Skip to main content
×
×
Home
Equivalents of the Riemann Hypothesis
  • Volume 1: Arithmetic Equivalents
  • Kevin Broughan, University of Waikato, New Zealand

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Equivalents of the Riemann Hypothesis
    • Online ISBN: 9781108178228
    • Book DOI: https://doi.org/10.1017/9781108178228
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
[1] A. Akbary, Z. Friggstad and R. Jurecevic, Explicit upper bounds for, Cont. Discrete Math. 2 (2007), 153–160.
[2] A. Akbary and Z. Friggstad, Superabundant numbers and the Riemann hypothesis, Amer. Math. Monthly 116 (2009), 273–275.
[3] L. Alaoglu and P. Erdőos, On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448–469.
[4] L. Alfors, Complex Analysis, 2nd edn, McGraw-Hill, 1966.
[5] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[6] T. M. Apostol, Introduction to Analytic Number Theory, 2nd edn, Springer, 1990.
[7] R. J. Backlund, Über die nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1918), 345–375.
[8] R. Balasubramanian, S. Kanemitsu and M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis II, Publ. Math. Debrecen 69 (2006), 1–16.
[9] W. W. Barrett, R. W. Forcade and A. D. Pollington, On the spectral radius of a (0,1) matrix related to Mertens' function, Linear Algebra Appl. 107 (1988), 151–159.
[10] B. C. Berndt, Ramanujan's Notebooks, Parts I–V, Springer, 1985–1998.
[11] M. V. Berry and J. P. Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Rev. 41 (1999), 236–266.
[12] A. R. Booker, Turing and the Riemann hypothesis, Notices Amer. Math. Soc. 53 (2006), 1208–1211.
[13] P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, Springer, 2008.
[14] R. P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), 1361–1372.
[15] R. P. Brent, J. van de Lune, H. J. J. te Riele and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip II, Math. Comp. 39 (1982), 681–688.
[16] K. Briggs, Abundant numbers and the Riemann hypothesis, J. Exp. Math. 15 (2006), 251–256.
[17] K. A. Broughan, Structure of sectors of zeros of entire flows, Topology Proc. 27 (2002), 1–16.
[18] K. A. Broughan, Vanishing of the integral of the Hurwitz zeta function, Bull. Austral. Math. Soc. 65 (2002), 121–127.
[19] K. A. Broughan, Holomorphic flows on simply connected subsets have no limit cycles, Meccanica 38 (2003), 699–709.
[20] K. A. Broughan and A. R. Barnett, The holomorphic flow of the Riemann zeta function, Math. Comp. 73 (2004), 987–1004.
[21] K. A. Broughan, Holomorphic flow of the Riemann xi function, Nonlinearity 18 (2005), 1269–1294.
[22] K. A. Broughan and A. R. Barnett, Linear law for the logarithms of the Riemann periods at simple critical zeros, Math. Comp. 75 (2006), 891–902.
[23] K. A. Broughan and A. R. Barnett, Corrigendum to “The holomorphic flow of the Riemann zeta function”, Math. Comp. 76 (2007), 2249–2250.
[24] K. A. Broughan, Extension of the Riemann ζ-function's logarithmic derivative positivity region to near the critical strip, Can. Math. Bull. 52 (2009), 186–194.
[25] K. A. Broughan and A. R. Barnett, Gram lines and the average of the real part of the Riemann zeta function, Math. Comp. 81 (2012) 1669–1679.
[26] K. A. Broughan, Website for phase portraits of the zeros of ζ(s) and ζ(s). www.math.waikato.ac.nz/∽kab.
[27] K. A. Broughan, J.-M. De Koninck, I. Katai and F. Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq. 15 (2012), art. 12.7.5.
[28] K. A. Broughan and D. Delbourgo, On the ratio of the sum of divisors and Euler's totient function I, J. Integer Seq. 16 (2013), art. 13.8.8 (17pp.).
[29] K. A. Broughan, K. Ford and F. Luca, On square values of the product of the Euler totient function and the sum of divisors function, Colloq. Math. 130 (2013), 127–137.
[30] K. A. Broughan and Q. Zhou, On the ratio of the sum of divisors and Euler's totient function II, J. Integer Seq. 17 (2014), art. 14.9.2 (22pp.).
[31] K. A. Broughan and T. S. Trudgian, Robin's inequality for 11-free integers, Integers 15 (2015), #A12 (5pp.).
[32] K. A. Broughan, Equivalents of the Riemann Hypothesis II: Analytic Equivalences, Cambridge University Press, 2017.
[33] J. Büthe, J. Franke, A. Jost and T. Kleinjung, A practical analytic method for calculating π(x), Preprint.
[34] G. Caveney, J.-L. Nicolas and J. Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann hypothesis, Integers 11 (2011), #A33 (10pp.).
[35] G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA and GA numbers, Ramanujan J. 29 (2012), 359–384.
[36] Y. Cheng, An explicit upper bound for the Riemann zeta-function near the line σ = 1, Rocky Mountain J. Math. 29 (1999), 115–140.
[37] Y. Cheng and S. W. Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), 1261–1280.
[38] Y. Choie, N. Lichiardopol, P. Moree and P. Solé, On Robin's criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19 (2007), 357–372.
[39] S. Chowla, On abundant numbers, J. IndianMath. Soc. (2) 1 (1934), 41–44.
[40] J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399 (1989), 1–16.
[41] J. B. Conrey, L-functions and random matrices, in Mathematics Unlimited – 2001 and Beyond, pp. 331–352, Springer, 2001.
[42] H. Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss. Berlin 27 (1933), 830–837.
[43] H. Davenport, Multiplicative Number Theory, 3rd edn, Springer, 2000.
[44] M. Davis, Y. Matijasevič and J. Robinson, Hilbert's tenth problem: diophantine equations: positive aspects of a negative solution, in Mathematical Developments Arising from Hilbert Problems, Proc. Symp. Pure Math., XXVIII, De Kalb, IL, 1974, pp. 323–378. American Mathematical Society, 1976.
[45] A. Derbal, Grandes valeurs de la fonction σ(n)/σ*(n), C. R. Math. Acad. Sci. Paris 364 (2008), 125–128.
[46] L. E. Dickson, History of the Theory of Numbers, vol. I, Dover, 2005.
[47] R. D. Dixon and L. Schoenfeld, The size of the Riemann zeta-function at places symmetric with respect to the point 1/2, Duke Math. J. 33 (1966), 291–292.
[48] P. Dusart, Inégalités explicites pour ψ(X), θ(X), π(X) et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), 53–59.
[49] P. Dusart, The kth prime is greater than k(log k + loglog k − 1) for k ≥ 2, Math. Comp. 68 (1999), 411–415.
[50] P. Dusart, Estimates of some functions over primes without RH, Preprint, arXiv:1002.0442v1, 2010.
[51] H. M. Edwards, Riemann's Zeta Function, Academic Press, 1974; reprinted by Dover, 2001.
[52] P. Erdös, On the density of abundant numbers, J. London Math. Soc. 9 (1934), 278– 282.
[53] P. Erdös, On the normal number of prime factors of p − 1 and some related problems concerning Euler's ϕ-function, Quart. J. Math. 6 (1935), 205–213.
[54] P. Erdös, Some remarks on Euler's φ function, Acta Arith. 4 (1958), 10–19.
[55] P. Erdös and P. Turan, On some problems of a statistical group theory I, Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1965), 175–186.
[56] P. Erdös and J.-L. Nicolas, Repartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), 65–90.
[57] L. Faber and H. Kadiri, New bounds for ψ(x), Math. Comp. 84 (2015), 1339–1357.
[58] K. Ford, The distribution of totients, Ramanujan J. 2 (1998), 67–151 (Paul Erdös memorial issue).
[59] K. Ford, Zero-free regions for the Riemann zeta function, in Number Theory for the Millennium II, Urbana, IL, 2000, pp. 25–56, A. K. Peters, 2002.
[60] K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. (3) 85 (2002), 565–633.
[61] K. Ford, F. Luca and C. Pomerance, Common values of the arithmetic functions ϕ and σ, Bull. London Math. Soc. 42 (2010), 478–488.
[62] K. Ford and P. Pollack, On common values of ϕ(n) and σ(n) I, Acta Math. Hungar. 133 (2011), 251–271.
[63] K. Ford and P. Pollack, On common values of ϕ(n) and σ(n) II, Algebra Number Theory 6 (2012), 1669–1696.
[64] J. Franel and E. Landau, Les suites de Farey et le probléme des nombres premiers, Göttinger Nachr. (1924), 198–206.
[65] J. A. Gallian, Contemporary Abstract Algebra, 5th edn, Houghton Mifflin, 2002.
[66] R. Garunkstis, On a positivity property of the Riemann ζ-function, Lithuanian Math. J. 43 (2002), 140–145.
[67] B. R. Gillespie, Extending Redheffer's matrix to arbitary arithmetic functions, Bachelor with Honors Thesis, Pennsylvania State University, 2011.
[68] X. Gourdon, The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height, Preprint, 2004.
[69] T. H. Grönwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 14 (1913), 113–122.
[70] E. Grosswald, Oscillation theorems of arithmetical functions, Trans. Amer. Math. Soc. 126 (1967), 1–28.
[71] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181–186.
[72] R. R. Hall and W. K. Hayman, Hyperbolic distance and distinct zeros of the Riemann zeta-function in small regions, J. reine angew. Math. 526 (2000), 35–59.
[73] G. H. Hardy, The average order of the arithmetical functions P(x) and Δ(x), Proc. London Math. Soc. 15 (1916), 192–213.
[74] G. H. Hardy and J. E. Littlewood The zeros of Riemann's zeta function on the real line, Math. Z. 10 (1921), 283–317.
[75] G. H. Hardy and J. M. Wright, An Introduction to the Theory of Numbers, 6th edn, Oxford University Press, 2008.
[76] D. R. Heath-Brown, Simple zeros of the Riemann zeta function on the critical line, Bull. London Math. Soc. 11 (1979), 17–18.
[77] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265–338.
[78] D. A. Hejhal and A. M. Odlyzko, Alan Turing and the Riemann zeta function, in Alan Turing – His Work and Impact, eds S. B. Cooper and J. van Leeuwen, Elsevier, 2012.
[79] G. A. Hiary and A. M. Odlyzko, The zeta function on the critical line: numerical evidence for moments and random matrix theory models, Math. Comp. 81 (2012), 1723–1752.
[80] A. E. Ingham, The Distribution of Prime Numbers, Cambridge University Press, 1932.
[81] A. Ivić, Two inequalities for the sum of divisors functions, Univ. Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. 7 (1977), 17–22.
[82] A. Ivić, Riemann Zeta Function: Theory and Applications, Dover, 2003.
[83] W.-J. Jang and S-H. Kwon, A note on Kadiri's explicit zero free region for the Riemann zeta function, J. Korean Math. Soc. 51 (2014), 1291–1304.
[84] H. Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. 117 (2005), 303–339.
[85] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis, Acta Arith. 75 (1996), 351–374.
[86] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis III, Ramanujan J. 1 (1997), 363–378.
[87] S. Kanemitsu and M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis, Pub. Math. Debrecen 56 (2000), 431–449.
[88] A. A. Karatsuba and S. M. Voronin, Riemann zeta function (transl. from Russian by N. Koblitz), De Gruyter, 1994.
[89] N. M. Katz and P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1–26.
[90] N. M. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, AMS Colloquium Publications, 45. American Mathematical Society, 1999.
[91] J. P. Keating and N. C. Snaith, Random matrix theory and ζ(1/2 + it), Comm. Math. Phys. 214 (2000), 57–89.
[92] D. E. Knuth, The Art of Computer Programming I: Fundamental Algorithms, 3rd edn, Addison-Wesley, 1997.
[93] H. von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), 159–182.
[94] H. von Koch, Über die Riemannsche Primzahlfunction, Math. Ann. 55 (1902), 440–464.
[95] J.-M. De Koninck and F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, American Mathematical Society, 2012.
[96] N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), 185–192.
[97] T. Kotnik, The prime counting function and its analytic approximations, Adv. Comp. Math. 29 (2008), 55–70.
[98] J. C. Lagarias, On a positivity property of the Riemann ζ-function, Acta Arith. 99 (1999) 217–213.
[99] J. C. Lagarias, Errata: On a positivity property of the Riemann ζ-function, Acta Arith. 99 (1999) 765.
[100] J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534–543.
[101] J. C. Lagarias, Problem 10949, Amer. Math. Monthly 109 (2002), 569.
[102] J. C. Lagarias and W. Janous, A generous bound for divisor sums: problem 10949, Amer. Math. Monthly 111 (2004), 264–265.
[103] E. Landau, Über die Maximalordnung der Permutationen gegebenen Grades, Arch. Math. Phys. Ser. 3 5 (1903).
[104] E. Landau, Über einen satz von Tschebyschef, Math. Ann. 61 (1905), 527–550.
[105] E. Landau, Handbuch der lehre von der Verteilung der Primzahlen, 2nd edn, vols 1 and 2, Chelsea, 1953.
[106] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, 1966.
[107] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49–65.
[108] J. E. Littlewood, Quelques conséquences de l'hypothése que la fonction ζ(s) n'a pas de zéros dans le demi-plan ℜs > 1/2, C. R. Acad. Sci. Paris Sér. I Math. 158 (1912), 263–266.
[109] J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris Sér. I Math. 158 (1914), 1869–1872.
[110] E. R. Lorch, Spectral Theory, Oxford University Press, 1962.
[111] J. van de Lune, H. J. J. te Riele and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip IV, Math. Comp. 46 (1986), 667–681.
[112] J.-P. Massias, J.-L. Nicolas and G. Robin, Evaluation asymptotique de l'ordre maximum d'un element du groupe symétrique, Acta Arith. 50 (1988), 221–242.
[113] J.-P. Massias, J.-L. Nicolas and G. Robin, Effective bounds for the maximal order of an element in the symmetric group, Math. Comp. 53 (1989), 665–678.
[114] J.-P. Massias and G. Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux 8 (1996), 215–242.
[115] F. Mertens, Über einize asymptotische Gesetse der Zahlentheorie, J. reine angew. Math. 77 (1874), 46–62.
[116] M. Mikolás, Farey series and their connection with the prime number problem I, Acta Univ. Szeged. Sect. Sci. Math. 13 (1949), 93–117.
[117] M. Mikolás, Farey series and their connection with the prime number problem II, Acta Sci. Math. Szeged 14 (1951), 5–21.
[118] W. Miller, The maximum order of an element of a finite symmetric group, Amer. Math. Monthly 94 (1987), 497–506.
[119] H. L. Montgomery, The pair correlation of zeros of the zeta function, in Analytic Number Theory, Proc. Symp. Pure Math. XXIV, pp. 181–193, American Mathematical Society, 1973.
[120] F. Morain, Tables sur la fonction g(n), Département de Mathématiques, Université de Limoges, 1988.
[121] M. J. Mossinghoff and T. S. Trudgian, Non-negative trigonometric polynomials and a zero-free region for the Riemann zeta-function, Preprint, arXiv:1410.3926v1, 2014.
[122] S. Nazardonyavi and S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, Preprint, arXiv:1211.2147v3, 2013.
[123] S. Nazardonyavi and S. Yakubovich, Extremely abundant numbers and the Riemann hypothesis, J. Integer Seq. 17 (2014), art. 14.2.8 (23pp.).
[124] M. B. Nathanson, Elementary Methods in Number Theory, Springer, 2000.
[125] J.-L. Nicolas, Ordre maximal d'un element du groupe des permutations et ‘highly composite numbers’, Bull. Soc. Math. France 97 (1969), 129–191.
[126] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17 (1983), 375–388.
[127] J.-L. Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith. 155 (2012), 311–321.
[128] J.-L. Nicolas, Ramanujan, Robin, highly composite numbers, and the Riemann hypothesis, Preprint, arXiv:1211.6944v4, 2013.
[129] A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens' conjecture, J. reine angew. Math. 357 (1985), 138–160.
[130] A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), 273–308.
[131] S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Studies in Advanced Mathematics 14, Cambridge University Press, 1988.
[132] D. J. Platt, Computing degree 1 L-functions rigorously, Ph.D. Thesis, University of Bristol, 2011.
[133] D. J. Platt, Computing π(x) analytically, Math. Comp. 84 (2015), 1521–1535.
[134] D. J. Platt and S. A. Trudgian, An improved explicit bound on |ζ(1/2 + it)|, J. Number Theory 147 (2015), 842–851.
[135] D. J. Platt and S. A. Trudgian, On the first sign change of θ(x) − x, Math. Comp. 85 (2016), 1539–1547.
[136] S. Ramanujan, Highly composite numbers (Part 1), Proc. London Math. Soc. 14 (1915), 347–409.
[137] S. Ramanujan, annotated by J.-L. Nicolas and G. Robin, Highly composite numbers (Part 2), Ramanujan J. 1 (1997), 119–153.
[138] R. Redheffer, Eine explizit lösbare Optimierungsaufgabe, in Numerische Methoden bei Optimierungsaufgaben, Band 3 (Tagung, Math. Forschungsinst., Oberwolfach, 1976), Int. Ser. Numer. Math., Vol. 36, pp. 213–216, Birkhäuser, 1977.
[139] H.-E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97–101.
[140] B. Riemann, Gesammelte Werke, Teubner, 1893; reprinted by Dover, 1953.
[141] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367–389.
[142] G. Robin, Grandes valeurs de la fonction sommes des diviseurs et hypotheses de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.
[143] J. B. Rosser, The n-th prime is greater than n log n, Proc. London Math. Soc. 45 (1938), 21–44.
[144] J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232.
[145] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
[146] J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x), Math. Comp. 29 (1975), 243–269.
[147] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory. A celebration of John F. Nash, Jr., Duke Math. J. 81 (1996), 269–322.
[148] K. Sabbagh, The Riemann Hypothesis, Farrar, Straus and Giroux, 2003.
[149] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer, 2001.
[150] J. Sándor, D. S. Mitrinović and B. Crstici, Handbook of Number Theory I, Springer, 2006.
[151] M. du Sautoy, The Music of the Primes, HarperCollins, 2003.
[152] E. Schmidt Über die Anzahl der Primzahlen unter gegebener Grenze, Math. Ann. 57 (1903), 195–204.
[153] L. Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comput. 30 (1976), 337–360.
[154] L. Schoenfeld, Corrigendum: Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comput. 30 (1976), 900.
[155] D. Schumayer and D. A. W. Hutchinson, Physics of the Riemann hypothesis, Rev. Mod. Phys. 83 (2011), 307–330.
[156] S. M. Shah, An inequality for the arithmetic function g(x), J. Indian Math. Soc. 3 (1939), 316–318.
[157] S. Skews, On the difference π(x)−li(x), J. London Math. Soc. 8 (1933), 277–283.
[158] N. J. A. Sloan, Online Encyclopedia of Integer Sequences (OEIS), https://oeis.org.
[159] P. Solé and M. Planat, The Robin inequality for 7-free integers, Integers 11 (2011), #A65 (8pp.).
[160] K. Soundararajan, Moments of the Riemann zeta function, Annals Math. 170 (2009), 981–993.
[161] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514–521.
[162] R. Spira, An inequality for the Riemann zeta function, Duke Math. J. 32 (1965), 247– 250.
[163] R. Spira, Zeros of ζ (s) and the Riemann hypothesis, Illinois J. Math. 17 (1973), 147–152.
[164] A. I. Suriajaya, On the zeros of the k-th derivative of the Riemann zeta function under the Riemann hypothesis, Funct. Approx. Comment. Math. 53 (2015), 69–95.
[165] S. M. Szalay, On the maximal order in Sn and S *n, Acta Arith. 37 (1980), 321–331.
[166] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
[167] E. C. Titchmarsh and D. R. Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn, Oxford University Press, 1986.
[168] T. S. Trudgian, Improvements to Turing's method, Math. Comp. 80 (2011), 2259–2279.
[169] T. S. Trudgian, An improved upper bound for the argument of the Riemann zetafunction on the critical line II, J. Number Theory 134 (2014), 280–292.
[170] T. S. Trudgian, The sum of the unitary divisor function, Publ. Inst. Math. (Belgrad) (N.S.) 97 (2015), 175–180.
[171] T. S. Trudgian, A short extension of two of Spira's results, J. Math. Inequalities 9 (2015), 795–798.
[172] T. S. Trudgian, Improvements to Turing's method II, Rocky Mountain J. Math. 46 (2016), 325–332.
[173] T. S. Trudgian, Updating the error term in the prime number theorem, Ramanujan J. 39 (2016), 225–234.
[174] A. M. Turing, A method for the calculation of the zeta-function, Proc. London Math. Soc. 48 (1943), 180–197.
[175] A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. 3 (1953), 99–117.
[176] I. M. Vinogradov, A new estimate for ζ(1 + it), Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 161–164.
[177] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, 1963.
[178] S. Wedeniwski, Section 1.1 History, ZetaGrad website, www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html.
[179] A. Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund (1952), 252–265.
[180] H. S. Wilf, The Redheffer matrix of a partially ordered set, Electron. J. Combin. 11 (2004/2006), Research Paper 10 (5pp.).
[181] M. Yoshimoto, Farey series and the Riemann hypothesis II, Acta Math. Hungar. 78 (1998), 287–304.
[182] D. Zagier, The first 50 million prime numbers, Math. Intelligencer (1977), 7–19.
[183] S. Zegowitz, On the positive region of π(x) − li(x). Master's Thesis, University of Manchester, 2010.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 305 *
Loading metrics...

Book summary page views

Total views: 891 *
Loading metrics...

* Views captured on Cambridge Core between 27th October 2017 - 17th January 2018. This data will be updated every 24 hours.