P., Lavelle C. M., Leuschner M. B., Lone M. A., Meyer H. O., Rinckel T., and Snow W. M. (2005). Status of the low-energy neutron source at Indiana University. Nucl. Instr. Meth. 241, 209212.
Beckurts K. H. and Wirtz K. (1964). Neutron Physics. New York: Springer-Verlag.
Beno M. L., Soderholm L., Capone D. W., Hinks D. G., Jorgensen J. D., Grace J. D., Schuller I. K., Segre C. U., and Zhang K. (1987). Structure of the single-phase high-temperature superconductor YBa2Cu3O7-δ. Appl. Phys. Lett. 51(1), 57–9.
Berne B., Boon J. P., and Rice S. A. (1966). On the calculation of autocorrelation functions of dynamical variables. J. Chem. Phys. 45(4), 1086–96.
Bewly R. I., Taylor J. W., and Bennington S. M. (2011). Nucl. Instrum. Meth. A 637, 128.
Bloch F. (1936). On the magnetic scattering of neutrons. Phys. Rev. 50(3), 259–60.
Blume M. (1963). Polarization effects in the magnetic elastic scattering of slow neutrons. Phys. Rev. 130(5), 1670–6.
BNL (Web). Brookhaven National Laboratory Instrumentation Division Gaseous Detector Laboratory report. www.inst.bnl.gov/programs/gasnobledet/neutrons.
Bohn H. G., Kollmar A., and Zinn W. (1984). Spin dynamics in the cubic Heisenberg ferromagnet EuS. Phys. Rev. B 30(11), 6504–13.
Bohn H. G., Zinn W., Dorner B., and Kollmar A. (1980). Neutron scattering study of spin waves and exchange interactions in ferromagnetic EuS. Phys. Rev. B 22(11), 5447–52.
Böni P., Roessli B., Görlitz D., and Kötzler J. (2002). Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg ferromagnet EuS. Phys. Rev. B 65, 144434–1–9.
Born M. and Oppenheimer R. (1927). Zur quantentheorie der molekeln (On the quantum theory of molecules). Ann. Physik 389(20), 457–84.
Breit G. and Wigner E. (1936). Capture of slow neutrons. Phys. Rev. 49, 519–31.
Brill T. and Lichtenberger H. V. (1947). Neutron cross-section studies with the rotating shutter mechanism. Phys. Rev. 72(7), 585590.
Brockhouse B. N. (1957). Scattering of neutrons by spin waves in magnetite. Phys. Rev. 106, 859864.
Brockhouse B. N. (1997). Slow neutron spectroscopy and the grand atlas of the physical world. In Nobel Lectures in Physics 1991–1995, ed. Ekspong G.. Stockholm: World Scientific, pp. 107138.
Brockhouse B. N. and Stewart A. T. (1958). Normal modes of aluminum by neutron spectometry. Rev. Mod. Phys. 30, 236–49.
Brown K. L. (1979). The ion-optical program (TRANSPORT). SLAC Tech. Pub. 91.
Brown K. L. and Servranckx R. V. (1984). First- and second order charged particle optics. SLAC-PUB-3381.
Brown P. J., Forsyth J. B., and Tasset F. (1993). Neutron polarimetry. P. Royal Soc. Lond. A 442, 147–60.
Brûlet A., Thévenot V., Lairez D., Lecommandoux S., Agut W., Armes S., and Désert S. (2008). Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Léon Brillouin. J. Appl. Crystallogr. 41, 161–6.
Carlisle P. (1998). Coded-aperture imaging. http://paulcarlisle.net/old/codedaperture.html.
Carpenter J. M. (1973). High intensity, pulsed thermal neutron source. U. S. Patent No. 3778627, 1973.
Carpenter J. M. (1977). Pulsed spallation neutron sources for slow neutron scattering. Nucl. Instrum. Meth. 145, 91113.
Carpenter J. M. (1981). Efficient code for calculating cylindrical gas proportional counter efficiency, EFFCYL. IPNS Note #17 (unpublished internal IPNS note).
Carpenter J. M. (2002). Time focusing of the general pulsed-source crystal analyzer spectrometers, I. General analysis. Nucl. Instrum. Meth. A 483, 774–83.
Carpenter J. M. (2012). ICANS to UCANS: Parallel Evolution. Physics Procedia 26, 17.
Carpenter J. M. and Loong C.-K. (2015). www.slowneutronscattering.com.
Carpenter J. M. and Micklich B. (2002). Technical concepts for a long-wavelength target station for the Spallation Neutron Source. Argonne National Laboratory Report 02/16.
Carpenter J. M. and Micklich B. J., eds. (2005). Proc. Workshop Applications of a Very Cold Neutron Source, Argonne National Laboratory report ANL-05/42, pp. 21–24.
Carpenter J. M. and Mildner D. F. R. (1982). Neutron guide tube gain for a remote finite source. Nucl. Instrum. Meth. 196, 341–8.
Carpenter J. M. and Pelizzari C. A. (1975a). Inelastic neutron scattering from amorphous solids. I. Calculation of the scattering law for model structures. Phys. Rev. B 12(6), 2391–6.
Carpenter J. M. and Pelizzari C. A. (1975b). Inelastic neutron scattering from amorphous solids. II. Interpretation of measurements. Phys. Rev. B 12(6), 2397–401.
Carpenter J. M. and Price D. L. (1985). Correlated motions in glasses studied by coherent inelastic neutron scattering. Phys. Rev. Lett. 54(5), 441–3.
Carpenter J. M. and Watanabe N. (1983). Time focusing and resolution in resonance detector spectrometers. Nucl. Instrum. Meth. 213, 311–6.
Carpenter J. M. and Yelon W. B. (1986). Neutron sources. In Methods of Experimental Physics, Vol. 23, Part A, Chap. 2, Neutron Scattering, ed. Sköld K. and Price D. L.. New York: Academic Press, pp. 99196.
Carpenter J. M., Gabriel T. A., Iverson E. B., and Jerng D. W. (1999). The 10-GeV question: What is the best energy to drive a pulsed spallation neutron source? Physica B 270, 272–9. See also M. Arai, Y. Kiyanagi, N. Watanabe, R. Takagi, H. Shibazaki, M. Numajiri, S. Itoh, T. Otomo, M. Furusaka, Y. Inamura, Y. Ogawa, Y. Suda, and S. Satoh (1999). Neutron production from lead targets for 12 GeV protons. J. Neutron Research 8, 71–83.
Carpenter J. M., Iverson E., and Mildner D. F. R. (2002). Time focusing of the general pulsed- source crystal analyzer spectrometers, I. General analysis. Nucl. Instrum. Meth. A 483, 784806.
Chaboussant G., Sieber A., Ochsenbein S., Güdel H.-U., and Murrie M., Honecker A., Fukushima N., and Normand B. (2004). Exchange interactions and high-energy spin states in Mn12-acetate. Phys. Rev. B 70, 104422–1–16.
Chadwick J. (1932). Possible existence of a neutron. Nature 129, 312.
Chaplot S. L., Choudhury N., Ghose S., Rao M. N., Mittal R., and Goel P. (2002). Inelastic neutron scattering and lattice dynamics of minerals. Eur. J. Mineral. 14, 291329.
Chen-Mayer H. H., Mildner D. F. R., Sharov V. A., Xiao Q. F., Cheng Y. T., Lindstrom R. M., and Paul R. L. (1997). A polycapillary bending and focusing lens for neutrons. Rev. Sci. Instrum. 68, 3744–50.
Chudley C. T. and Elliott R. J. (1961). Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77, 353–61.
Colmenero J., Moreno A. J., and Alegria B. (2005). Neutron scattering investigations on methyl group dynamics in polymers. Prog. Polym. Sci. 30(12), 1147–84.
Comes R. (1994). Synchrotron and neutron beams. In Neutron Beams and Synchrotron Radiation Sources, OECD Megascience Forum brochure, p. 95.
Cooper M. J. and Nathans R. (1967). The resolution function in neutron diffractometery. I. The resolution function of a neutron diffractometer and its application to phonon measurements. Acta Crystallogr. 23, 357–67, app. 11.
Copley J. R. D. (1974). Monte Carlo calculation of multiple scattering effects in thermal neutron scattering experiments. Comput. Phys. Commun. 7, 289317.
Copley J. R. D. (1990). An analytical method to characterize the performance of multiple section straight-sided neutron guide systems, Nucl. Instrum. Meth. A 287, 363.
Copley J. R. D. (1993a). The joy of acceptance diagrams. J. Neutron Res. 1, 21.
Copley J. R. D. (1993b). Transmission properties of neutron optical devices. J. Neutron Res. 2, 95.
Copley J. R. D. (2007). Total neutron scattering cross sections. Neutron News 18, 30–1.
Courtois P., Hamelin B., and Andersen K. H. (2004). Production of copper and Heusler alloy Cu2MnAl mosaic crystals for neutron monochromators. Nucl. Instrum. Meth. A 529, 157–61.
Currat R. and Kulda J. (2003). Three-axis spectroscopy. In Neutron Data Booklet, 2nd edn, Chap. 2.7, ed. Dianoux A.-J. and Lander G. H.. Grenoble, France: Institut Laue-Langevin.
Cussen L. D. and Goossens D. J. (2002). Optimising polarised neutron scattering measurements – XYZ and polarimetry analysis. Nucl. Instrum. Meth. A 491, 226–32.
Czirr J. B. (1998). Low-energy neutron detector based upon lithium lanthanide borate scintillators. U. S. Patent No. 5734166, March 31, 1998.
Czirr J. B., MacGillivray G. M.. MacGillivray R. R., and Seddon P. J. (1999). Performance and characteristics of a new scintillator. Nucl. Instrum. Meth. A 424, 15–9.
Dasannacharya B. A. and Rao K. R. (1965). Neutron scattering from liquid argon. Phys. Rev. 137(2A), A417–27.
Dawidowski J., Bermejo F. J., and Granada J. R. (1998). Efficient procedure for the evaluation of multiple scattering and multiphonon corrections in inelastic neutron-scattering experiments. Phys. Rev. B 58(2), 706–15.
Debye P. and Burche A. M. (1949). Scattering by an inhomogeneous solid. J. Appl. Phys. 20, 518–25.
DeLurgio P. M., Farrar K. A., Kreps A. S., Madden T. J., Naday I., Weizeorick J. T., Hammonds J. P., Miller M. E., and Schultz A. J. (2005). 2-D scintillation position-sensitive neutron detector. Nuclear Science Symposium Conference Record, IEEE.
Désert S., Thévenot V., and Brûlet A.. (2011). TPA: a very small angle neutron scattering spectrometer at LLB. Neutron News 22(2), 29.
Donnelly Russell (1995). The discovery of superfluidity. Physics Today, 48 (7), 3036.
Duderstadt J. J. and Hamilton L. J. (1976). Nuclear Reactor Analysis. New York: John Wiley & Sons Inc.
Egami T. and Billinge S. J. L. (2003). Underneath the Bragg Peaks. Structural Analysis of Complex Materials. Oxford, Elsevier.
Feder T. (2009). U.S. government agencies work to minimize damage due to helium-3 shortfall. Physics Today 62(10), 21–3.
Feigin L. A. and Svergun D. I. (1987). Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, Chap. 9, p. 277 ff.
Felcher G. P. (1981). Neutron reflection as a probe of surface magnetism. Phys. Rev. B 24, 1595–8.
Felcher G. P., Hillecke R. O., Crawford R. K., Haumann J., Kleb R., and Ostrowski G. (1987). Polarized neutron reflectometer-a new instrument to measure magnetic depth profiles Rev. Sci. Instrum. 58, 609–19.
Fennimore E. E. (1978). Coded-aperture imaging: predicted performance of uniformly redundant arrays. Appl. Optics 17(22), 3562–70.
Fennimore E. E. and Cannon T. M. (1978). Coded-aperture imaging with uniformly redundant arrays. Appl. Optics 17(3), 337–47.
Fermi E. (1936a). On the motion of neutrons in hydrogenous substances. Ric. Sci. 7(2), 13 (in Italian), see Eq. 58. See also University of Chicago (1962). Enrico Fermi Collected Papers, Vol. I, p. 960 (Italian), p. 997 (English). Chicago, IL: University of Chicago Press.
Fermi E. (1936b). Ric. Sci. 1, 13.
Fermi E. (1949). Nuclear Physics. Lecture notes from a course given at the University of Chicago. Notes compiled by Jay Orear A. H. Rosenfeld, and Schluter R. A., rev. edn. Chicago, IL: The University of Chicago Press.
Fermi E. and Marshall L. (1947). On the interaction between neutrons and electrons. Phys. Rev. 72(12), 1139–46.
Fermi E., Marshall J., and Marshall L. (1947). A thermal neutron velocity selector and its application to the measurement of the cross section of boron. Phys. Rev. 72(3), 193–6.
Fielding A. L. and Mayers J. (2002). Calibration of the electron volt spectrometer, a deep inelastic scattering spectrometer at the ISIS pulsed neutron source. Nucl. Instrum. Meth. A 480, 680–9.
Foldy L. L. (1952). The electron-neutron interaction. Phys. Rev. 87(5), 693–6.
Foldy L. L. (1958). Neutron-electron interaction. Rev. Mod. Phys. 30(2), 471–81.
Fraser J. S., Green R. E., Hilborn J. W., Milton J. C. D., Gibson W. A., Gross E. E., and Zucker A. (1965). Neutron production in thick targets bombarded by high energy protons. Abstract. Physics in Canada 21(2), 17.
Fröhlich-Schlapp M., Ioffe A., Conrad H.. Brückel T., Feuss H., and von Seggern H. (2005). Novel materials and concepts for neutron image plates. Nucl. Instrum. Meth. A 551, 4651.
Fujiwara T., Takahashi H., Yanagita T., Kamada K. Fukuda K., Kawaguchi N., Yamada N. L., Furusaka M., Watanabe K., Fujimoto Y. and Uesaka M. (2012). Study on Ce:LiCAF scintillator for 3He alternative detector. Neutron News 23(4), 31–4.
Fultz B. (1998). Vibrational entropy and local structures of solids. In Local Structure from Diffraction, ed. Billinge S. J. L. and Thorpe M. F.. New York: Plenum Press, pp. 273–94.
Furrer A. and Güdel H. U. (1977). Molecular electronic excitations in a Cr3+ dimer observed by neutron inelastic scattering. J. Phys. C: Solid State Phys. 10, L191L195.
Furrer A., Mesot J., and Strässle T. (2009). Neutron Scattering in Condensed Matter Physics. Singapore: World Scientific.
Gersch H. K., McGregor D. S., and Simpson P. A. (2002). The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased 10B-coated high-purity epitaxial GaAs thermal neutron detectors. Nucl. Instrum. Meth. A 489(1–3), 8598.
Gersch H. K., and McGregor D. S. et al. (2002). Semiconducting gallium arsenide neutron imaging detectors. Final Report to DOE NEER. DE-FG07–9813633.
Ghose S., Choudhury N., Chaplot S. L., and Rao K. R. (1992). Phonon density of states and thermodynamic properties of minerals. In Thermodynamic Data, ed. Saxena S. K.. New York: Springer-Verlag, pp. 283314.
Glazer A. M. (1972). The classification of tilted octahedra in perovskites. Acta Cryst. B 28, 3384–92.
Glazer A. M. (1975). Simple ways of determining perovskite structures. Acta Cryst. A 31, 756–62.
Goertzel G. and Greuling E. (1960). An approximate method for treating neutron slowing down. Nucl. Sci. Eng. 7, 69.
Graffstein A. (1975). Optimality of binary sequences for correlation choppers. Nucl. Instrum. Meth. 131, 173–80.
Granroth G. E., Kolesnikov A. I., Sherline T. E., Clancy J. P., Ross K. A., Ruff J. P. C., Gaulin D. B., and Nagler S. E. (2010). SEQUOIA: a newly operating chopper spectrometer at the SNS. Proc. Int. Conf. Neut. Scattering 2009. J. Physics: Conf. Ser. 251, 012058.
Granroth G. E., Vandergriff D. H., and Nagler S. E. (2006). SEQUOIA: A fine resolution chopper spectrometer at the SNS. Physica B 385–86, 1104.
Greuling E. (1952). Modified Fermi theory of neutron moderation. Phys. Rev. 87, 177.
Guérard B. (2005) Microstrip gas chambers (MSGC) for future neutron instrumentation. Neutron News 16(4), 1621.
Habib N. (2006). Polycrystalline beryllium and graphite as cold neutron filters. J. Nucl. Radiation Phys. 1(2), 137–45.
Habs D., Gross M., Thirolf P. G., and Böni P. (2011). Neutron halo isomers in stable nuclei and their possible application for the production of low energy, pulsed, polarized neutron beams of high intensity and brilliance. Appl. Phys. B, 103, 485–99.
Hammouda B., and Mildner D. F. R. (2007). SANS resolution with refractive optics. J. Appl. Crystallogr. 40, 250–9.
Hansen J. P. and McDonald I. R. (1986). Theory of Simple Liquids. 2nd edn. London: Academic Press.
Harvey B. G. (1959). Spallation. In Progress in Nuclear Physics, Vol. 7, Chap. 3, ed. Frisch O. R.. London: Pergamon Press, pp. 90120.
Hempelmann R., Richter D., and Price D. L. (1987). High-energy-neutron vibrational spectroscopy on β-V2H. Phys. Rev. Lett. 58(10), 1016–9.
Hohenberg P. and Kohn W. (1964). Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–71.
Hughes D. J., Wallace J. R., and Holzman R. W. (1948). Neutron polarization. Phys. Rev. 73, 1277.
Ice G. E. (1997). Microbeam focusing methods for synchrotron radiation. X-Ray Spectrom. 26, 315–26.
Ikeda S. and Carpenter J. M. (1985). Wide energy-range, high-resolution measurements of neutron pulse shapes of polyethylene moderators. Nucl. Instrum. Meth. A 239, 536.
Ishikawa Y., Shirane G., Tarvin J. A., and Kohgi M. (1977). Magnetic excitations in the weak itinerant ferromagnet MnSi. Phys. Rev. B 16(11), 4956–70.
Ishikawa Y., Noda Y., Uemura Y. J., Majkrzak C. F., and Shirane G. (1985). Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31(9), 5884–93.
Iwashita Y., Tajima Y., Ichikawa M., Nakamura S., Ino T., Muto S., and Shimizu H. M. (2014). Variable permanent magnet sextupole lens for focusing of pulsed cold neutrons. www.kur.web.psi.ch/nop07.
Jin W., Degani M. H., Kalia R. K., and Vashishta P. (1992). Superconductivity in Ba1-xKxBiO3. Phys. Rev. B 45(10), 5535–46.
Kellogg J. M. B., Rabi I. I., and Zacharias J. R. (1936). The gyromagnetic properties of the hydrogens. Phys. Rev. 50, 472–81.
Khaykovich B., Gubarov M. V., Bagdasarova Y., Ramsey B. D., and Moncton D. E. (2011). From x-ray telescopes to neutron scattering: using axisymmetric mirors to focus a neutron beam. Nucl. Instrum. Meth. A 631, 98104.
Kisi E. H. and Howard C. O. (2008). Applications of Neutron Powder Diffraction. Oxford: Oxford University Press, pp. 155–82.
Knitel M. J., Hommels B., Dorenbos P., Eijk C. W. E. van, Berezovskaya I., and Dotsenko V. (2000). The feasibility of boron containing phosphors in thermal neutron imaging plates, in particular in the systems M2B5O9X:Eu2+ (M = Ca, Sr, Ba; X = Cl, Br). Part I: simulation of the energy deposition process. Nucl. Instrum. Meth. A 449, 578–94; and Part II: experimental results. Nucl. Instrum. Meth. A 449, 595–601.
Knoll G. F. (2000). Radiation Detection and Measurement, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Knoll G. F. (2010). Radiation Detection and Measurement, 4th edn. Hoboken, NJ: John Wiley & Sons.
Kobayashi H. and Satoh M. (1999). Basic performance of a neutron sensitive photostimulated luminescence device for neutron radiography. Nucl. Instrum. Meth. A 424, 18.
Kohara S., Suzuya K., Takeuchi K., Loong C.-K., Grimsditch M., Weber J. K. R., Tangeman J. A., and Key T. S. (2004). Glass formation at the limit of insufficient network formers. Science 303, 1649–52.
Koizumi S. (2011). Focusing USANS. In Neutrons in Soft Matter, Chap II.1.3.2, ed. Imae , Kanaya , Furusaka , and Toriaki . Hoboken, NJ: John Wiley & Sons, pp. 94113.
Kouzes R. T. and Ely J. H. (2010). Status summary of 3He and neutron detection alternatives for homeland security. Pacific Northwest Laboratory report PNNL-19360.
Kulda J. and Saroun J. (1996). Elastically bent silicon monochromator and analyzer on a TAS instrument. Nucl. Instrum. Meth. A 379, 155–66.
Lacy J. L., Athanasiades A., Sun L., Martin C. S., and Vazquez-Flores G. J. (2009). Boron coated straw detectors as a replacement for 3He. In Proc. 2009 IEEE Nucl. Sci. Symp. Conf. Rec. (NSS/MIC), pp. 119–25.
Lamarsh J. R. (1966). Introduction to Nuclear Reactor Theory. Reading, MA: Addison Wesley, pp. 168, 186.
Larson A. C. and Von Dreele R. B. (2004). General structure analysis system. Los Alamos National Laboratory Report No. LAUR 86.748.
Lavelle C. M., Baxter D. V., Bogdanov A., Derenchuk V. P., Kaiser H., Leuschner M. B., Lone M. A., Lozowski W., Nann H., Przowoski B. V., Remmes N., Rinkel T., Shin Y., Snow W. M., and Sokol P. E. (2008). Neutronic design and measured performance of the Low Energy Neutron Source (LENS) target moderator reflector assembly. Nucl. Instrum. Meth. A 587, 324–41.
Littrell K. C., te Velthuis S. G. E., Felcher G. P., Park S., Kirby B. J., and Fitzsimmons M. R. (2007). Magnetic compound refractive lens for focusing and polarizing cold neutron beams. Rev. Sci. Instrum. 78(3), 035101.
Loewenhaupt M., Reif Th., Svoboda P., Wagner S., Waffenschmidt M., Löhneysen H. v., Gratz E., Rotter M., Lebech B. and Hauß Th. (1996). The magnetic phases of NdCu2. Z. Phys. B 101(4), 499510.
Lone M. A. (1992). Neutron data needs for industrial neutron sources. In Proc. Int. Conf. Nuclear Data for Science and Technology, ed. Qaim S. M.. Berlin: Springer Verlag, p. 678.
Loong C.-K., Carpenter J. M., and Ikeda S. (1987). Resolution function of a pulsed-source chopper spectrometer. Nucl. Instrum. Meth. A 260, 381. See also Loong C.-K, Carpenter J. M., and Ikeda S. (1993). A parametric formulation of the resolution function of a pulsed-source chopper spectrometer. In Proc. XIIth Mtg. Int. Collaboration Advanced Neutron Sources, no. 94–025, vol. 1. Oxford: Rutherford-Appleton Laboratory, pp. I-320–5.
Loong C.-K., Vashishta P., Kalia R. K., Jin W., Degani M. H., Hinks D. G., Price D. L., Jorgensen J. D., Dabrowski B., Mitchell A. W., Richards D. R., and Zheng Y. (1992). Phonon density of states and oxygen-isotope effect in Ba1-xKxBiO3. Phys. Rev. B 45(14), 8052–64.
Loong C.-K., Soderholm L., Abraham M. M., and Boatner L. A. (1993). Crystal-field excitations and magnetic properties of TmPO4. J. Chem. Phys. 98(5), 4214–22.
Loong C.-K., Loewenhaupt M., Nipko J. C., Braden M., and Boatner L. A. (1999). Dynamic coupling of crystal-field and phonon states in YbPO4. Phys. Rev. B 60(18), R12549–52.
Lucas L. L. and Root J. W. (1972). (d,n) thick-target yields and total cross sections between 1 and 40 MeV. J. Appl. Phys. 43, 3886.
Majkrzak C. F. (2006). Determining the structures of layered materials by neutron reflection. 2006 ACA Warren Award Lecture, ACA RefleXions, American Crystallographic Association.
Majkrzak C. F. and Penfold J. (2010). The origins of neutron reflectometry. Neutron News 21(1), 4650.
Maleyev S. V., Bar'yakhtar V. G., and Suris R. A. (1963). Sov. Phys.: Solid State 4(12), 2533.
May R. P. (2003). Small-angle scattering. In Neutron Data Booklet, ed. Dianoux A.-J. and Lander G., OCP Science series. Grenoble, France: Institut Laue-Langevin, pp. 2.1.1–2.1.8.
Mayers J. (1989). Contributions of inelastic scattering to the vanadium differential scattering cross section; implications for the calibration of neutron spectrometers. Nucl. Instrum. Meth. A 281, 654–6.
Mayers J. and Adams M. A. (2011). Calibration of an electron volt neutron spectrometer. Nucl. Instrum. Meth. A 625, 4756.
McCormick D. J. and Lustig J. M. (2012). High sensitivity B-10 neutron detectors using high surface area inserts. US Patent No. 8129690 B2, March 6, 2012.
Meier-Leibnitz H. and Springer T. (1963). The use of neutron optical devices on beamhole experiments, J. Nucl. Energy 17, 217.
Mezei F. (1972). Neutron spin echo: a new concept in polarized thermal neutron techniques. Z. Physik 255, 146–60.
Mezei F. (1979). The application of neutron spin echo on pulsed neutron sources. Nucl. Instrum. Meth. 164, 153–6.
Mezei F. (1980). Neutron spin echo investigation of elementary excitations in superfluid 4He. In Neutron Spin Echo, ed. F. Mezei, Lect. Notes Phys. 128, 113–21.
Mezei F. (1997). The raison d’être of long pulse spallation sources. J. Neutron Res. 6(1–3), 3.
Mezei F. (2003). Fundamentals of NSE spectroscopy. In Neutron Spin Echo Spectroscopy, ed. Mezei F., Pappas C., and Gutbertlet T.. Berlin: Springer, pp. 114.
Mildner D. F. R. (1990). Acceptance diagrams for curved neutron guides. Nucl. Instrum. Meth. A 290, 189.
Mildner D. F. R. and Carpenter J. M. (2002). Time uncertainty for guided long-wavelength neutrons on a pulsed neutron source. Nucl. Instrum. Meth. A 484, 486–93.
Mirebeau I., Hennion M., Casalta H., Andres H., Güdel H. U., Irodova A. V., and Caneschi A. (1999). Low-energy magnetic excitations of the Mn12-acetate spin cluster observed by neutron scattering. Phys. Rev. Lett. 83(3), 628–31.
Mitchell D. P. and Powers P. N. (1936). Bragg reflection of slow neutrons. Phys. Rev. 50, 486.
Mittal R., Chaplot S. L., and Choudhury N. (2006). Modeling of anomalous thermodynamic properties using lattice dynamics and inelastic neutron scattering. Prog. Mater. Sci. 51, 211–86.
Montfrooj W., Ganroth G. E., Mandrus D. G., and Nagler S. E. (2001). Spin dynamics of the quasi-one-dimensional ferromagnet CoCl2•2D2O. Phys. Rev. B 24, 134426.
Moon R. M., Riste T., and Koehler W. C. (1969). Polarization analysis of thermal-neutron scattering. Phys. Rev. 181(2), 920–31.
Moriya T. (1985). Spin Fluctuations in Itinerant Electron Magnetism. Berlin: Springer-Verlag.
Nader R. B., Proffen T. (2008). Diffuse scattering and defect structure simulations: A cook book using the program DISCUS. Oxford University Press, Oxford.
Nakamura K. et al. (Particle Data Group) (2010). Review of particle physics. J. Phys. G: Nucl. Part. Phys. 37(7A), 075021.
Nakamura M., Kajimoto R., Inamura Y., Mizuno F., Fujita M., Yakoo T., and Arai M. (2009). First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn. 78(9), 093002.
ND&M (Web). Neutron hand monitor, Neutron Detectors & More. http://ndandm.com.
NeutronOptics Grenoble (Web). Neutron optics alignment cameras. http://NeutronOptics.com.
Niimura N. and Bau R. (2008). Neutron protein crystallography: beyond the folding structure of biological macromolecules, Acta Cryst. A64, 12–22.
Niimura N. and Podjarny A. (2011). Neutron Protein Crystallography. International Union of Crystallography Monographs on Crystallography. Oxford: Oxford University Press, p. 25.
Niimura N., Karasawa Y., Tanaka I., Miyahara J., Takahashi K., Saito H., Koizumi S., Hidaka M. (1994). An imaging plate neutron detector. Nucl. Instrum. Meth. A 349, 521.
Niimura N., Minezaki Y., Nonaka T., Castagna J.-C., Cipriani F., Høghøj P., Lehmann M. S., and Wilkinson C. (1997). Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nat. Struct. Biol. 4(11), 909–14.
Nipko J. C., Loong C.-K., Loewenhaupt M., Braden M., Reichardt W., and Boatner L. A. (1997). Lattice dynamics of xenotime: The phonon dispersion relations and density of states of LuPO4. Phys. Rev. B 56(18), 11584–92.
Nunes A. C. (1978). The converging-beam small-angle neutron diffractometer: calculated resolution. J. Appl. Cryst. 11, 460–4.
Oed A. (2003). Detector for thermal neutrons. In ILL Neutron Data Booklet, 2nd edn, ed. Dianoux A.-J. and Lander G.. Grenoble, France: Institut Laue-Langevin, Chap. 3.3.
Oed A. (2004). Micro pattern structures for gas detectors. Nucl. Instrum. Meth. A 525, 62–8.
Okamoto K. et al. (1990). Application of a CR-system to neutron radiography. In Neutron Radiography (3), Proc. Third World Conference, ed. Fujine S. et al. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 461–8.
Osborn R. K. (1988). Applied Quantum Mechanics. Singapore: World Scientific, pp. 51–3.
Parks D. E., Nelkin M. S., Beyster J. R., and Wikner N. F. (1970). Slow Neutron Scattering and Thermalization. New York: W. A. Benjamin, Inc.
Passell L., Dietrich O. W., and Als-Nielsen J. (1976). Neutron scattering from the Heisenberg ferromagnets EuO and EuS. I. The exchange interactions. Phys. Rev. B 14(11), 4897–907.
Patterson A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–6.
Patterson A. L. (1935). A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr. 90, 517–42.
Paul D. M., Mitchell P. W., Mook H. A., Steigenberger U. (1988). Observation of itinerant-electron effects on the magnetic excitations of iron. Phys. Rev. B 38(1), 580–2.
Pederson J. S. (1997). Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-square fitting. Adv. Colloid Interface Sci. 70, 171.
Penfold J. and Thomas R. K. (1990). The application of specular reflection of neutrons to the study of surfaces and interfaces. J. Phys. Cond. Mat. 2(6), 1369.
Perez-Mato J. M., Aroyo M., Hlinka J., Quilichini M., and Currat R. (1998). Phonon symmetry selection rules for inelastic neutron scattering. Phys. Rev. Lett. 81(12), 2462–5.
Petry W. (2011). Advanced Neuton Instrumentation at FRM II. www.frm2.tum.de.
Placzek G. (1947). The angular distribution of neutrons emerging from a plane surface. Phys. Rev. 72, 556. See also Mark C. (1947). The neutron density near a plane surface. Phys. Rev. 72, 558.
Popovici M. (1975). On the resolution of slow-neutron spectrometers, IV: The triple-axis spectrometer resolution function, specal effects included. Acta Cryst. A 31, 507–13.
Preiswerk P. (1937). Ein neutronenbeugungsexperiment: A neutron diffraction experiment. Helv. Phys. Acta 10, 400.
Rahman A. (1964). Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–11.
Rahman A., Singwi K. S., and Sjölander A. (1962a). Theory of slow neutron scattering by liquids. I. Phys. Rev. 126(3), 986–96.
Rahman A., Singwi K. S., and Sjölander A. (1962b). Stochastic model of a liquid and cold neutron scattering. II. Phys. Rev. 126(3), 9971004.
Rauch H. and Waschkowski W. (2003). Neutron scattering lengths. In ILL Neutron Data Booklet, 2nd edn, ed. Dianoux A.-J. and Lander G. H., Institute Laue-Langevin. Philadelphia, PA: Old City Publishing, pp. 1.1–1–1.1–16. See also www.ati.ac.at/~neutropt/scattering/table/.
Reactor Physics Constants (1963). Argonne National Laboratory Report ANL-5800, 2nd edn. Washington, DC: US Government Printing Office.
Rehm Ch. and Agamalian M. (2002). Flux gain for a next-generation neutron reflectometer resulting form improved supermirror performance. Appl. Phys. A 74, S1483–5.
Rekveldt M. T. W., Bouman W. G., Kraan W. H., Uca O., Grigoriev S. V., Krueger R. (2003). Elastic neutron scattering measurements using Larmor precession of polarized neutrons. In Neutron Spin Echo Spectroscopy, ed. Mezei F., Pappas C., and Gutberlet T.. Lecture Notes in Physics. Berlin: Springer Verlag, pp. 8799.
Rietveld H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 6571.
Riste T. (1994). Analytical report. In Neutron Beams and Synchrotron Radiation Sources. OECD Megascience Forum brochure, p. 63.
Rodriguez-Carvajal J. (2003). Using FullProf to analyse time-of-flight neutron powder diffraction data. Laboratory Leon Brillouin (CEA-CNRS) report.
Rosenkranz S. and Osborn R. (2004). Prospects and challenges in single crystal diffuse scattering. Neutron News 15(4), 21–4.
Rosenkranz S. and Osborn R. (2008). Corelli: Efficient single crystal diffraction with elastic discrimination. PRAMANA 71(4), 705–11.
Rossat-Mignod J. (1987). Magnetic structures. In Neutron Scattering, part C, ed. Sköld K. and Price D. L.. New York: Academic Press, Part C, Chap. 19, pp. 69157.
Rotter M. (2007). Magnetic neutron scattering. From www.mcphase.de
Rotter M., Lindbaum A., Gratz E., Hilscher G., Sassik H., Fischer H. E., Fernandez-Diaz M. T., Arons R., and Seidl E. (2000). The magnetic structure of GdCu2. J. Magn. Magn. Mater. 214, 281–90.
Russina M. and Mezei F. (2009). First implementation of repetition rate multiplication in neutron spectroscopy. Nucl. Instrum. Meth. A 604(3), 625–31.
Schärpf O. (1996) The spin of the neutron as a measuring probe. In The 10th International Summer School of Condensed Matter Physics, Bialowieza, Poland, July 10–20, 1996, pp. 1207. Printed in the proceedings of the summer school. Ed. Perzynska K. and Dobrzynski L., Institut of Physics, Warsaw University Branch, Bialystok.
Schultz A. J., Teller R. G., Beno M. A., Williams J. M., Brookhart M., Lamanna W., Humphrey M. B. (1983). Argonne Intense Pulsed Neutron source used to solve the molecular structure of a novel organometallic complex. Science 220(4593), 197–9.
Schwinger J. (1948). On the polarization of fast neutrons. Phys. Rev. 73(4), 407–9.
Sears V. F. (1975). Slow-neutron multiple scattering. Adv. Phys. 24( 1), 145.
Sears V. F. (1986). Neutron scattering lengths and cross sections. In Neutron Scattering, ed. Sköld K. and Price D. L.. New York: Academic Press, Part A, pp. 521–50.
Sears V. F. (1989). Neutron Optics. New York: Oxford University Press.
Serber R. (1947). Nuclear reactions at high energies. Phys. Rev.72(11), 1114–5.
Shapiro S. M., Axe J. D., Shirane G., and Riste T. (1972). Critical neutron scattering in SrTiO3 and KMnF3. Phys. Rev. B 6(11), 4332–41.
Shimizu H. M., Oku T., Suzuki J.-I., Furusaka M., and Kiyanagi Y. (2005). Development of polarized neutron optics. Physica B 356, 121–5.
Shirane G. (1959). A note on the magnetic intensities of powder neutron diffraction. Acta Cryst. 12, 282–5.
Shirane G. (1974). Neutron scattering studies of structural phase transitions at Brookhaven. Rev. Mod. Phys. 46(3), 437–49.
Shirane G., Shapiro S. M., and Tranquada J. M. (2002). Neutron Scattering with a Triple-Axis Spectrometer. Cambridge, MA: Cambridge University Press.
Shull C. G. (1963). Neutron spin-neutron orbit interaction with slow neutrons. Phys. Rev. Lett. 10(7), 297–8.
Silver R. N. and Sokol P. E. (1991). Momentum Distributions. New York and London: Plenum Press.
Sinha S. K. (1987). Adsorbed monolayers and intercalated compounds. In Neutron Scattering, ed. Price D. L. and Sköld K.. New York: Academic Press, Part B, Chap. 8, pp. 184.
Sköld K. (1968). A mechanical correlation chopper for thermal neutron spectroscopy. Nucl. Instrum. Meth. 68, 114–6.
Sköld K. and Price D. L. (1970). A detailed evaluation of the mechanical correlation chopper for neutron time-of-flight spectrometry. Nucl. Instrum. Meth. 82, 208–22.
Sköld K., Rowe J. M., Ostrowski G., and Randolph P. D. (1972). Coherent- and incoherent-scattering laws of liquid argon. Phys. Rev. A 6(3), 1107–31.
Smirnov A. N., Prokofiev A. V., Rodionova E. E., Frost C. D., Ansell S., Schooneveld E., Giorini G., Pietropaolo A. (2010). Characterization of the high-energy neutron field at the ISIS-VESUVIO facility by means of thin-film breakdown detectors. Rutherford Appleton Laboratory report RAL-TR-2010–024.
Smith G. C., Radeka V., Schaknowski N. A., and Yu B. (2005). Classical 3He gas detectors. Neutron News 16(4), 13–5.
Snow M. (2013). Exotic physics with slow neutrons. Physics Today 66(3), 50–5.
Spowart A. R. (1969a). Optimising neutron scintillators for neutron radiography. Brit. J Non-Destructive Testing 11(1), 211.
Spowart A. R. (1969b). Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators. Nucl. Instrum. Meth. 75, 3542.
Stassis C., Arch D., and Harmon B. N. (1979). Lattice dynamics of hcp Ti. Phys. Rev. B 19(1), 181–8.
Stassis C., Arch D., Zarestky J., McMasters O. D., and Harmon B. N. (1980). On the lattice dynamics of hcp hafnium. Solid State Commun. 35, 259–61.
Stassis C., Zarestky J., Arch D., McMasters O. D., and Harmon B. N. (1978). Temperature dependence of the normal vibrational modes of hcp Zr. Phys. Rev. B 18(6), 2632–42.
Stedman R. (1960). Scintillator for thermal neutrons using Li6F and ZnS (Ag). Rev. Sci. Instrum. 31, 1156.
Stevens L. D. and Miller A. J. (1969). Radiation studies at a medium energy accelerator. Lawrence Livermore Laboratory report UCRL-19386.
Stoica A. D., Wang X. L., Popovici M., and Hubbard C. (2001). Neutron imaging with Bragg mirrors. Proc. Symp. Neutron Optics, vol. 4509, San Diego, CA, pp. 112.
Studer A. J., Hagen M. E., Noakes T. J. (2006). WOMBAT: The high-intensity powder diffractometer at the OPAL reactor. In Proc. 8th Int. Conf. Neutron Scattering, Physica B: Condensed Matter 385–386(2), 1013–5.
Suzuya K., Loong C.-K., Price D. L., Sales B. C., and Boatner L. A. (1999). The structure of lead-indium phosphate and lead-scandium phosphate glasses. J. Non-Cryst. Solids 258, 4856.
Swanson W. P. (1978). Calculation of neutron yields released by electrons incident on selected materials. Health Phys. 35(2), 353.
Tajima K., Böni P., Shirane G., Ishikawa Y., and Kohgi M. (1987). Paramagnetic spin fluctuations in an Fe65Ni35 Invar alloy. Phys. Rev. B 35(1), 274–8.
Tajima K., Endoh Y., Fischer J. E., and Shirane G. (1988). Spin fluctuations in the temperature-induced paramagnet FeSi. Phys. Rev. B 38(10), 6954–60.
Takeuchi K., Loong C.-K., Richardson J. W. J. Jr., Guan J., Dorris S. E., and Balachandran U. (2000). The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ionics 138, 6377.
Tardocchi M., Gorini G., Pietropaolo A., Andreani C., D'Angelo A., Senesi R., Rhodes N. J., and Schooneveld E. M. (2004). YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources. Rev. Sci. Instrum. 75(11), 4880–90.
Taylor A., Dunne M., Bennington S., Ansell S., Gardner I., Norreys P., Broome T., Findlay D., and Nelmes R. (2007). A route to the brightest possible neutron source? Science 315, 5815, 1092–5.
Tennant D. A., Perring T. G., Cowley R. A., and Nagler S. E. (1993). Unbound spinons in the S = 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70(25), 4003–6.
Thiyagarajan P., Epperson E., Crawford R. K., Carpenter J. M., and Hjelm R. Jr., (1992). Comparison of SANS instruments at reactors and pulsed sources. In Proc. ISSI (International Seminar on Structural Investigations at Pulsed Neutron Sources), Russia, ED3–93–65, pp. 194211.
Thiyagarajan P., Epperson J. E., Crawford R. K., Carpenter J. M., Klippert T. E., and Wozniak D. G. (1997). The time-of-flight small-angle diffractometer (SAD) at IPNS, Argonne National Laboratory. J. Appl. Crystallogr. 30, 280–93.
Tremsin A. S., Feller W. B., and Downing R. G. (2005a). Efficiency optimization of multichannel plate (MCP) neutron imaging detectors. Nucl. Instrum. Meth. A 539(1–2), 278311.
Tremsin A. S., Feller W.B., Downing R. G., and Mildner D. F. R. (2005b). The efficiency of thermal neutron detection and collimation with microchannel plates of square and circular geometry. IEEE T. Nucl. Sci. 52, 1739–44.
Tremsin A., Vallerga J. V., McPhate J. B., Siegmund O. H. W., Feller W. B., Crow L., and Cooper R. G. (2008). On the possibility to image thermal and cold neutrons with sub-15 µm spatial resolution. Nucl. Instrum. Meth. A, 592, 374–84.
Trott G. J., Taub H., Hansen F. Y., and Nanner H. R. (1981). Determination of orientational order in submonolayer butane films adsorbed on graphite by elastic neutron diffraction. Chem. Phys. Lett. 78(3), 504–8.
Turchin V. F. (1965). Slow Neutrons. Jerusalem: Israel Program for Scientific Translations, Appendix D.
Van Hove L. (1958). A remark on the time-dependent pair distribution. Physica 24, 404–8.
Vanier P. (2003). Improvement in coded-aperture thermal neutron imaging. Proc. SPIE, Vol. 5199. Bellingham, WA: SPIE.
Vineyard G. H. (1954). Multiple scattering of neutrons. Phys. Rev. 96, 93–8.
von Halban H., and Preiswerk P. (1936). Preuve expérimentale de la diffraction des neutrons: Experimental proof of neutron diffraction. Comptes Rendus 203, 73.
Waldmann O., Carver G., Dobe C., Biner D., Sieber A., Güdel H. U., Mutka H., Ollivier J., Chakov N. E. (2006). Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering. Appl. Phys. Lett. 88, 042507–1–3.
Wang Z., Morris C. L., Bacon J. D., Brockwell M. I., and Ramsey J. C. (2014). A double-helix neutron detector using micron-size 10B powder. Nucl. Instr. & Meth. In Phy. Res. A 704, pp. 261267.
Warren B. E. (1941), X-ray diffraction in random layer lattices. Phys. Rev. 59(9), 693–8.
Weinberg A. M. and Wigner E. P. (1958). The Physical Theory of Neutron Chain Reactors. Chicago: The University of Chicago Press, pp. 111–15.
Weisskopf V. (1937). Statistics and nuclear reactions. Phys. Rev. 52, 295.
Werner S. A. and Arrott A. S. (1966). Theory of neutron diffraction: multiple Bragg scattering in mosaic crystals. University of Michigan internal report, April 30, 1966.
Westcott C. H. (1970). Effective cross section values for well-moderated thermal reactor spectra. CRRP 960 AECL-1101, 3rd edn, corrected. Chalk River, Ontario: Atomic Energy of Canada Ltd.
Wilkinson C. (1973). The theory of the spin-density patterson function. Acta Cryst. A 29, 449–52.
Williams M. M. R. (1966). The Slowing Down and Thermalization of Neutrons. New York: John Wiley & Sons Inc., p. 429.
Wills A. S. (2001). Magnetic structures and their determination using group theory. J. Phys. IV France 11, 133–58.
Wills A. S. (2005). Symmetry in the solid state; working beyond the space group. J. Mater. Chem. 15, 245–52.
Wilpert T. (2012) Boron trifluoride detectors. Neutron News 23(4), 14–8.
Wright A. C. (2008). More about total scattering cross-sections and a related common misconception. Neutron News 19(1), 25–7.
Yamada M., Iwashita Y., Kanaya T., Yamada N. L., Shimizu H. M., Mishima K., Hino M., Kitaguchi M., Hirota K., Geltenbort P., Guerard B., Manzin G., Andersen K., Lal J., Carpenter J. M., Bleuel M., Kennnedy S. J. (2011). A compact TOF-SANS using focusing lens and very cold neutrons. Physica B 406(12), 2453–7.
Yethiraj M., Robinson R. A., Sivia D. S., Lynn J. W., and Mook H. A. (1991). Neutron-scattering study of the magnon energies and intensities in iron. Phys. Rev. B 43, 2565–74.
Yoshikawa A., Yanagita T., Yakota Y., Kawaguchi N., Ishizu S., Fukuda K., Suyama T., Kim K., Pejchal J., Nikl M., Watanabe K., Miyake M., Baba M., Yamada K. (2009). Single crystal growth, optical properties and neutron response of Ce3+ doped LiCaAlF6. IEEE Trans. Nucl. Sci. 56, 3796–9.
Zachariasen W. H. (1945). Theory of X-ray Diffraction in Crystals. John Wiley and Sons Inc. Reprinted Mineola, NY: Dover Publications, 1994.
Zagar T., Galy J., Magill J., and Kellett M. (2005). Laser-generated nanosecond pulsed neutron sources: scaling from VULCAN to table-top. New J. Phys. 7, 253.
Zeitelhack K. (2012). Search for alternative techniques to helium-3 based detectors for neutron scattering applications. Neutron News 23(4), 10–3.
Zernike F. and Prins J. A. (1927). Die beugung von Röntgenstrahlen in flüssig-keiten als effekt der molekülanordnung. Z. Phys. 41, 184–94.
Zimm B. H. (1946). Application of the methods of molecular distribution to solutions of large molecules. J. Chem. Phys. 14: 164-79.
Zsigmond G. and Carpenter J. M. (2005). A numerical analysis of time focusing of crystal analyzer spectrometers on pulsed sources. Nucl. Instrum. Meth. A 550, 359–78.
Zsigmond G., Lieutenant K., Manoshin H., Bordallo H. N., Champion J. D. M., Carpenter J. M., and Mezei F. (2003). A survey of simulations of complex neutronics systems by VITESS. Nucl. Instrum. Meth. A 529, 218–22.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 154
Total number of PDF views: 1705 *
Loading metrics...

Book summary page views

Total views: 1753 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 11th December 2017. This data will be updated every 24 hours.