Skip to main content Accessibility help
×
  • Cited by 30
Publisher:
Cambridge University Press
Online publication date:
December 2015
Print publication year:
2015
Online ISBN:
9781316414958

Book description

Aimed at graduate students and researchers, this fascinating text provides a comprehensive study of the Erdős–Ko–Rado Theorem, with a focus on algebraic methods. The authors begin by discussing well-known proofs of the EKR bound for intersecting families. The natural generalization of the EKR Theorem holds for many different objects that have a notion of intersection, and the bulk of this book focuses on algebraic proofs that can be applied to these different objects. The authors introduce tools commonly used in algebraic graph theory and show how these can be used to prove versions of the EKR Theorem. Topics include association schemes, strongly regular graphs, the Johnson scheme, the Hamming scheme and the Grassmann scheme. Readers can expand their understanding at every step with the 170 end-of-chapter exercises. The final chapter discusses in detail 15 open problems, each of which would make an interesting research project.

Reviews

'This is an excellent book about Erdos-Ko-Rado (EKR) Theorems and how to prove them by algebraic methods … The writing style is reader-friendly, and proofs are well organized and easily followed. Also, every chapter contains Exercises and Notes, which are very useful for expanding understanding and finding further reading. The reviewer recommends this book without hesitation to all graduate students and researchers interested in combinatorics.'

Norihide Tokushige Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] R., Ahlswede, H., Aydinian, and L. H., Khachatrian. The intersection theorem for direct products. European J. Combin., 19(6):649–661, 1998.
[2] Rudolf, Ahlswede and Vladimir, Blinovsky. Lectures on Advances in Combinatorics. Universitext. Springer-Verlag, Berlin, 2008.
[3] Rudolf, Ahlswede and Levon H., Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18(2):125–136, 1997.
[4] Rudolf, Ahlswede and Levon H., Khachatrian. The diametric theorem in Hamming spaces – optimal anticodes. Adv. in Appl. Math., 20(4):429–449, 1998.
[5] Rudolf, Ahlswede and Levon H., Khachatrian. A pushing-pulling method: new proofs of intersection theorems. Combinatorica, 19(1):1–15, 1999.
[6] Bahman, Ahmadi. Maximum Intersecting Families of Permutations. PhD thesis, University of Regina, Regina, 2013.
[7] Bahman, Ahmadi and Karen, Meagher. The Erdős–Ko–Rado property for some 2-transitive groups. Annals of Combinatorics, 20 pp., 2015.
[8] Bahman, Ahmadi and Karen, Meagher. The Erdős–Ko–Rado property for some permutation groups. Australas. J. Combin., 61(2):23–41, 2015.
[9] Michael O., Albertson and Karen L., Collins. Homomorphisms of 3-chromatic graphs. Discrete Math., 54(2):127–132, 1985.
[10] N., Alon, I., Dinur, E., Friedgut, and B., Sudakov. Graph products, Fourier analysis and spectral techniques. Geom. Funct. Anal., 14(5):913–940, 2004.
[11] Noga, Alon and Eyal, Lubetzky. Uniformly cross intersecting families. Combinatorica, 29(4):389–431, 2009.
[12] Brian, Alspach, Heather Gavlas, Mateja Šajna, and Helen Verrall. Cycle decompositions. IV. Complete directed graphs and fixed length directed cycles. J. Combin. Theory Ser. A, 103(1):165–208, 2003.
[13] R. A., Bailey. Association Schemes, volume 84 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004.
[14] Eiichi, Bannai and Tatsuro, Ito. Algebraic Combinatorics I. Benjamin/Cummings Publishing, Menlo Park, CA, 1984.
[15] I., Bárány. A short proof of Kneser's conjecture. J. Combin. Theory Ser. A, 25(3):325–326, 1978.
[16] Zs., Baranyai. On the factorization of the complete uniform hypergraph. In Infinite and Finite Sets, volume 10 of Colloq. Math. Soc. Ján¯os Bolyai, pages 91–108. North-Holland, Amsterdam, 1975.
[17] Mohammad, Bardestani and Keivan, Mallahi-Karai. On the Erdős–Ko–Rado property for finite groups. J. Algebraic Combin., 42(1):1–18, 2015.
[18] V. M., Blinovskiĭ. An intersection theorem for finite permutations. Problemy Peredachi Informatsii, 47(1):40–53, 2011.
[19] V. M., Blinovsky. Remark on one problem in extremal combinatorics. Problems Inform. Transmission, 48(1):70–71, 2012.
[20] A., Blokhuis. On subsets of GF(q2) with square differences. Nederl. Akad. Wetensch. Indag. Math., 46(4):369–372, 1984.
[21] A., Blokhuis, A. E., Brouwer, A., Chowdhury, P., Frankl, T., Mussche, B., Patkós, and T., Szőnyi. A Hilton–Milner theorem for vector spaces. Electron. J. Combin., 17(1):Research Paper 71, 12 pp. (electronic), 2010.
[22] Aart, Blokhuis, Andries, Brouwer, Tamás, Szönyi, and Zsuzsa, Weiner. On q-analogues and stability theorems. J. Geom., 101(1–2):31–50, 2011.
[23] Béla, Bollobás. Combinatorics. Cambridge University Press, Cambridge, 1986.
[24] J. A., Bondy and Pavol, Hell. A note on the star chromatic number. J. Graph Theory, 14(4):479–482, 1990.
[25] Peter, Borg. Cross-intersecting families of partial permutations. SIAM J. Discrete Math., 24(2):600–608, 2010.
[26] Peter, Borg. Cross-intersecting sub-families of hereditary families. J. Combin. Theory Ser. A, 119(4):871–881, 2012.
[27] Peter, Borg and Imre, Leader. Multiple cross-intersecting families of signed sets. J. Combin. Theory Ser. A, 117(5):583–588, 2010.
[28] R. C., Bose, W. G., Bridges, and M. S., Shrikhande. A characterization of partial geometric designs. Discrete Math., 16(1):1–7, 1976.
[29] Benjamin, Braun. Symmetries of the stable Kneser graphs. Adv. in Appl. Math., 45(1):12–14, 2010.
[30] Arne, Brøndsted. An Introduction to Convex Polytopes, volume 90 of Graduate Texts in Mathematics. Springer, New York, 1983.
[31] A. E., Brouwer, A. M., Cohen, and A., Neumaier. Distance-Regular Graphs. Springer, Berlin, 1989.
[32] A. E., Brouwer, C. D., Godsil, J. H., Koolen, and W. J., Martin.Width and dual width of subsets in polynomial association schemes. J. Combin. Theory Ser. A, 102(2):255–271, 2003.
[33] A. E., Brouwer and W. H., Haemers. Structure and uniqueness of the (81, 20, 1, 6) strongly regular graph. Discrete Math., 106/107:77–82, 1992.
[34] A. E., Brouwer, James B., Shearer, N. J. A., Sloane, and Warren D., Smith. A new table of constant weight codes. IEEE Trans. Inform. Theory, 36(6):1334–1380, 1990.
[35] Andries, E.Brouwer and Tuvi Etzion. Some new distance-4 constant weight codes. Adv. Math. Commun., 5(3):417–424, 2011.
[36] Andries, E.Brouwer and Willem|H. Haemers. Spectra of Graphs. Springer, New York, 2012.
[37] A. R., Calderbank and P., Frankl. Improved upper bounds concerning the Erdős–Ko–Rado theorem. Combin. Probab. Comput., 1(2):115–122, 1992.
[38] Peter J., Cameron. Projective and polar spaces, volume 13 of QMW Maths Notes. Queen Mary and Westfield College, School of Mathematical Sciences, London, 1991.
[39] Peter J., Cameron and Priscila A., Kazanidis. Cores of symmetric graphs. J. Aust. Math. Soc., 85(2):145–154, 2008.
[40] Peter J., Cameron and C. Y., Ku. Intersecting families of permutations. European J. Combin., 24(7):881–890, 2003.
[41] Andrew D., Cannon, John, Bamberg, and Cheryl E., Praeger. A classification of the strongly regular generalised Johnson graphs. Ann. Comb., 16(3):489–506, 2012.
[42] Michael Scott, Cavers. The Normalized Laplacian Matrix and General Randic Index of Graphs. ProQuest LLC, Ann Arbor, MI, 2010. Doctoral dissertation, University of Regina, Canada.
[43] Tullio, Ceccherini-Silberstein, Fabio, Scarabotti, and Filippo, Tolli. Harmonic Analysis on Finite Groups, volume 108 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2008.
[44] Tullio, Ceccherini-Silberstein, Fabio, Scarabotti, and Filippo, Tolli. Representation Theory of the Symmetric Groups, volume 121 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
[45] Stephen D., Cohen. Clique numbers of Paley graphs. Quaestiones Math., 11(2):225–231, 1988.
[46] Charles J., Colbourn and Jeffrey H., Dinitz, editors. Handbook of Combinatorial Designs. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007.
[47] William J., Cook, William H., Cunningham, William R., Pulleyblank, and Alexander, Schrijver. Combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York, 1998.
[48] Éva, Czabarka and László, Székely. An alternative shifting proof to Hsieh's theorem. In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 134, pages 117–122, 1998.
[49] D. E., Daykin. Erdős–Ko–Rado from Kruskal–Katona. J. Combinatorial Theory Ser. A, 17:254–255, 1974<.
[50] Maarten De, Boeck. The largest Erdős–Ko–Rado sets of planes in finite projective and finite classical polar spaces. Des. Codes Cryptogr., 72(1):77–117, 2014.
[51] P., Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., (10):vi+97, 1973.
[52] Ph., Delsarte. Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A, 25(3):226–241, 1978.
[53] M., Deza and P., Frankl. Erdős–Ko–Rado theorem – 22 years later. SIAM J. Algebraic Discrete Methods, 4(4):419–431, 1983.
[54] David, Ellis. A proof of the Cameron–Ku conjecture. J. Lond. Math. Soc. (2), 85(1):165–190, 2012.
[55] David, Ellis. Setwise intersecting families of permutations. J. Combin. Theory Ser. A, 119(4):825–849, 2012.
[56] David, Ellis, Ehud, Friedgut, and Haran, Pilpel. Intersecting families of permutations. J. Amer. Math. Soc., 24(3):649–682, 2011.
[57] P., Erdős. Problems and results on finite and infinite combinatorial analysis. In Infinite and Finite Sets, Vol. I, volume 10 of Colloq. Math. Soc. János Bolyai, pages 403–424. North-Holland, Amsterdam, 1975.
[58] P., Erdős, Chao, Ko, and R., Rado. Intersection theorems for systems of finite sets. Quart. K. Math. Oxford Ser. (2), 12:313–320, 1961.
[59] Péter L.|Erdős and László A.|Székely. Erdős–Ko–Rado theorems of higher order. In Numbers, Information and Complexity, pages 117–124. Kluwer Academic, Boston, 2000.
[60] Tuvi, Etzion and Sara, Bitan. On the chromatic number, colorings, and codes of the Johnson graph. Discrete Appl. Math., 70(2):163–175, 1996.
[61] P., Frankl. On Sperner families satisfying an additional condition. J. Combinatorial Theory Ser. A, 20(1):1–11, 1976.
[62] P., Frankl. The Erdős–Ko–Rado theorem is true for n = ckt. In Combinatorics, volume 18 of Colloq. Math. Soc. János Bolyai, pages 365–375. North-Holland, Amsterdam, 1978.
[63] P., Frankl. Multiply-intersecting families. J. Combin. Theory Ser. B, 53(2):195–234, 1991.
[64] P., Frankl. An Erdős–Ko–Rado theorem for direct products. European J. Combin., 17(8):727– 730, 1996.
[65] P., Frankl and Z., Füredi. Extremal problems concerning Kneser graphs. J. Combin. Theory Ser. B, 40(3):270–284, 1986.
[66] P., Frankl and Z., Füredi. Nontrivial intersecting families. J. Combin. Theory Ser. A, 41(1):150–153, 1986.
[67] P., Frankl and R. M., Wilson. The Erdős–Ko–Rado theorem for vector spaces. J. Combin. Theory Ser. A, 43(2):228–236, 1986.
[68] Peter, Frankl. The shifting technique in extremal set theory. In Surveys in Combinatorics 1987, pages 81–110. Cambridge University Press, Cambridge, 1987.
[69] Péter, Frankl and Mikhail, Deza. On the maximum number of permutations with given maximal or minimal distance. J. Combinatorial Theory Ser. A, 22(3):352–360, 1977.
[70] Peter, Frankl and Zoltán, Füredi. A new short proof of the EKR theorem. J. Combin. Theory Ser. A, 119(6):1388–1390, 2012.
[71] Peter, Frankl and Norihide, Tokushige. On r-cross intersecting families of sets. Combin. Probab. Comput., 20(5):749–752, 2011.
[72] Ehud, Friedgut. A Katona-type proof of an Erdős–Ko–Rado-type theorem. J. Combin. Theory Ser. A, 111(2):239–244, 2005.
[73] William, Fulton and Joe, Harris. Representation Theory. Springer, New York, 1991.
[74] Zoltán, Füredi. Cross-intersecting families of finite sets. J. Combin. Theory Ser. A, 72(2):332– 339, 1995.
[75] Zoltán, Füredi, Kyung-Won, Hwang, and Paul M., Weichsel. A proof and generalizations of the Erdős–Ko–Rado theorem using the method of linearly independent polynomials. In Topics in Discrete Mathematics, volume 26 of Algorithms Combin., pages 215–224. Springer, Berlin, 2006.
[76] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.7, 2015.
[77] C. D., Godsil. Graphs, groups and polytopes. In Combinatorial Mathematics (Proc. Internat. Conf. Combinatorial Theory, Australian Nat. Univ., Canberra, 1977), volume 686 of Lecture Notes in Math., pages 157–164. Springer, Berlin, 1978.
[78] C. D., Godsil. Algebraic Combinatorics. Chapman and Hall Mathematics Series. Chapman & Hall, New York, 1993.
[79] C. D., Godsil. Euclidean geometry of distance regular graphs. In Surveys in Combinatorics, volume 218 of London Math. Soc. Lecture Note Ser., pages 1–23. Cambridge University Press, Cambridge, 1995.
[80] C. D., Godsil. Eigenpolytopes of distance regular graphs. Canad. J. Math., 50(4):739–755, 1998.
[81] C. D., Godsil. Association Schemes. 242 pp. 2010.
[82] C. D., Godsil. Generalized Hamming schemes, 14 pp. 2010. available at http://arxiv.org/ abs/1011.1044.
[83] C. D., Godsil and W. J., Martin. Quotients of association schemes. J. Combin. Theory Ser. A, 69(2):185–199, 1995.
[84] C. D., Godsil and M.W., Newman. Independent sets in association schemes. Combinatorica, 26(4):431–443, 2006.
[85] Chris, Godsil and Karen, Meagher. A new proof of the Erdős–Ko–Rado theorem for intersecting families of permutations. European J. Combin., 30(2):404–414, 2009.
[86] Chris, Godsil and Karen, Meagher. Multiplicity-free permutation representations of the symmetric group. Ann. Comb., 13(4):463–490, 2010.
[87] Chris, Godsil and Gordon, Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[88] Chris, Godsil and Gordon F., Royle. Cores of geometric graphs. Ann. Comb., 15(2):267–276, 2011.
[89] R. L., Graham and N. J. A., Sloane. Lower bounds for constant weight codes. IEEE Trans. Inform. Theory, 26(1):37–43, 1980.
[90] Joshua E., Greene. A new short proof of Kneser's conjecture. Amer. Math. Monthly, 109(10):918–920, 2002.
[91] A., Hajnal and Bruce, Rothschild. A generalization of the Erdős–Ko–Rado theorem on finite set systems. J. Combinatorial Theory Ser. A, 15:359–362, 1973.
[92] Marshall, Hall. An existence theorem for Latin squares. Bull. Amer. Math. Soc., 51:387–388, 1945.
[93] Peter, Henrici. Applied and Computational Complex Analysis: Vol. 1: Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley-Interscience, 1974.
[94] Robert, Hermann. Spinors, Clifford and Cayley Algebras. Department of Mathematics, Rutgers University, New Brunswick, NJ, 1974.
[95] A. J. W., Hilton and E. C., Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2), 18:369–384, 1967.
[96] F. C., Holroyd and A., Johnson. BCC Problem List. http://www.maths.qmul.ac.uk/~pjc/ bcc/allprobs.pdf, 2001.
[97] Ferdinand, Ihringer and Klaus, Metsch. On the maximum size of Erdős–Ko–Rado sets in H(2d + 1, q2). Des. Codes Cryptogr., 72(2):311–316, 2014.
[98] Gordon, James and Adalbert, Kerber. The Representation Theory of the Symmetric Group, volume 16 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading, MA, 1981.
[99] Pranava K., Jha and Sandi, Klavžar. Independence in direct-product graphs. Ars Combin., 50:53–63, 1998.
[100] Gareth A., Jones. Automorphisms and regular embeddings of merged Johnson graphs. European J. Combin., 26(3–4):417–435, 2005.
[101] Vikram, Kamat. On cross-intersecting families of independent sets in graphs. Australas. J. Combin., 50:171–181, 2011.
[102] Vikram, Kamat and Neeldhara, Misra. An Erdős–Ko–Rado theorem for matchings in the complete graph. In Jaroslav Nesetril and Marco Pellegrini, editors, The Seventh European Conference on Combinatorics, Graph Theory and Applications, volume 16 of CRM Series, pages 613–613. Scuola Normale Superiore, 2013.
[103] G., Katona. A theorem of finite sets. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 187–207. Academic Press, New York, 1968.
[104] G. O. H., Katona. A simple proof of the Erdős–Chao Ko–Rado theorem. J. Combinatorial Theory Ser. B, 13:183–184, 1972.
[105] Gy., Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hungar, 15:329–337, 1964.
[106] Gyula O. H., Katona. The cycle method and its limits. In Numbers, Information and Complexity (Bielefeld, 1998), pages 129–141. Kluwer Academic, Boston, 2000.
[107] Joseph B., Kruskal. The number of simplices in a complex. In Mathematical Optimization Techniques, pages 251–278. University of California Press, Berkeley, 1963.
[108] Cheng Yeaw, Ku and David, Renshaw. Erdős–Ko–Rado theorems for permutations and set partitions. J. Combin. Theory Ser. A, 115(6):1008–1020, 2008.
[109] Cheng Yeaw, Ku and David B., Wales. Eigenvalues of the derangement graph. J. Combin. Theory Ser. A, 117(3):289–312, 2010.
[110] Cheng Yeaw, Ku and Kok Bin, Wong. On cross-intersecting families of set partitions. Electron. J. Combin., 19(4):Paper 49, 9 pp. (electronic), 2012.
[111] Cheng Yeaw, Ku and Kok Bin, Wong. Solving the Ku-Wales conjecture on the eigenvalues of the derangement graph. European J. Combin., 34(6):941–956, 2013.
[112] Cheng Yeaw, Ku and Tony W. H., Wong. Intersecting families in the alternating group and direct product of symmetric groups. Electron. J. Combin., 14(1):Research Paper 25, 15 pp. (electronic), 2007.
[113] Benoit, Larose and Claudia, Malvenuto. Stable sets of maximal size in Kneser-type graphs. European J. Combin., 25(5):657–673, 2004.
[114] Benoit, Larose and Claude, Tardif. Projectivity and independent sets in powers of graphs. J. Graph Theory, 40(3):162–171, 2002.
[115] Nathan, Lindzey. Erdős–Ko–Rado for perfect matchings. Available at http://arxiv.org/abs/ 1409.2057, 2014.
[116] L., Lovász. Kneser's conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319–324, 1978.
[117] László, Lovász. Combinatorial Problems and Exercises. AMS Chelsea, Providence, second edition, 2007.
[118] László, Lovász and Michael D., Plummer. Matching Theory. AMS Chelsea, Providence, 2009. Corrected reprint of the 1986 original [MR0859549].
[119] Jia, Xi Lu. On large sets of disjoint Steiner triple systems. I, II,III. J. Combin. Theory Ser. A, 34(2):140–146, 1983.
[120] Jia, Xi Lu. On large sets of disjoint Steiner triple systems. IV, V, VI. J. Combin. Theory Ser. A, 37(2):136–163, 164–188, 189–192, 1984.
[121] D., Lubell. A short proof of Sperner's lemma. J. Combin. Theory, 1:299, 1966.
[122] W. J., Martin. Completely regular codes: a viewpoint and some problems. In Proceedings of 2004 Com2MaC Workshop on Distance-Regular Graphs and Finite Geometry, Pusan, Korea, pages 43–56, 2004.
[123] William J., Martin and Hajime, Tanaka. Commutative association schemes. European J. Combin., 30(6):1497–1525, 2009.
[124] Rudolf, Mathon and Alexander, Rosa. A new strongly regular graph. J. Combin. Theory Ser. A, 38(1):84–86, 1985.
[125] Jiří, Matoušek. A combinatorial proof of Kneser's conjecture. Combinatorica, 24(1):163– 170, 2004.
[126] Makoto, Matsumoto and Norihide, Tokushige. The exact bound in the Erdős–Ko–Rado theorem for cross-intersecting families. J. Combin. Theory Ser. A, 52(1):90–97, 1989.
[127] Brendan D., McKay, Alison, Meynert, and Wendy, Myrvold. Small Latin squares, quasigroups, and loops. J. Combin. Des., 15(2):98–119, 2007.
[128] Karen, Meagher and Lucia, Moura. Erdős–Ko–Rado theorems for uniform set-partition systems. Electron J. Combin., 12(1):Research Paper 40, 12 pp. (electronic), 2005.
[129] Karen, Meagher and Alison, Purdy. An Erdős–Ko–Rado theorem for multisets. Electron. J. Combin., 18(1):Paper 220, 8 pp. (electronic), 2011.
[130] Karen, Meagher and Alison, Purdy. The exact bound for the Erdős–Ko–Rado theorem for t-cycle-intersecting permutations, Available at http://arxiv.org/abs/1208.3638, 23 pp. 2012.
[131] Karen, Meagher and Pablo, Spiga. An Erdős–Ko–Rado theorem for the derangement graph of PGL(2, q) acting on the projective line. J. Combin. Theory Ser. A, 118(2):532–544, 2011.
[132] Karen, Meagher and Pablo, Spiga. An Erdős–Ko–Rado theorem for the derangement graph of PGL3(q) acting on the projective plane. SIAM J. Discrete Math., 28(2):918–941, 2014.
[133] Karen, Meagher and Brett, Stevens. Covering arrays on graphs. J. Combin. Theory Ser. B, 95(1):134–151, 2005.
[134] L. D., Mešalkin. A generalization of Sperner's theorem on the number of subsets of a finite set. Teor. Verojatnost. i Primenen, 8:219–220, 1963.
[135] Aeryung, Moon. An analogue of the Erdős–Ko–Rado theorem for the Hamming schemes H(n, q). J. Combin. Theory Ser. A, 32(3):386–390, 1982.
[136] Mikhail, Muzychuk. On association schemes of the symmetric group S2n acting on partitions of type 2n. Bayreuth. Math. Schr., (47):151–164, 1994.
[137] Arnold, Neumaier. Completely regular codes. Discrete Math., 106/107:353–360, 1992.
[138] M. W., Newman. Independent Sets and Eigenvalues. PhD thesis, University of Waterloo, Waterloo, 2004.
[139] Stanley E., Payne and Joseph, A.Thas. Finite Generalized Quadrangles. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, second edition, 2009.
[140] Valentina, Pepe, Leo, Storme, and Frédéric, Vanhove. Theorems of Erdős–Ko–Rado type in polar spaces. J. Combin. Theory Ser. A, 118(4):1291–1312, 2011.
[141] Alison, Purdy. The Erdős–Ko–Rado Theorem for Intersecting Families of Permutations. Master's thesis, University of Regina, Regina, 2010.
[142] L., Pyber. A new generalization of the Erdős–Ko–Rado theorem. J. Combin. Theory Ser. A, 43(1):85–90, 1986.
[143] Mark, Ramras and Elizabeth, Donovan. The automorphism group of a Johnson graph. SIAM J. Discrete Math., 25(1):267–270, 2011.
[144] B. M. I., Rands. An extension of the Erdős, Ko, Rado theorem to t-designs. J. Combin. Theory Ser. A, 32(3):391–395, 1982.
[145] D. K., Ray-Chaudhuri and Richard M., Wilson. The existence of resolvable block designs. In Survey of Combinatorial Theory, pages 361–375. North-Holland, Amsterdam, 1973.
[146] Paul, Renteln. On the spectrum of the derangement graph. Electron. J. Combin., 14(1):Research Paper 82, 17 pp. (electronic), 2007.
[147] Bruce E., Sagan. The Symmetric Group. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991.
[148] Jan, Saxl. On multiplicity-free permutation representations. In Finite Geometries and Designs, volume 49 of London Math. Soc. Lecture Note Ser., pages 337–353. Cambridge University Press, Cambridge, 1981.
[149] A., Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wisk. (3), 26(3):454– 461, 1978.
[150] A., Schrijver. Short proofs on the matching polyhedron. J. Combin Theory Ser. B, 1983.
[151] Alexander, Schrijver. Combinatorial Optimization. Polyhedra and Efficiency. Vol. A, volume 24 of Algorithms and Combinatorics. Berlin, 2003. Paths, flows, matchings, Chapters 1–38.
[152] Ernest E., Shult. Points and lines. Universitext. Springer, Heidelberg, 2011. Characterizing the classical geometries.
[153] Emanuel, Sperner. Ein Satz über Untermengen einer endlichen Menge. Math. Z., 27(1):544– 548, 1928.
[154] Dennis, Stanton. Some Erdős–Ko–Rado theorems for Chevalley groups. SIAM J. Algebraic Discrete Methods, 1(2):160–163, 1980.
[155] E., Steinitz. Polyeder und Raumeinteilungen. In Encyclop¨adie der mathematischen Wissenschaften, Band 3 (Geometries), pages 1–139. 1922.
[156] S., Sternberg. Group Theory and Physics. Cambridge University Press, Cambridge, 1994.
[157] Brett, Stevens and Eric, Mendelsohn. New recursive methods for transversal covers. J. Combin. Des., 7(3):185–203, 1999.
[158] Douglas R., Stinson. Combinatorial Designs. Springer, New York, 2004.
[159] John, Talbot. Intersecting families of separated sets. J. London Math. Soc., 2003.
[160] Hajime, Tanaka. Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Combin. Theory Ser. A, 113(5):903–910, 2006.
[161] Hajime, Tanaka. Vertex subsets with minimal width and dual width in Q-polynomial distance-regular graphs. Electron. J. Combin., 18(1):Paper 167, 32 pp. (electronic), 2011.
[162] Claude, Tardif. Graph products and the chromatic difference sequence of vertex-transitive graphs. Discrete Math., 185(1–3):193–200, 1998.
[163] Charles B., Thomas. Representations of Finite and Lie Groups. Imperial College Press, London, 2004.
[164] Norihide, Tokushige. On cross t-intersecting families of sets. J. Combin. Theory Ser. A, 117(8):1167–1177, 2010.
[165] Norihide, Tokushige. A product version of the Erdős–Ko–Rado theorem. J. Combin. Theory Ser. A, 118(5):1575–1587, 2011.
[166] J. H. van, Lint and R. M., Wilson. A Course in Combinatorics. Cambridge University Press, Cambridge, second edition, 2001.
[167] M., Vaughan-Lee and I. M., Wanless. Latin squares and the Hall-Paige conjecture. Bull. London Math. Soc., 35(2):191–195, 2003.
[168] Jun, Wang and Sophia J., Zhang. An Erdős–Ko–Rado-type theorem in Coxeter groups. European J. Combin., 29(5):1112–1115, 2008.
[169] Li, Wang. Erdős–Ko–Rado theorem for irreducible imprimitive reflection groups. Front. Math. China, 7(1):125–144, 2012.
[170] Helmut, Wielandt. Finite Permutation Groups. Translated from the German by R., Bercov. Academic Press, New York, 1964.
[171] Mark, Wildon. Multiplicity-free representations of symmetric groups. J. Pure Appl. Algebra, 213(7):1464–1477, 2009.
[172] Richard M., Wilson. The exact bound in the Erdős–Ko–Rado theorem. Combinatorica, 4(2-3):247–257, 1984.
[173] D. R., Woodall, I., Anderson, G. R., Brightwell, J. W. P., Hirschfeld, P., Rowlinson, J., Sheehan, and D. H., Smith, editors. 16th British Combinatorial Conference. 1999. Discrete Math. 197/198.
[174] Koichi, Yamamoto. Logarithmic order of free distributive lattice. J. Math. Soc. Japan, 6:343– 353, 1954.
[175] Huajun, Zhang. Primitivity and independent sets in direct products of vertex-transitive graphs. J. Graph Theory, 67(3):218–225, 2011.
[176] Günter M., Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer, New York, 1995.
[177] Paul-Hermann, Zieschang. Theory of Association Schemes. Springer Monographs in Mathematics. Springer, Berlin, 2005.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.