Skip to main content Accessibility help
×
×
Home
Ellipsoidal Harmonics
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 38
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Hashemzadeh, Parham and Fokas, Athanassios S 2019. Helmholtz decomposition of the neuronal current for the ellipsoidal head model. Inverse Problems, Vol. 35, Issue. 2, p. 025002.

    Xue, Changfeng Edmiston, Robert and Deng, Shaozhong 2018. Image Theory for Neumann Functions in the Prolate Spheroidal Geometry. Advances in Mathematical Physics, Vol. 2018, Issue. , p. 1.

    Doschoris, Michael and Kariotou, Foteini 2018. Error analysis for nonconfocal ellipsoidal systems in the forward problem of electroencephalography. Mathematical Methods in the Applied Sciences, Vol. 41, Issue. 16, p. 6793.

    FRAGOYIANNIS, GEORGE KARIOTOU, FOTEINI and VAFEAS, PANAYIOTIS 2018. On the avascular ellipsoidal tumour growth model within a nutritive environment. European Journal of Applied Mathematics, p. 1.

    Axler, Sheldon and Shin, Peter J. 2018. The Neumann problem on ellipsoids. Journal of Applied Mathematics and Computing, Vol. 57, Issue. 1-2, p. 261.

    Doschoris, Michael and Kariotou, Foteini 2018. Quantifying errors during the source localization process in electroencephalography for confocal systems. IMA Journal of Applied Mathematics, Vol. 83, Issue. 2, p. 243.

    2018. EEG for Current With Two-Dimensional Support. IEEE Transactions on Biomedical Engineering, Vol. 65, Issue. 9, p. 2101.

    Chatjigeorgiou, Ioannis K. Katsardi, Vanessa and Miloh, Touvia 2018. Hydrodynamics and ellipsoidal harmonics. Vol. 1978, Issue. , p. 470107.

    Miloh, Touvia and Chatjigeorgiou, Ioannis K. 2018. Fundamental problems in hydrodynamics of ellipsoidal forms. Journal of Hydrodynamics, Vol. 30, Issue. 3, p. 403.

    Athanasiadis, C. E. Athanasiadou, E. Zoi, S. and Arkoudis, I. 2018. An inverse scattering problem for the dielectric ellipsoid. Vol. 1978, Issue. , p. 470055.

    Xue, Changfeng and Deng, Shaozhong 2017. Green’s function and image system for the Laplace operator in the prolate spheroidal geometry. AIP Advances, Vol. 7, Issue. 1, p. 015024.

    Kushch, Volodymyr I. Sevostianov, Igor and Giraud, Albert 2017. Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 473, Issue. 2207, p. 20170472.

    Vafeas, Panayiotis 2017. Revisiting the Low-Frequency Dipolar Perturbation by an Impenetrable Ellipsoid in a Conductive Surrounding. Mathematical Problems in Engineering, Vol. 2017, Issue. , p. 1.

    Doschoris, Michael and Kariotou, Foteini 2017. Electroencephalography.

    Fragoyiannis, George Kariotou, Foteini and Vafeas, Panayiotis 2017. On the avascular evolution of an ellipsoidal tumour. Vol. 1863, Issue. , p. 560064.

    Xue, Changfeng and Deng, Shaozhong 2017. Comment on “On the Neumann function and the method of images in spherical and ellipsoidal geometry”. Mathematical Methods in the Applied Sciences, Vol. 40, Issue. 18, p. 6832.

    Weis Goldstein, Ben and Miloh, Touvia 2017. 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles. Physics of Fluids, Vol. 29, Issue. 5, p. 052008.

    Vidal, Jérémie and Cébron, David 2017. Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits. Journal of Fluid Mechanics, Vol. 833, Issue. , p. 469.

    Reimond, Stefan and Baur, Oliver 2016. Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System bodies. Case study: Comet 67P/Churyumov-Gerasimenko. Journal of Geophysical Research: Planets, Vol. 121, Issue. 3, p. 497.

    Vantieghem, S. Sheyko, A. and Jackson, A. 2016. Applications of a finite-volume algorithm for incompressible MHD problems. Geophysical Journal International, Vol. 204, Issue. 2, p. 1376.

    ×

Book description

The sphere is what might be called a perfect shape. Unfortunately nature is imperfect and many bodies are better represented by an ellipsoid. The theory of ellipsoidal harmonics, originated in the nineteenth century, could only be seriously applied with the kind of computational power available in recent years. This, therefore, is the first book devoted to ellipsoidal harmonics. Topics are drawn from geometry, physics, biosciences and inverse problems. It contains classical results as well as new material, including ellipsoidal bi-harmonic functions, the theory of images in ellipsoidal geometry and vector surface ellipsoidal harmonics, which exhibit an interesting analytical structure. Extended appendices provide everything one needs to solve formally boundary value problems. End-of-chapter problems complement the theory and test the reader's understanding. The book serves as a comprehensive reference for applied mathematicians, physicists, engineers and for anyone who needs to know the current state of the art in this fascinating subject.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
Bibliography
References
[1] A.A., Abramov, A. L., Dyshko, N. B., Konyukhova, and T.V., Levitina. Evaluation of Lamé angular wave functions by solving auxiliary differential equations. USSR Computational Mathematics and Mathematical Physics, 29: 119–131, 1989.
[2] A.A., Abramov, A. L., Dyshko, N. B., Konyukhova, and T.V., Levitina. Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method. USSR Computational Mathematics and Mathematical Physics, 31: 25–42, 1991.
[3] M., Abramowitz and I.A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1964.
[4] E., Almansi. Sull'integrazione dell'equazione differenziale ∇2mu = 0. Annali di Matematica Pura ed Applicada, II: 1–51, 1899.
[5] H., Ammari, Y., Capdeboscq, H., Kang, H., Lee, G., Milton, and H., Zribi. Progress on the strong Eshelby's conjecture and extremal structures for the elastic moment tensors. Journal des Mathématiques Pures et Appliquées, 94: 93–106, 2010.
[6] H., Ammari, P., Garapon, H., Kang, and H., Lee. Effective viscosity properties of dilute suspensions of arbitrary shape particles. Asymptotic Analysis, preprint.
[7] H., Ammari, P., Garapon, H., Kang, and H., Lee. A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quarterly of Applied Mathematics, 66: 139–175, 2008.
[8] H., Ammari and H., Kang. Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, Volume 1846. Berlin: Springer-Verlag, 2004.
[9] H., Ammari and H., Kang. Polarization and Moment Tensors:with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences Series, Volume 162. New York: Springer-Verlag, 2007.
[10] H., Ammari, H., Kang, and H., Lee. A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids. Journal of Computational Mathematics, 25: 2–12, 2007.
[11] T. S., Angell and R. E., Kleinman. Polarizability tensors in low-frequency inverse scattering. Radio Science, 22: 1120–1126, 1987.
[12] T., Apostolopoulos and G., Dassios. A parallel algorithm for solving the inverse scattering moment problem. Journal of Computational and Applied Mathematics, 42: 63–77, 1992.
[13] Y., Arnaoudov, G., Dassios, and V., Georgiev. High-frequency asymptotics in inverse scattering by ellipsoids. Mathematical Methods in Applied Sciences, 16: 1–12, 1993.
[14] F.M., Arscott. Recurrence formulae for Lamé polynomials. Journal of the London Mathematical Society, 31: 360–364, 1956.
[15] F.M., Arscott. On Lamé polynomials. Journal of the London Mathematical Society, 32: 37–48, 1957.
[16] F.M., Arscott. Relations between spherical and ellipsoidal harmonics and some applications. Journal of the London Mathematical Society, 33: 39–49, 1958.
[17] F.M., Arscott. Corrigendum: Relations between spherical and ellipsoidal harmonics and some applications. Journal of the London Mathematical Society, 33: 481, 1958.
[18] F.M., Arscott. Integral equations and relations for Lamé functions. Quarterly Journal of Mathematics, Oxford Series (2), 15: 103–115, 1964.
[19] F.M., Arscott. Periodic Differential Equations; An Introduction to Mathieu, Lamé, and Allied Functions. Oxford: Pergamon Press, 1964.
[20] F.M., Arscott and A., Darai. Curvilinear co-ordinate systems in which the Helmholtz equation separates. IMA Journal of Applied Mathematics, 27: 33–70, 1981.
[21] F.M., Arscott and I.M., Khabaza. Tables of Lamé Polynomials. Oxford: Pergamon Press, 1962.
[22] C., Athanasiadis. The dielectric ellipsoidal in the presence of a low-frequency electromagnetic wave. Journal of the Institute of Mathematics and Computer Sciences, 4: 225–240, 1991.
[23] C., Athanasiadis. The hard-core multi-layered ellipsoid in a low-frequency acousticfield. International Journal of Engineering Science, 32: 1351–1359, 1994.
[24] C., Athanasiadis. The multi-layered ellipsoid with a soft core in the presence of a low-frequency acoustic wave. Quarterly Journal of Mechanics and Applied Mathematics, 47: 441–459, 1994.
[25] C., Athanasiadis and K., Skourogiannis. Low-frequency scattering by a chiral ellipsoidal dielectric. Preprint.
[26] G., Balmino. Gravitational potential harmonics from the shape of an homogeneous body. Celestial Mechanics and Dynamical Astronomy, 60: 331–364, 1994.
[27] L., Baratchart, J., Leblond, and J. P., Marmorat. Inverse source problems in a 3D ball from best meromorphic approximation on 2D slices. Electronic Transactions on Numerical Analysis, 25: 41–53, 2006.
[28] G., Barton. Elements of Green's Functions and Propagation, Potentials, Diffusion and Waves. New York: Oxford University Press, 1989.
[29] G.K., Batchelor. An Introduction to Fluid Mechanics. Cambridge: Cambridge University Press, 1967.
[30] H., Bateman. Higher Transcendental Functions, Volume III. New York: McGraw-Hill, 1955.
[31] R. J. T., Bell. An Elementary Treatise on Coordinate Geometry of Three Dimensions, 10th edn. London: MacMillan and Company, 1937.
[32] N., Bellomo, N.K., Li, and P.K., Maini. On the foundations of cancer modelling: selected topics, speculations, and perspectives. Mathematical Models and Methods in Applied Sciences, 18: 593–646, 2008.
[33] F., Beukers and A., van der Waall. Lamé equations with algebraic solutions. Journal of Differential Equations, 197: 1–25, 2004.
[34] B.A., Bilby, J.D., Eshelby, M. L., Kolbuszewski, and A.K., Kundu. The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity - some comments on a discussion by N.C. Gay. Tectonophysics, 35: 408–409, 1976.
[35] B.A., Bilby, J.D., Eshelby, and A.K., Kundu. The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity. Tectonophysics, 28: 265–274, 1975.
[36] F. J., Bloore. The shape of pebbles. Mathematical Geology, 9: 113–122, 1977.
[37] L. F., Boron. Differential Geometry. Groningen: Noordhoff, 1954.
[38] F., Bowman. Introduction to Elliptic Functions with Applications. New York: Dover, 1947.
[39] L., Brand. Vector and Tensor Analysis. New York: John Wiley and Sons, 1947.
[40] L., Brand. Vector Analysis. New York: John Wiley and Sons, 1957.
[41] Z. B., Bronzan. The magnetic scalar potential. American Journal of Physics, 39: 1357–1359, 1971.
[42] W. E., Byerly. Elements of Integral Calculus. Boston, MA: Gin and Company, 1888.
[43] W. E., Byerly. An Elementary Treatise on Fourier's Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Boston, MA: Gin and Company, 1893.
[44] P. F., Byrd and M.D., Friedman. Handbook of Elliptic Integrals for Engineers and Physicists. Berlin: Springer-Verlag, 1954.
[45] H.M., Byrne. Modelling avascular tumor growth. In L., Preziosi, editor, Cancer Modelling and Simulation, pp. 75–120. London: Chapman and Hall, 2003.
[46] F., Cakoni and G., Dassios. The Atkinson-Wilcox theorem in thermoelasticity. Quarterly of Applied Mathematics, 57: 771–795, 1999.
[47] B. C., Carlson. Ellipsoidal distributions of charge or mass. Journal of Mathematical Physics, 2: 441–450, 1961.
[48] B. C., Carlson. Some inequalities for hypergeometric functions. Proceedings of the American Mathematical Society, 17: 32–39, 1966.
[49] B. C., Carlson. Elliptic integrals of the first kind. SIAM Journal of Mathematical Analysis, 8: 231–242, 1977.
[50] D.H., Chambers and J.G., Berryman. Target characterization using decomposition of the time-reversal operator: electromagnetic scattering from small ellipsoids. Inverse Problems, 22: 2145–2163, 2006.
[51] S., Chandrasekhar. Ellipsoidal Figures of Equilibrium. New York: Dover, 1987.
[52] A., Charalambopoulos. An analytic algorithm for shape reconstruction from low-frequency moments. Journal of Mathematical Physics, 52, 093705, 2011.
[53] A., Charalambopoulos and G., Dassios. Inverse scattering via low-frequency moments. Journal of Mathematical Physics, 32: 4206–4216, 1992.
[54] A., Charalambopoulos and G., Dassios. Scattering of a spherical wave by a small ellipsoid. IMA Journal of Applied Mathematics, 62: 117–136, 1999.
[55] A., Charalambopoulos, G., Dassios, G., Perrusson, and D., Lesselier. The localized non-linear approximation in ellipsoidal geometry: a novel approach to the low-frequency scattering problem. International Journal of Engineering Science, 40: 67–91, 2002.
[56] S.K., Chaudhuri. A time domain synthesis of electromagnetic backscattering by conducting ellipsoids. IEEE Transactions on Antennas and Propagation, 28: 523–530, 1980.
[57] S.K., Chaudhuri and W.M., Boerner. Polarization utilization in profile inversion of a perfectly conducting prolate spheroid. IEEE Transactions on Antennas and Propagation, 25: 505–511, 1978.
[58] J. B., Chittenden. Theory of Hermite's form of Lamé's equation. PhD thesis, Albertus-Universität, 1893.
[59] R., Courant and D., Hilbert. Methods of Mathematical Physics I. New York: Interscience, 1953.
[60] R., Courant and D., Hilbert. Methods of Mathematical Physics II. New York: Interscience, 1962.
[61] T., Craig. Orthomorphic projection of an ellipsoid upon a sphere. Americal Journal of Mathematics, 3: 114–127, 1880.
[62] G.H., Darwin. Ellipsoidal harmonic analysis. Philosophical Transactions of the Royal Society of London, 197: 461–557, 1901.
[63] G.H., Darwin. On the pear-shaped figure of equilibrium of a rotating mass of liquid. Philosophical Transactions of the Royal Society of London, 198: 301–331, 1902.
[64] G., Dassios. Convergent low-frequency expansions for penetrable scatterers. Journal of Mathematical Physics, 18: 126–137, 1977.
[65] G., Dassios. Second-order low-frequency scattering by the soft ellipsoid. SIAM Journal on Applied Mathematics, 38: 373–381, 1980.
[66] G., Dassios. Scattering of acoustic waves by a coated pressure-release ellipsoid. Acoustical Society of America, 70: 176–185, 1981.
[67] G., Dassios. Low-frequency scattering theory for a penetrable body with an impenetrable core. SIAM Journal on Applied Mathematics, 42(2): 272–280, 1982.
[68] G., Dassios. The inverse scattering problem for the soft ellipsoid. Journal of Mathematical Physics, 28: 2858–2862, 1987.
[69] G., Dassios. On the harmonic radius and the capacity of an inverse ellipsoid. Journal of Mathematical Physics, 29: 835–836, 1988.
[70] G., Dassios. The Atkinson–Wilcox expansion theorem for elastic waves. Quarterly of Applied Mathematics, 46: 285–299, 1988.
[71] G., Dassios. Optimal geometrical and physical bounds of elastic Rayleigh scattering. IUTAM Symposium on Elastic Wave Propagation, pp. 405–410, Galway, 1988.
[72] G., Dassios. Low-frequency expansions for lossy scatterers. International Journal of Engineering Science, 27: 723–726, 1989.
[73] G., Dassios. Low-frequency moments in inverse scattering theory. Journal of Mathematical Physics, 31: 1691–1692, 1990.
[74] G., Dassios. On a physical characterization of the surface of an ellipsoid. International Journal of Engineering Science, 28: 1205–1208, 1990.
[75] G., Dassios. Ellipsoidal fitting for the Atkinson–Wilcox expansion. In D., Fotiadis and C., Massalas, editors, 5th International Workshop on Mathematical Methods in Scattering and Biomedical Technology, pp. 35–43, 2002.
[76] G., Dassios. Low-Frequency Scattering. In R., Pike and P., Sabatier, editors, Scattering I, II, pp. 230–244. New York: Academic Press, 2002.
[77] G., Dassios. The Atkinson–Wilcox theorem in ellipsoidal geometry. Journal of Mathematical Analysis and its Applications, 274: 828–845, 2002.
[78] G., Dassios. The magnetic potential for the ellipsoidal MEG problem. Journal of Computational Mathematics, 25: 145–156, 2007.
[79] G., Dassios. On ellipsoidal tumors. In D., Fotiadis and K., Nikita, editors, 8th IEEE International Conference on BioInformatics and Bio Engineering, Athens, 2008.
[80] G., Dassios. The scalar magnetic potential in magnetoencephalography. In G., Uhlmann, editor, Journal of Physics: Conference Series, doi:10.1088/1742-6596/124/1/012020. New York: Institute of Physics, 2008.
[81] G., Dassios. Electric and magnetic activity of the brain in spherical and ellipsoidal geometry. In H., Ammari, editor, Mathematical Modeling in Biomedical Imaging, pp. 133–202. New York: Springer-Verlag, Mathematical Biosciences Subseries, 183, 2009.
[82] G., Dassios. The double analytic structure that allows the introduction of vector ellipsoidal harmonics. In Advanced Topics in Scattering Theory and Biomedical Engineering, Proceedings of the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, pp. 3–11, 2010.
[83] G., Dassios. Neuronal current decomposition via vector surface ellipsoidal harmonics. In Workshop on Analytic and Geometric Methods in Medical Imaging, Isaac Newton Institute for Mathematical Sciences, http://www.newton.ac.ul/programmes/INV/seminars/082411451.pdf, 2011.
[84] G., Dassios. Explicit electrostatic cloaking with three degrees of freedom. (submitted).
[85] G., Dassios. On the Young–Laplace relation and the evolution of a perturbed ellipsoid. Quarterly of Applied mathematics, in press.
[86] G., Dassios and A. S., Fokas. Electro-magneto-encephalography for the three-shell model: a single dipole in ellipsoidal geometry. Mathematical Methods in the Applied Sciences, preprint.
[87] G., Dassios and A. S., Fokas. Electro-magneto-encephalography for the three-shell model: dipoles and beyond for the spherical geometry. Inverse Problems, 25, doi: 10.1088/0266-5611/25/3/035001, 2009.
[88] G., Dassios and A. S., Fokas. On two useful identities in the theory of ellipsoidal harmonics. Studies in Applied Mathematics, 123: 361–373, 2009.
[89] G., Dassios, A. S., Fokas, and F., Kariotou. On the non-uniqueness of the inverse MEG problem. Inverse Problems, 21: L1–L5, 2005.
[90] G., Dassios, S., Giapalaki, A., Kandili, and F., Kariotou. The exterior magnetic field for the multilayer ellipsoidal model of the brain. Quarterly Journal of Mechanics and Applied Mathematics, 60: 1–25, 2007.
[91] G., Dassios and D., Hadjiloizi. On the non-uniqueness of the inverse problem associated with electroencephalography. Inverse Problems, 25: 1–18, 2009.
[92] G., Dassios, D., Hadjiloizi, and F., Kariotou. The octapolic ellipsoidal term in magnetoencephalography. Journal of Mathematical Physics, 50: 1–18, 2009.
[93] G., Dassios and F., Kariotou. Magnetoencephalography in ellipsoidal geometry. Journal of Mathematical Physics, 44: 220–241, 2003.
[94] G., Dassios and F., Kariotou. On the exterior magnetic field and silent sources in magnetoencephalography. Abstract and Applied Analysis, 2004: 307–314, 2004.
[95] G., Dassios and F., Kariotou. The effect of an ellipsoidal shell on the direct EEG problem. In D., Fotiadis and C., Massalas, editors, Advances in Scattering and Biomedical Engineering, pp. 495–503, 2004.
[96] G., Dassios and F., Kariotou. The direct MEG problem in the presence of an ellipsoidal shell inhomogeneity. Quarterly of Applied Mathematics, 63: 601–618, 2005.
[97] G., Dassios and F., Kariotou. On the ellipsoidal kernel space for the bi-Laplacian operator. Bulletin of the Greek Mathematical Society, 57: 161–174, 2010.
[98] G., Dassios, F., Kariotou, and M., Tsampas. On the ellipsoidal growth of tumors. In A., Charalambopoulos, D. I., Fotiadis, and D., Polyzos, editors, Advanced Topics in Scattering and Biomedical Engineering, pp. 254–260, 2008.
[99] G., Dassios, F., Kariotou, M.N., Tsampas, and B.D., Sleeman. Mathematical modelling of avascular ellipsoidal tumor growth. Quarterly of Applied Mathematics, 70: 1–24, 2012.
[100] G., Dassios and K., Karveli. Scattering of a spherical dyadic field by a small rigid sphere. Mathematics and Mechanics of Solids, 7: 3–40, 2002.
[101] G., Dassios, K., Karveli, S. E., Kattis, and N., Kathreptas. The disturbance of a plane dyadic wave by a small spherical cavity. International Journal of Engineering Science, 40: 1975–2000, 2002.
[102] G., Dassios and K., Kiriaki. The low-frequency theory of elastic wave scattering. Quarterly of Applied Mathematics, 42: 225–248, 1984.
[103] G., Dassios and K., Kiriaki. The rigid ellipsoid in the presence of a low-frequency elastic wave. Quarterly of Applied Mathematics, 43: 435–456, 1986.
[104] G., Dassios and K., Kiriaki. The ellipsoidal cavity in the presence of a low-frequency elastic wave. Quarterly of Applied Mathematics, 44: 709–735, 1987.
[105] G., Dassios and K., Kiriaki. Size, orientation, and thickness identification of an ellipsoidal shell. In G., Roach, editor, Workshop on Inverse Problems and Imaging, pp. 38–48, 1991.
[106] G., Dassios, K., Kiriaki, and V., Kostopoulos. Inverse thermoelastic Rayleigh scattering by a rigid ellipsoid. In G., Roach, editor, Workshop on Inverse Problems and Imaging, pp. 49–67, 1991.
[107] G., Dassios and R., Kleinman. On Kelvin inversion and low-frequency scattering. SIAM Review, 31: 565–585, 1989.
[108] G., Dassios and R., Kleinman. On the capacity and Rayleigh scattering for non-convex bodies. Quarterly Journal of Mechanics and Applied Mathematics, 42: 467–475, 1989.
[109] G., Dassios and R., Kleinman. Low-Frequency Scattering. Oxford: Oxford University Press, 2000.
[110] G., Dassios and V., Kostopoulos. On Rayleigh expansions in thermoelastic scattering. SIAM Journal on Applied Mathematics, 50: 1300–1324, 1990.
[111] G., Dassios and V., Kostopoulos. Thermoelastic scattering by a rigid ellipsoid. Computational and Applied Mathematics, 9: 153–173, 1990.
[112] G., Dassios and R., Lucas. An inverse problem in low-frequency scattering by an ellipsoidally embossed surface. Wave Motion, 20: 33–39, 1994.
[113] G., Dassios and R., Lucas. Inverse scattering for the penetrable ellipsoid and ellipsoidal boss. Journal of the Acoustical Society of America, 99: 1877–1882, 1996.
[114] G., Dassios and R., Lucas. Electromagnetic imaging of ellipsoids and ellipsoidal bosses. Quarterly Journal of Mechanics and Applied Mathematics, 51: 413–426, 1998.
[115] G., Dassios and T., Miloh. Rayleigh scattering for the Kelvin-inverted ellipsoid. Quarterly of Applied Mathematics, 57: 757–770, 1999.
[116] G., Dassios, S., Paipetis, and A., Pournaras. An inverse scattering problem for an ellipsoidal inclusion with an interphase in an acousticfield. In S., Paipetis, editor, Phase Interaction in Composite Materials, pp. 390–395, 1988.
[117] G., Dassios and L. E., Payne. Estimates for low-frequency elastic scattering by a rigid body. Journal of Elasticity, 20: 161–180, 1988.
[118] G., Dassios and L. E., Payne. Energy bounds for Rayleigh scattering by an elastic cavity. Journal of Mathematical Analysis and its Applications, 138: 106–128, 1989.
[119] G., Dassios and B., Sleeman. A note on the reconstruction of ellipsoids from the X-ray transform. SIAM Journal on Applied Mathematics, 53: 141–153, 1993.
[120] G., Dassios and J.C.-E., Sten. The image system and Green's function for the ellipsoid. In H., Ammari and H., Kang, editors, Imaging Microstructures: Mathematical and Computational Challenges, Volume 494 of Contemporary Mathematics, pp. 185–195. Providence, RI: American Mathematical Society, 2009.
[121] G., Dassios and M., Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 3: 243–257, 2009.
[122] G., Dassios and P., Vafeas. The Happel model for an ellipsoid via Papkovich–Neuber. In D., Fotiadis and C., Massalas, editors, Advances in Scattering and Biomedical Engineering, pp. 277–285, 2004.
[123] D., Dechambre and D. J., Scheeres. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients. Astronomy and Astrophysics, 387: 1114–1122, 2002.
[124] E., Di Benedetto and A., Friedman. Bubble growth in porous media. Indiana University Mathematics Journal, 35: 573–606, 1986.
[125] A. C., Dixon. Expansions by means of Lamé's functions. Proceedings of the London Mathematical Society, 35: 162–197, 1902.
[126] J. E., Dobkins and R. L., Folk. Shape development on Tahiti-Nui. Journal of Sedimentary Petrology, 40: 1167–1203, 1970.
[127] H-J., Dobner and S., Ritter. Verified computation of Lamé functions with high accuracy. Computing, 60: 81–89, 1998.
[128] D. J., Durian, H., Bideaud, P., Duringer, A., Schröder, and C.M., Marques. The shape and erosion of pebbles. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 75: 021301–021310, 2007.
[129] D. J., Durian, H., Bideaud, P., Duringer, A., Schröder, F., Thalmann, and C.M., Marques. What is in a pebble shape?Physical Review Letters, 97: 028001–028004, 2006.
[130] D., Edwards. Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Quarterly Journal of Mathematics, 26: 70–78, 1892.
[131] J., Eells and A., Ratto. Harmonic maps between spheres and ellipsoids. International Journal of Mathematics, 1: 1–27, 1990.
[132] L. P., Eisenhart. A Treatise on the Differential Geometry of Curves and Surfaces. Boston, MA: Ginn and Company, 1909.
[133] L. P., Eisenhart. An Introduction to Differential Geometry with use of the Tensor Calculus. Princeton, MA: Princeton University Press, 1947.
[134] A., Erdélyi. On algebraic Lamé functions. Philosophical Magazine, 32: 348–350, 1941.
[135] A., Erdélyi. On Lamé functions. Philosophical Magazine, 31: 123–130, 1941.
[136] A., Erdélyi. Integral equations for Lamé functions. Proceedings of the Edinburgh Mathematical Society (2), 7: 3–15, 1942.
[137] A., Erdélyi. Expansions of Lamé functions into series of Legendre functions. Proceedings of the Royal Society of Edinburgh, Series A, 62: 247–267, 1948.
[138] A., Erdélyi, W., Magnus, F., Oberhettinger, and F.G., Tricomi. Higher Transcendental Functions, Volume III. New York: McGraw-Hill, 1955.
[139] J.D., Eshelby. The determination of the elasticfield of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London A, 241: 376–396, 1957.
[140] J.D., Eshelby. The elasticfield outside an ellipsoidal inclusion. Proceedings of the Royal Society of London A, 252: 561–569, 1959.
[141] J.D., Eshelby. Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, 2: 89–140, 1961.
[142] J.D., Eshelby. Axisymmetric stress field around spheroidal inclusions and cavities in a transversally isotropic material. Journal of Applied Mechanics, 36: 652, 1969.
[143] R., Everaers and M. R., Ejtehadi. Interaction potentials for soft and hard ellipsoids. Physical Reviews E, 67, 2003.
[144] L., Eyges. Solutions of boundary value problems with Laplace's equation for ellipsoids and elliptic cylinders. Journal of Mathematical Physics, 21: 571–581, 1980.
[145] W. E., Featherstone and M. C., Dentith. A geodetic approach to gravity data reduction for geophysics. Computers and Geosciences, 23: 1063–1070, 1998.
[146] J., Feng, D.D., Joseph, R., Glowinski, and T.W., Pan. A three-dimensional computation of the force and torque on an ellipsoid setting slowly through a viscoelastic fluid. Journal of Fluid Mechanics, 283: 1–16, 1995.
[147] N.M., Ferrers (editor). Mathematical Papers of the Late George Green. London: MacMillan, 1871.
[148] N.M., Ferrers. An Elementary Treatise on Spherical Harmonics and Subjects Connected with them. London: MacMillan, 1877.
[149] N.M., Ferrers. On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae, and elliptic rings, of variable densities. Quarterly Journal of Pure and Applied Mathematics, 14: 1–22, 1877.
[150] A. S., Fokas. Electro-magneto-encephalography for the three-shell model: Distributed current in arbitrary, spherical and ellipsoidal geometries. Journal of the Royal Society. Interface, doi:10.1098/rsif.2008.0309, 2008.
[151] A. S., Fokas, I.M., Gelfand, and Y., Kurylev. Inversion method for magnetoencephalography. Inverse Problems, 12: L9–L11, 1996.
[152] A. S., Fokas, Y., Kurylev, and V., Marinakis. The unique determination of the neuronal currents in the brain via magnetoencephalography. Inverse Problems, 20: 1067–1087, 2004.
[153] A. R., Forsyth. Lectures on the Differential Geometry of Curves and Surfaces. Cambridge: Cambridge University Press, 1912.
[154] A., Friedman and M., Sakai. A characterization of null quadrature domains in RN. Indiana University Mathematics Journal, 35: 607–610, 1986.
[155] L. S., Fu and T., Mura. The determination of the elastodynamic fields of an ellipsoidal inhomogeneity. Transactions of the American Society of Mechanical Engineering, 50: 390–396, 1983.
[156] R., Garmier and J-P., Barriot. Ellipsoidal harmonic expansions of the gravitational potential: theory and application. Celestial Mechanics and Dynamical Astronomy, 79: 235–275, 2001.
[157] D. B., Geselowitz. On bioelectric potentials in an inhomogeneous volume conductor. Biophysics, 7: 1–11, 1967.
[158] D. B., Geselowitz. On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources. IEEE Transactions in Biomagnetism, 6: 346–347, 1970.
[159] J. L., Gibbs. Vector Analysis. New Haven, CT: Yale University Press, 1901.
[160] H., Goldstein. Classical Mechanics. Reading, MA: Addison-Wesley, 1950.
[161] G., Green. An essay on the application of mathematical analysis to the theories of electricity and magnetism. Private Publication, Nottingham, 1828.
[162] G., Green. On the determination of the exterior and interior attractions of ellipsoids of variable densities. Transactions of the Cambridge Philosophical Society, 5: 395–430, 1835.
[163] S. L., Green. Algebraic Solid Geometry. Cambridge: Cambridge University Press, 1957.
[164] A.G., Greenhill. The Applications of Elliptic Functions. New York: Dover, 1959.
[165] F. P., Greenleaf. Introduction to Complex Variables. Philadelphia: Saunders Company, 1972.
[166] H. P., Greenspan. Models for the growth of a solid tumor. Studies in Applied Mathematics, 52: 317–340, 1972.
[167] H. P., Greenspan. On the growth and stability of cell cultures and solid tumors. Journal of Theoretical Biology, 56: 229–242, 1976.
[168] V., Guillemin. Sojourn time and asymptotic properties of the scattering matrix. Publications RIMS, Kyoto University, 12, Supplement: 69–88, 1977.
[169] R.M., Gulrajani. Bioelectricity and Biomagnetism. New York: John Wiley and Sons, 1998.
[170] M., Hamalainen, R., Hari, R. J., Ilmoniemi, J., Knuutila, and O., Lounasmaa. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65: 1413–497, 1993.
[171] H., Hancock. Elliptic Integrals. New York: Dover, 1958.
[172] W.W., Hansen. A new type of expansion in radiation problems. Physical Review, 47: 139–143, 1935.
[173] J., Happel and H., Brenner. Low Reynolds Number Hydrodynamics. Dordrecht: Martinus Nijhoff, 1986.
[174] E., Heine. Beitrag zur Theorie der Anziehung und der Wärme. Journal für die Reine und Angewandte Mathematik, 29: 185–208, 1845.
[175] E., Heine. Auszug eines Schreibens des Prof. C.G. J. Jacobi an Herrn Prof. Heine in Bonn. Journal für die Reine und Angewandte Mathematik, 35: 35–40, 1851.
[176] E., Heine. Theorie der Kugelfunctionen und der Verwandten Functionen. Berlin: Druck und Verlag von G. Reimer, 1878.
[177] R.A., Herman. Equations of the stream lines due to the motion of an ellipsoid in perfect and in viscous fluid. The Quarterly Journal of Pure and Applied Mathematics, 23: 378–384, 1889.
[178] C., Hermite. Sur quelques Applications des Fonctions Elliptiques. Paris: Gauthier-Villars, 1885.
[179] D., Hilbert and S., Cohn-Vossen. Geometryandthe Imagination. New York: Chelsea, 1952.
[180] E.W., Hobson. On a theorem in differentiation, and its application to spherical harmonics. Proceedings of the London Mathematical Society, 24: 55–67, 1892.
[181] E.W., Hobson. The harmonic functions for the elliptic cone. Proceedings of the London Mathematical Society, 23: 231–240, 1892.
[182] E.W., Hobson. On the evaluation of a certain surface-integral, and its application to the expansion, in series, of the potential of ellipsoids. Proceedings of the London Mathematical Society, 24: 80–96, 1893.
[183] E.W., Hobson. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge: Cambridge University Press, 1931.
[184] B.K. P., Horn. Robot Vision. Cambridge, MA: MIT Press, 1986.
[185] J.H., Huang and W-S., Kuo. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics, 81: 1378–1386, 1997.
[186] E. L., Ince. On the connection between linear differential systems and integral equations. Proceedings of the Royal Society of Edinburgh, 42: 43–53, 1922.
[187] A., Irimia. Electricfield and potential calculation for a bioelectric current dipole in an ellipsoid. Journal of Physics A: Mathematical and General, 38: 8123–8138, 2005.
[188] A., Irimia. Calculation of the magneticfield due to a bioelectric current dipole in an ellipsoid. Applications of Mathematics, 2: 131–142, 2008.
[189] A., Irimia and L.A., Bradshaw. Ellipsoidal electrogastrographic forward modelling. Physics in Medicine and Biology, 50: 4429–4444, 2005.
[190] A., Irimia and L.A., Bradshaw. Theoretical ellipsoidal model of gastric electrical control activity propagation. Physical Review E, 68:051905-1–051905-5, 2003.
[191] P., Ivanov. On Lamé's equation of a particular kind. Journal of Physics A: Mathematical and General, 34: 8145–8150, 2001.
[192] G., Jäger. Über das elektrische Feld eines ellipsoidischen Leiters. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe, Abtheilung 2a, Wien, 110: 449–453, 1901.
[193] G. B., Jeffery. The motion of ellipsoidal particles immersed in a viscousfluid, Proceeding of the Royal Society A, 102: 161–179, 1922.
[194] C., Jekeli. The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscripta Geodaetica, 13: 106–113, 1988.
[195] P. F., Jones and B.D., Sleeman. Mathematical modelling of avascular and vascular tumor growth. In A., Charalambopoulos, D. I., Fotiadis, and D., Polyzos, editors, Advanced Topics in Scattering and Biomedical Engineering, 2008.
[196] R. C., Jones. A generalization of the dielectric ellipsoid problem. Physical Review, 68: 93–96, 1945.
[197] E.G., Kalnins, J.M., Kress, and W., Miller. Jacobi, ellipsoidal coordinates and superintegrable systems. Journal of Nonlinear Mathematical Physics, 12: 209–229, 2005.
[198] F., Kariotou. Electroencephalography in ellipsoidal geometry. Journal of Mathematical Analysis and its Applications, 290: 324–342, 2004.
[199] J. B., Keller. Inverse problems. American Mathematical Monthly, 83: 107–118, 1976.
[200] J. B., Keller, R. E., Kleinman, and T. B.A., Senior. Dipole moments in Rayleigh scattering. Journal of the Institute of Mathematics and its Applications, 9: 14–22, 1972.
[201] O.D., Kellogg. Foundations of Potential Theory. New York: Dover, 1954.
[202] M., Kerker. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969.
[203] M., Kerker. Invisible bodies. Journal of the Optical Society of America, 65: 376–379, 1975.
[204] D., Khavinson. Cauchy's problem for harmonic functions with entire data on a sphere. Canadian Mathematical Bulletin, 40: 60–66, 1997.
[205] S., Kim and P.V., Arunachalam. The general solution for an ellipsoid in low-Reynolds numberflow. Journal of Fluid Mechanics, 178: 535–547, 1987.
[206] S., Kim and S. S., Karrila. Microhydrodynamics: Principles and Selected Applications. Boston, MA: Butterworth-Heinemann, 1991.
[207] L.V., King. On the Direct Numerical Calculations of Elliptic Functions and Integrals. Cambridge: Cambridge University Press, 1924.
[208] K., Kiriaki. Low-frequency expansions for a penetrable ellipsoidal scatterer in an elastic medium. Journal of Engineering Mathematics, 23: 295–314, 1989.
[209] K., Kiriaki and C., Athanasiadis. Low-frequency scattering by an ellipsoidal dielectric with a confocal ellipsoidal perfect conductor core. Mathematica Balkanica, 3: 370–389, 1989.
[210] K., Kiriaki and V., Kostopoulos. The ellipsoidal cavity in the presence of a low-frequency thermoelastic wave. In R. E., Kleinman et al., editor, SIAM Conference in Mathematical and Numerical Aspects of Wave Propagation, pp. 286–295, 1993.
[211] M. S., Klamkin. Elementary approximations to the area of N-dimensional ellipsoids. American Mathematical Monthly, 78: 280–283, 1971.
[212] M. S., Klamkin. Correction to “Elementary approximations to the area of N-dimensional ellipsoids.”American Mathematical Monthly, 78: 478, 1971.
[213] F., Klein. Über Lamé'sche Functionen. Mathematische Annalen, 18: 237–246, 1881.
[214] F., Klein. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, 2nd edn. London: Kegan Paul, Trench, Trubner and Company, 1913.
[215] R. E., Kleinman. The Rayleigh region. Proceedings of the IEEE, 53: 848–856, 1965.
[216] R. E., Kleinman and T. B.A., Senior. Rayleigh scattering. In V.K., Varadan and V. V., Varadan, editors, Low and High Frequency Asymptotics, pp. 1–70. Amsterdam: North-Holland, 1986.
[217] J., Korringa, I-H., Lin, and R. L., Mills. General theorems about homogeneous ellipsoidal inclusions. Americal Journal of Physics, 46: 517–521, 1978.
[218] K., Krienes. The elliptic wing based on the potential theory. National Advisory Committee for Aeronautics, Report No. 971, 1941.
[219] V.D., Kupradze. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Amsterdam: North-Holland, 1979.
[220] A., Kurzhanski and I., Vályi. Ellipsoidal Calculus for Estimation and Control. Basel, MJ: Birkhäuser, 1997.
[221] A, Lakhtakia. Polarizability dyadics of small chiral ellipsoids. Chemical Physics Letters, 174: 583–586, 1990.
[222] H., Lamb. Hydrodynamics. New York: Dover, 1945.
[223] M.G., Lamé. Sur les surfaces isothermes dans les corps solides homogènes en équilibre de température. Journal de Mathématiques Pures et Appliquées, 2: 147–183, 1837.
[224] M.G., Lamé. Sur l'équilibre des temperatures dans un ellipsoïde à trois axes inégaux. Journal de Mathématiques Pures et Appliquées, 4: 126–163, 1839.
[225] M.G., Lamé. La méthode de recherche des surfaces isothermes. Journal de Mathématiques Pures et Appliquées, 8: 515–520, 1843.
[226] M.G., Lamé. Sur les surfaces orthogonales et isothermes. Journal de Mathématiques Pures et Appliquées, 8: 397–434, 1843.
[227] M.G., Lamé. Leçons sur les Fonctions Inverses des Transcendantes et les Surfaces Isothermes. Paris: Mallet-Bachelier, 1857.
[228] M.G., Lamé. Leçons sur les Coordonnées Curvilignes et Leurs Diverses Applications. Paris: Mallet-Bachelier, 1859.
[229] L.D., Landau and E.M., Lifshitz. Electrodynamics of Continuous Media. London: Pergamon Press, 1960.
[230] P. S., Laplace. Théorie des Attractions des Sphéroïdes et de la Figure des Planètes, Volume III, Paris: Mechanique Celeste, 1785.
[231] J., Leblond, C., Paduret, S., Rigat, and M., Zghal. Sources localization in ellipsoids by best meromorphic approximation in planar sections. Inverse Problems, 24:035017(20pp), 2008.
[232] N. R., Lebovitz. The mathematical development of the classical ellipsoid. International Journal of Engineering Science, 36: 1407–1420, 1998.
[233] A-M., Legendre. Recherches sur l'attraction des sphéroïdes homogènes. Mémoires de Mathématiques et de Physique, présentés à l'Académie des Sciences (Paris), 10: 411–435, 1785.
[234] D.H., Lehmer. Approximations to the area of an n-dimensional ellipsoid. Canadian Journal of Mathematics, 2: 267–282, 1950.
[235] I.V., Lindell. Electrostatic image theory for the dielectric sphere. Radio Science, 27: 1–8, 1992.
[236] F., Lindemann. Entwicklung der Functionen einer complexen Variabeln nach Lamé'schen Functionen und nach Zugeordneten der Kugelfunctionen. Mathematische Annalen, 19: 323–386, 1882.
[237] J., Liouville. Sur diverses questions d'analyse et de physique mathématique. Journal de Mathématiques Pures et Appliquées, 10: 222–228, 1845.
[238] J., Liouville. Sur diverses questions d'analyse et de physique mathématique concernant l'ellipsoïde. Journal de Mathématiques Pures et Appliquées, 11: 217–236, 1846.
[239] J., Liouville. Sur une transformation de l'équation. Journal de Mathématiques Pures et Appliquées, 11: 458–461, 1846.
[240] J., Liouville. Des lignes de courbure de la surface de l'Ellipsoïde. In G., Monge, editor, Application de L'Analyse à la Géométrie, pp. 139–160. Paris: Bachelier, 1850.
[241] J. S., Lomont and J., Brillhart. Elliptic Polynomials. New York: Chapman and Hall, 2001.
[242] A. E.H., Love. A Treatise of the Mathematical Theory of Elasticity. Toronto: Dover, 1944.
[243] R. J., Lucas. An inverse problemin low-frequency scattering by a rigid ellipsoid. Journal of the Acoustical Society of America, 95: 2330–2333, 1994.
[244] A. L., Lur'eThree-dimensional Problems of the Theory of Elasticity. New York: Interscience, 1964.
[245] W.D., MacMillan. The Theory of the Potential. New York: Dover, 1958.
[246] W., Magnus, F., Oberhettinger, and R. P., Soni. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. New York: Springer-Verlag, 1966.
[247] S. F., Mahmoud and J. R., Wair. Magnetic response of a hollow ellipsoid. IEEE Antennas and Propagation Magazine, 41: 7–12, 1999.
[248] A., Majda. High-frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering. Communications in Pure and Applied Mathematics, 29: 261–291, 1976.
[249] A., Majda. A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Communications in Pure and Applied Mathematics, 30: 165–194, 1977.
[250] J., Malmivuo and R., Plonsey. Bioelectromagnetism. New York: Oxford University Press, 1995.
[251] E., Martensen. A spectral property of the electrostatic integral operator. Journal of Mathematical Analysis and Applications, 238: 551–557, 1999.
[252] H., Massoudi, C.H., Durney, and C.C., Johnson. Comparison of the average specific absorption rate in the ellipsoidal conductor and dielectric models of humans and monkeys at radio frequencies. Radio Science, 12: 65–72, 1977.
[253] H., Massoudi, C.H., Durney, and C. C., Johnson. Long-wavelength analysis of plane wave irradiation of an ellipsoidal model of man. IEEE Transactions on Microwave Theory and Techniques, 25: 41–46, 1977.
[254] J. C, Maxwell. A Treatise on Electricity and Magnetism, Volume I. Oxford: Clarendon Press, 1891.
[255] J. C, Maxwell. A Treatise on Electricity and Magnetism, Volume II. Oxford: Clarendon Press, 1891.
[256] T.M., Michelitsch, H., Gao, and V.M., Levin. Dynamic Eshelby tensor and potentials for ellipsoidal inclusions. Proceedings of the Royal Society of London A, 459: 863–890, 2002.
[257] T.M., Michelitsch, H., Gao, and V.M., Levin. On the dynamic potential of ellipsoidal shells. Quarterly Journal of Mechanics and Applied Mathematics, 56: 629–648, 2003.
[258] L.M., Milne-Thomson. Theoretical Hydrodynamics, 5th edn. London: MacMillan, 1968.
[259] T., Miloh. The ultimate image singularities for external ellipsoidal harmonics. SIAM Journal of Applied Mathematics, 26: 334–344, 1974.
[260] T., Miloh. A generalized self-consistent method for the effective conductivity of composites with ellipsoidal inclusions and cracked bodies. Journal of Applied Physics, 63: 789–796, 1988.
[261] T., Miloh. A note on the potential of a heterogeneous ellipsoid in ellipsoidal coordinates. Journal of Physics A: Mathematical and General, 23: 581–584, 1990.
[262] T., Miloh and Y., Beneveniste. On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proceedings of the Royal Society of London A, 455: 2687–2706, 1999.
[263] D., Ming-de. New method of solving Lamé–Helmholtz equation and ellipsoidal wave functions. Applied Mathematics and Mechanics, 5: 1151–1162, 1984.
[264] F., Möglich. Beugungserscheinungen an Körpern von ellipsoidischer Gestalt. Annalen der Physik, 83: 609–734, 1927.
[265] P., Moon and D. E., Spencer. Field Theory Handbook. Berlin: Springer-Verlag, 1961.
[266] P.M., Morse and H., Feshbach. Methods of Theoretical Physics, Volume I. New York: McGraw-Hill, 1953.
[267] P.M., Morse and H., Feshbach. Methods of Theoretical Physics, Volume II. New York: McGraw-Hill, 1953.
[268] J-C., Nédélec. Acoustic and Electromagnetic Equations. New York: Springer-Verlag, 2001.
[269] L., Nireberg and H. F., Walker. The null space of elliptic partial differential operators in ℝn. Journal of Mathematical Analysis and Applications, 42: 271–301, 1973.
[270] W.D., Niven. On ellipsoidal harmonics. Philosophical Transactions of the Royal Society of London A., 182: 231–278, 1891.
[271] P. L., Nunez and R., Srinivasan. Electric Fields of the Brain: The Neurophysics of EEG, 2nd edn. New York: Oxford University Press, 2006.
[272] A., Oberbeck. Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der innerem Reibung. Journal für die Reine und Angewandte Mathematik, 62–80, 1876.
[273] F.W. J., Olver, D.W., Lozier, R. F., Boisvert, and C.W., Clark. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press, 2009.
[274] B., O'Neill. Elementary Differential Geometry. New York: Academic Press, 1997.
[275] J.A., Osborn. Demagnetizing factors of the general ellipsoid. Physical Review, 67: 351–357, 1945.
[276] T. F., Pankratova. Eigenfunctions of the Laplace operator on the surface of a triaxial ellipsoid and in the region exterior to it. In L.O., Nauka, editor, Mathematical Problems in the Theory of Wave Propagation. Serial Zap. Nauchn. Sem. LOMI, pp. 192–211, 1968.
[277] J.W., Perram and P. J., Stiles. On the application of ellipsoidal harmonics to potential problems in molecular electrostatics and magnetostatics. Proceedings of the Royal Society of London, A, 349: 125–139, 1976.
[278] G., Perrusson, A., Charalambopoulos, B., Bourgeois, D., Lesselier, M., Lambert, and G., Dassios. The localized nonlinear approximation: a good recipe for low contrast ellipsoidal bodies. In 61st Conference of the European Association of Geoscientists and Engineers, pp. 2–10, 1999.
[279] G., Perrusson, M., Lambert, D., Lesselier, A., Charalambopoulos, and G., Dassios. Electromagnetic scattering by a triaxial homogeneous penetrable ellipsoid: low-frequency derivation and testing of the localized nonlinear approximation. Radio Science, 35: 463–481, 2000.
[280] G., Perrusson, D., Lesselier, M., Lambert, B., Bourgeois, A., Charalambopoulos, and G., Dassios. Conductive masses in a half-space Earth in the diffusive regime: fast hybrid modeling of a low-contrast ellipsoid. IEEE Transactions on Geoscience and Remote Sensing, 38: 1585–1599, 2000.
[281] G., Perrusson, D., Lesselier, P., Vafeas, and G., Dassios. Low frequency models and characterization of an ellipsoidal body in the context of Earth's exploration. In Progress in Electromagnetics Research Symposium, pp. 337, 2002.
[282] G., Perrusson, P., Vafeas, and D., Lesselier. Low-frequency dipolar excitation of a perfect ellipsoidal conductor. Quarterly of Applied Mathematics, 68: 513–536, 2010.
[283] F. B., Pidduck. The energy and momentum of an ellipsoidal electron. Proceedings of the London Mathematical Society B, 7: 90–100, 1908.
[284] R., Plonsey and D. B., Heppner. Considerations of quasi-stationarity in electrophysiological systems. Bulletin of Mathematical Biophysics, 29: 657–664, 1967.
[285] G., Pólya. Approximations to the area of the ellipsoid. Publications of the Institute of Mathematical Rozario, 5: 209–219, 1943.
[286] G., Pólya and G., Szegö. Isoperimetric Inequalities in Mathematical Physics. Princeton, NJ: Princeton University Press, 1951.
[287] Lord, Rayleigh. On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders and on the passage of electric waves through a circular aperture in a conducting screen. Philosophical Magazine, 44: 28–52, 1897.
[288] Lord, Rayleigh. The ultimate shape of pebbles, natural and artificial. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 181: 107–118, 1942.
[289] Lord, Rayleigh. The Theory of Sound I. Toronto: Dover, 1945.
[290] Lord, Rayleigh. The Theory of Sound II. Toronto: Dover, 1945.
[291] S., Ritter. The spectrum of the electrostatic integral operator for an ellipsoid. In R. E., Kleinman, R., Kress, and E., Martensen, editors, Inverse Scattering and Potential Problems in Mathematical Physics, pp. 157–167, 1993.
[292] S., Ritter. A sum-property of the eigenvalues of the electrostatic integral operator. Journal of Mathematical Analysis and Applications, 196: 120–134, 1995.
[293] S., Ritter. On the magnetostatic integral operator for ellipsoids. Journal of Mathematical Analysis and Applications, 207: 12–28, 1997.
[294] S., Ritter. On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Journal of Applied Mathematics and Mechanics (ZAMM), 78: 66–72, 1998.
[295] S., Ritter. The null field method for the ellipsoidal Stokes problem. Journal of Geodesy, 72: 101–106, 1998.
[296] I., Rivin. Surface area and other measures of ellipsoids. Advances in Applied Mathematics, 39: 409–427, 2007.
[297] P.H., Roberts. On the superpotential and supermatrix of a heterogeneous ellipsoid. The Astrophysical Journal, 136: 1108–1114, 1962.
[298] T., Roose, S. J., Chapman, and P.K., Maini. Mathematical Models of Avascular Tumor Growth. SIAM Review, 49: 179–208, 2007.
[299] G., Salmon. A Treatise on the Analytic Geometry of Three Dimensions, Volume I, 6th edn. London: Longmans, Green and Company, 1914.
[300] G., Salmon. A Treatise on the Analytic Geometry of Three Dimensions, Volume II, 5th edn. London: Longmans, Green and Company, 1915.
[301] J., Sarvas. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problems. Physics in Medicine and Biology, 32: 11–22, 1987.
[302] D., Schmidt and G., Wolf. A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM Journal on Applied Mathematics, 10: 823–838, 1979.
[303] J. B., Schneider and I. C., Peden. Differential cross-section of a dielectric ellipsoid by the T-Matrix extended boundary condition method. IEEE Transactions on Antennas and Propagation, 36: 1317–1321, 1988.
[304] H., Schultheis and R., Schultheis. Electrostatic or gravitational interaction energy of coaxial ellipsoids. Journal of Mathematical Physics, 16: 905–909, 1975.
[305] J. R. T., Seddon and T., Mullin. The motion of a prolate ellipsoid in a rotating Stokes flow. Journal of Fluid Mechanics, 583: 123–132, 2007.
[306] T. B. A., Senior. Low-frequency scattering. Journal of the Acoustical Society of America, 53: 742–747, 1973.
[307] H., Shahgholian. On the Newtonian potential of a heterogeneous ellipsoid. SIAM Journal of Mathematical Analysis, 22: 1246–1255, 1991.
[308] R., Shail. Lamé polynomial solutions to some elliptic crack and punch problems. International Journal of Engineering Science, 16: 551–563, 1978.
[309] R., Shail. An integral representation for Lamé and other special functions. SIAM Journal on Mathematical Analysis, 11: 702–723, 1980.
[310] J. L., Sharma. On expansions in Lamé's functions and their applications to the evaluation of certain definite integrals. Bulletin of the Calcutta Mathematical Society, 24: 61–78, 1932.
[311] J. L., Sharma. On Lamé's functions with complex parameters. Bulletin of the Calcutta Mathematical Society, 24: 143–158, 1932.
[312] J. L., Sharma. An integral equation satisfied by the Lamé's functions. Journal de Mathématiques, 16: 199–204, 1937.
[313] A.V., Shatilov. On the scattering of light by dielectric ellipsoids comparable with the wavelength. I. A general expression for the indicatrix of scattering of an ellipsoidal particle. Optics and Spectroscopy, 9: 44–47, 1960.
[314] A.V., Shatilov. On the scattering of light by dielectric ellipsoids comparable with the wavelength. II. Dependence of the indicatrix of the scattering on the size, form, and orientation of the ellipsoid. The scattering coefficient. Optics and Spectroscopy, 9: 123–127, 1960.
[315] N. T., Shawgfeh and A.D., Alawneh. The low-frequency acoustic scattering by a soft ellipsoid. Dirasat, Series B: Pure and Applied Sciences, 17: 38–50, 1990.
[316] A.D., Shine and R. C., Armstrong. The rotation of a suspended axisymmetric ellipsoid in a magnetic field, Rheologica Acta, 26: 152–161, 1987.
[317] B.D., Sleeman. The low-frequency scalar diffraction by an elliptic disc. Proceedings of the Cambridge Philosophical Society, 63: 1273–1280, 1967.
[318] B.D., Sleeman. The low-frequency scalar Dirichlet scattering by a general ellipsoid. Journal of the Institute of Mathematics and its Applications, 3: 291–312, 1967.
[319] B.D., Sleeman. The scalar scattering of a plane wave by an ellipsoid. Journal of the Institute of Mathematics and its Applications, 3: 4–15, 1967.
[320] B.D., Sleeman. The low-frequency scalar Dirichlet scattering by a general ellipsoid. (Corrigendum). Journal of the Institute of Mathematics and its Applications, 5, 1969.
[321] B.D., Sleeman. The low-frequency scalar diffraction by an elliptic disc. (Corrigendum). Proceedings of the Cambridge Philosophical Society, 68: 171–172, 1970.
[322] W. R., Smythe. Static and Dynamic Electricity. New York: McGraw-Hill, 1939.
[323] G., Sona. Numerical problems in the computation of ellipsoidal harmonics. Journal of Geodesy, 70: 117–126, 1995.
[324] H. J., Sperling. The expansion of the potential of a homogeneous ellipsoid in a series of tesseral harmonics. Journal of Applied Mathematics and Physics (ZAMP), 18: 876–883, 1967.
[325] J. C.-E., Sten. Ellipsoidal harmonics and their application in electrostatics. Journal of Electrostatics, 64: 647–654, 2006.
[326] A. F., Stevenson. Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer)/wavelength. Journal of Applied Physics, 24: 1134–1142, 1953.
[327] A. F., Stevenson. Electromagnetic scattering by an ellipsoid in the third approximation. Journal of Applied Physics, 24: 1143–1151, 1953.
[328] T. J., Stieltjes. Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé. Acta Mathematica, 6: 321–326, 1885.
[329] J.A., Stratton. Electromagnetic Theory. New York: McGraw-Hill, 1941.
[330] D. J., Struik. Lectures on Classical Differential Geometry. Cambridge, MA: Addison-Wesley, 1950.
[331] W. S., Synder, M. R., Ford, G.G., Warner, and H. L., Fisher Jr., Estimates of absorbed fractions for nonenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Journal of Nuclear Medicine, 10: Pamphlet No.5, 1969, Revised 1978.
[332] M. B., Tabanov. A new trigonometric form of the ellipsoidal coordinates and the splitting of the eigenvalues of the Laplace operator in an ellipsoid with “inner boundaries.”Saint Petersburg Mathematical Journal, 7: 847–868, 1996.
[333] M. B., Tabanov. New ellipsoidal confocal coordinates and geodesics on an ellipsoid. Journal of Mathematical Sciences, 82: 3851–3858, 1996.
[334] M. B., Tabanov. Veidel assonance between geodesics on ellipsoid and billiard in its focal ellipse. Journal of Geometry and Physics, 19: 399–413, 1996.
[335] M. B., Tabanov. Normal forms of equations of wave functions in new natural ellipsoidal coordinates. American Mathematical Society. Translations, 193: 225–238, 1999.
[336] K., Tanaka. Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2: 199–200, 1972.
[337] W., Thomson (Lord Kelvin). Extrait d'une lettre de M. William Thomson (reported by A.M. Liouville). Journal de Mathématiques Pures et Appliquées, 10: 364–367, 1845.
[338] W., Thomson (Lord Kelvin). Extraits de deux lettres adressées à M. Liouville. Journal de Mathématiques Pures et Appliquées, 12: 256–264, 1847.
[339] W., Thomson (Lord Kelvin). Reprint of Papers on Electrostatics and Magnetism, chapter XV. Determination of the distribution of electricity on a circular segment of plane or spherical conducting surface, under any given influence, pp. 178–191. London: MacMillan, 1872.
[340] W., Thomson (Lord Kelvin) and P.G., Tait. Elements of Natural Philosophy. New York: American Home Library Company, 1879.
[341] E. C., Titchmarsh. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Oxford: Oxford University Press, 1946.
[342] E. C., Titchmarsh. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part II. Oxford: Oxford University Press, 1958.
[343] I., Todhunter. An Elementary Treatise on Laplace's Functions, Lamé's Functions, and Bessel's Functions. London: MacMillan, 1875.
[344] F.G., Tricomi. Integral Equation. New York: John Wiley, 1957.
[345] P., Vafeas and G., Dassios. Stokes flow in ellipsoidal geometry. Journal of Mathematical Physics, 47: 1–38, 2006.
[346] H., Volkmer. Integral equations for Lamé functions. SIAM Journal on Mathematical Analysis, 13: 978–987, 1982.
[347] H., Volkmer. Integral representations for products of Lamé functions by use of fundamental solutions. SIAM Journal on Mathematical Analysis, 15: 559–569, 1984.
[348] H., Volkmer. External ellipsoidal harmonics for the Dunkl–Laplacian. Symmetry, Integrability and Geometry: Methods and Applications, 4: 091, 1–13, 2008.
[349] Z.X., Wang and D. R., Guo. Special Functions. Singapore: World Scientific, 1989.
[350] C. E., Weatherburn. Differential Geometry of Three Dimensions, Volume I. Cambridge: Cambridge University Press, 1927.
[351] C. E., Weatherburn. Differential Geometry of Three Dimensions, Volume II. Cambridge: Cambridge University Press, 1930.
[352] C. E., Weatherburn. Advanced Vector Analysis with Applications to Mathematical Physics, 7th edn. London: Bell and Sons, 1947.
[353] C. E., Weatherburn. Elementary Vector Analysis with Applications to Geometry and Physics, 8th edn. London: Bell and Sons, 1948.
[354] P., Weiss. On hydrodynamical images: arbitrary irrotational flow disturbed by a sphere. Proceedings of the Cambridge Philosophical Society, 40: 259–261, 1944.
[355] P., Weiss. Applications of Kelvin's transformation in electricity, magnetism and hydrodynamics. Philosophical Magazine, 38: 200–214, 1947.
[356] E. T., Whittaker. On the partial differential equations of mathematical physics. Mathematische Annalen, 57: 333–355, 1903.
[357] E. T., Whittaker. On Lamé's differential equation and ellipsoidal harmonics. Proceedings of the London Mathematical Society, 14-Second Series: 260–268, 1914.
[358] E. T., Whittaker. On an integral-equation whose solutions are the functions of Lamé. Proceedings of the Royal Society of Edinburgh, 35: 70–77, 1915.
[359] E. T., Whittaker and G.N., Watson. A Course of Modern Analysis, 3rd edn. Cambridge: Cambridge University Press, 1920.
[360] W. E., Williams. Some results for low-frequency Dirichlet scattering by arbitrary obstacles and their application to the particular case of the ellipsoid. Journal of the Institute of Mathematics and its Applications, 7: 111–118, 1971.
[361] A., Zettl. Sturm–Liouville Theory, Volume 121 of Mathematical Surveys and Monographs. American Mathematical Society, 2005.
[362] R.W., Zimmerman. Effective conductivity of a two-dimensional medium containing elliptical inhomogeneities. Proceedings of the Royal Society of London A, 452: 1713–1727, 1996.
[363] R.D., Zucker. Interpretation of the singularities in Lamé products of the second kind. SIAM Journal of Applied Mathematics, 16: 882–887, 1968.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed