Skip to main content Accessibility help
×
  • Cited by 15
Publisher:
Cambridge University Press
Online publication date:
January 2024
Print publication year:
2024
Online ISBN:
9781009221955

Book description

The Euclidean Programme embodies a traditional sort of epistemological foundationalism, according to which knowledge – especially mathematical knowledge – is obtained by deduction from self-evident axioms or first principles. Epistemologists have examined foundationalism extensively, but neglected its historically dominant Euclidean form. By contrast, this book offers a detailed examination of Euclidean foundationalism, which, following Lakatos, the authors call the Euclidean Programme. The book rationally reconstructs the programme's key principles, showing it to be an epistemological interpretation of the axiomatic method. It then compares the reconstructed programme with select historical sources: Euclid's Elements, Aristotle's Posterior Analytics, Descartes's Discourse on Method, Pascal's On the Geometric Mind and a twentieth-century account of axiomatisation. The second half of the book philosophically assesses the programme, exploring whether various areas of contemporary mathematics conform to it. The book concludes by outlining a replacement for the Euclidean Programme.

References

Adam, C. and Tannery, P. (eds.) (1897–1910), Oeuvres de Descartes, vols. 112, Leopold Cerf.
Aristotle (4th century BC), The Categories, On Interpretation, Prior Analytics, transl. by Cooke, H. P. and Tredennick, H., 1938 ed., Harvard University Press: Loeb Classical Library.
Aristotle (4th century BC), Physics, transl. by R. Waterfield, 2008 ed., Oxford University Press.
Aristotle (4th century BC), Posterior Analytics, Topica, transl. by Tredennick, H. and Forster, E. S., 1960 ed., Harvard University Press: Loeb Classical Library.
Arnauld, A. and Nicole, P. (1683/2019), La Logique ou l’Art de Penser (5th ed.), 2nd Revised ed. by P. Clair and Gibral, F., Librairie Philosophique J. Vrin.
Barnes, J. (ed.) (1993), Aristotle’s Posterior Analytics (2nd ed.), Oxford University Press.
Barnes, J. (2005), ‘What Is a Disjunction?’, in Frede, D. and Inwood, B. (eds.), Language and Learning, Cambridge University Press, repr. in his Logical Matters (2012), Oxford University Press: 512–37.
Barton, N., Ternullo, C., and Venturi, G. (2020), ‘On Forms of Justification in Set Theory’, Australasian Journal of Logic 17: 158200.
Boolos, G. (1971), ‘The Iterative Conception of Set’, Journal of Philosophy 68: 215–31.
Boolos, G. (1989), ‘Iteration Again’, Philosophical Topics 17: 521.
Bos, H. (1981), ‘On the Representation of Curves in Descartes’ Géométrie’, Archive for History of Exact Sciences 24: 295338.
Bos, H. (2001), Redefining Geometrical Exactness, Springer.
Bronstein, D. (2016), Aristotle on Knowledge and Learning: The Posterior Analytics, Oxford University Press.
Burnyeat, M. F. (1981), ‘Aristotle on Understanding Knowledge’, in Berti, E. (ed.), Aristotle on Science: The Posterior Analytics, Antenore: 97139.
Clairaut, A. (1741), Éléments de Géométrie, ed. by Regodt, H. (1853), Jules Delalain.
Clarke-Doane, J. (2013), ‘What Is Absolute Undecidability?’, Noûs 47: 467–81.
Corcoran, J. (1974), ‘Aristotle’s Natural Deduction System’, in Corcoran, J. (ed.), Ancient Logic and Its Modern Interpretations, Reidel: 85131.
Corkum, P. (2016), ‘Ontological Dependence and Grounding in Aristotle’, Oxford Handbooks Online in Philosophy, https://doi.org//10.1093/oxfordhb/9780199935314.013.31.
Craig, E. (1996), The Mind of God and the Works of Man, Oxford University Press.
Crivelli, P. (2004), Aristotle on Truth, Cambridge University Press.
Davey, K. (2021), ‘On Euclid and the Genealogy of Proof’, Ergo 8: 5482.
Denyer, N. C. (2022), ‘Diagrams and Proof in Euclid, Aristotle, and Plato’ (ms.).
Descartes, R. (1637/2001), Discourse on Method, Optics, Geometry, and Meteorology, transl. by Olscamp, P. (Revised ed.), Hackett.
Descartes, R. (1984a/vol. 1) & (1984b/vol. 2), The Philosophical Writings of Descartes, transl. by Cottingham, J., Stoothoff, R., and Murdoch, D., Cambridge University Press.
Detel, W. (2012), ‘Aristotle’s Logic and Theory of Science’, in Gill, M. L. and Pellegrin, P. (eds.), A Companion to Ancient Philosophy, Wiley: 245–69.
Detlefsen, M. (2014), ‘Completeness and the Ends of Axiomatisation’, in Kennedy, J. (ed.), Interpreting Gödel, Cambridge University Press: 5977.
Domski, M. (2009), ‘The Intelligibility of Motion and Construction: Descartes’ Early Mathematics and Metaphysics, 1619–1637’, Studies in History and Philosophy of Science 40: 119–30.
Dummett, M. (1973), ‘The Philosophical Basis of Intuitionistic Logic’, in his Truth and Other Enigmas (1978), Harvard University Press: 215–47.
Einstein, A. (1934), ‘On the Method of Theoretical Physics’, Philosophy of Science 1: 163–9.
Feferman, S. (1998), In the Light of Logic, Oxford University Press.
Feferman, S. (2000), ‘Does Mathematics Need New Axioms?’, Bulletin of Symbolic Logic 6: 401–13.
Field, H. (2006), ‘Truth and the Unprovability of Consistency’, Mind 115: 567605.
Frege, G. (1884/1953), The Foundations of Arithmetic (2nd ed.), transl. by Austin, J., Northwestern University Press.
Freudenthal, G. (1988), ‘La philosophie de la géometrie d’al-Fârâbî: Son commentaire sur le début du Ier et le début du Ve livre des Éléments d’Euclide’, Jerusalem Studies in Arabic and Islam 11: 104219.
Friedman, H. (1971), ‘Higher Set Theory and Mathematical Practice’, Annals of Mathematical Logic 2: 325–57.
Gardies, J-L. (1982), ‘L’interprétation d’Euclide chez Pascal et Arnauld’, Les études philosophiques 2: 129–48.
Gardies, J-L. (1984), Pascal entre Eudoxe et Cantor, Vrin.
Gödel, K. (1931), ‘On Formally Undecidable Propositions of Principia Mathematica and Related Systems I’ transl. by van Heijenoort, J. in Feferman et al (eds.) (1986), Kurt Gödel: Collected Works (vol. 1), Oxford University Press: 144–95.
Gödel, K. (1964), ‘What Is Cantor’s Continuum Problem?’, in Feferman, et al (eds.) (1990), Kurt Gödel: Collected Works (vol. 2), Oxford University Press: 254–70.
Griffiths, O. and Paseau, A. C. (2022), One True Logic, Oxford University Press.
Grosholz, E. R. (1991), Cartesian Method and the Problem of Reduction, Oxford University Press.
Hauser, K. (2005), ‘Is Choice Self-Evident?’, American Philosophical Quarterly 42: 237–61.
Heath, T. (ed.) (1925), The Thirteen Books of the Elements (2nd ed.), vol. 1: Books I–II, vol. 2: Books III–IX, vol. 3: Books X–XIII, Cambridge University Press, 1956 Dover ed.
Heyting, A. (1980), Axiomatic Projective Geometry (2nd ed.), North-Holland.
Hilbert, D. (1899a), Grundlagen der Geometrie, transl. by L. Unger from the 10th German ed. as Foundations of Geometry (1990, 2nd ed.), Open Court.
Hilbert, D. (1899b), ‘Hilbert to Frege 29.12.1899’, in Gabriel, G. (ed.) (1980), Gottlob Frege: Philosophical and Mathematical Correspondence, University of Chicago Press: 3843.
Hilbert, D. (1925), ‘On the Infinite’, transl. by Bauer-Mengelberg, S. in van Heijenoort, J. (ed.) (1967), From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Harvard University Press: 367–92.
Huntington, E. V. (1911), ‘The Fundamental Propositions of Algebra’, in Young, J. W. A. (ed.) Monographs on Topics of Modern Mathematics, Longmans, Green and Co.: 149207.
Jaffe, A. (1997), ‘Proof and the Evolution of Mathematics’, Synthese 111: 133–46.
Jeshion, R. (2001), ‘Frege’s Notions of Self-Evidence’, Mind 110: 937–76.
Jesseph, D. (2022), ‘Berkeley and Mathematics’, in Rickless, S. (ed.), The Oxford Handbook of Berkeley, Oxford University Press: 300–25.
Kneale, W. and Kneale, M. (1962), The Development of Logic, Oxford University Press.
Kunen, K. (2013), Set Theory (Revised ed.), College Publications.
Lakatos, I. (1962), ‘Infinite Regress and Foundations of Mathematics’, in Worrall, J. and Currie, G. (eds.) (1978), Mathematics, Science, and Epistemology, Cambridge University Press: 323.
Lakatos, I. (1976), ‘A Renaissance of Empiricism in the Recent Philosophy of Mathematics’, British Journal for the Philosophy of Science 27: 201–23.
Lee, H. D. P. (1935), ‘Geometrical Method and Aristotle’s Account of First Principles’, The Classical Quarterly 29: 113–24.
Lewis, F. (1920), ‘History of the Parallel Postulate’, American Mathematical Monthly 27: 1623.
Lloyd, G. E. R. (2014), The Ideals of Inquiry: An Ancient History, Oxford University Press.
Locke, J. (1689/2004), An Essay Concerning Human Understanding, ed. by Woolhouse, R., Penguin.
Lycan, W. G. (2001), Real Conditionals, Oxford University Press.
Maddy, P. (1988), ‘Believing the Axioms’, Journal of Symbolic Logic 53: 481511, 736–64.
Maddy, P. (2011), Defending the Axioms, Oxford University Press.
Mancosu, P. and Mugnai, M. (2023), Syllogistic Logic and Mathematical Proof, Oxford University Press.
McGee, V. (1985), ‘A Counterexample to Modus Ponens’, Journal of Philosophy 82: 462–71.
Mill, J. S. (1882), A System of Logic, Ratiocinative and Inductive (8th ed.), Harper & Brothers.
Moriarty, M. (2020), Pascal: Reasoning and Belief, Oxford University Press.
Morison, B. (2019), ‘Theoretical Nous in the Posterior Analytics’, Manuscrito 42: 143.
Mueller, I. (1974), ‘Greek Mathematics and Greek Logic’, in Corcoran, J. (ed.), Ancient Logic and Its Modern Interpretations, Reidel: 3570.
Nelson, E. (1986), Predicative Arithmetic, Princeton University Press.
Pascal, B. (1655/1991), De l’esprit géométrique, in Pascal: Œuvres Complètes, vol. III: Œuvres Diverses (1654–1657), Mesnard, J. (ed.): 360428 (including commentary by Mesnard), Desclée de Brouwer.
Pasch, M. (1882), Vorlesungen über neuere Geometrie, Teubner.
Paseau, A. C. (2007), ‘Boolos on the Justification of Set Theory’, Philosophia Mathematica 15: 3053.
Paseau, A. C. (2011), ‘Mathematical Instrumentalism, Gödel’s Theorem and Inductive Evidence’, Studies in History and Philosophy of Science Part A 42: 140–9.
Paseau, A. C. (2015), ‘Knowledge of Mathematics without Proof’, British Journal for the Philosophy of Science 66: 775–99.
Paseau, A. C. (2016), ‘What’s the Point of Complete Rigour?’, Mind 125: 177207.
Paseau, A. C. (2023), ‘Non-Deductive Justification in Mathematics’, in Sriraman, B. (ed.), Handbook of the History and Philosophy of Mathematical Practice, Springer, https://doi.org/10.1007/978-3-030-19071-2_116-1.
Paseau, A. C. and Leek, R. (2022), ‘The Compactness Theorem’, Internet Encyclopedia of Philosophy, https://iep.utm.edu/compactness-theorem.
Pasnau, R. (2017), After Certainty, Oxford University Press.
Potter, M. (2004), Set Theory and Its Philosophy, Oxford University Press.
Proclus (5th century AD/1970), A Commentary on the First Book of Euclid’s Elements, transl. by G. R. Morrow, Princeton University Press.
Ross, W. D. (1957), Aristotle’s Prior and Posterior Analytics (Revised ed.), Oxford University Press.
Russell, B. (1907), ‘The Regressive Method of Discovering the Premises of Mathematics’, in Moore, G. (ed.) (2014), The Collected Papers of Bertrand Russell, vol. 5, Routledge: 571–80.
Schechter, J. (2013), ‘Rational Self-Doubt and the Failure of Closure’, Philosophical Studies 163: 429–52.
Shapiro, S. (1997), Philosophy of Mathematics: Structure and Ontology, Oxford University Press.
Shapiro, S. (2009), ‘We Hold These Truths to Be Self-evident: But What Do We Mean by That?’, Review of Symbolic Logic 2: 175207.
Simpson, S. (2009), Subsystems of Second Order Arithmetic (2nd ed.), Cambridge University Press.
Smiley, T. J. (1973), ‘What Is a Syllogism?’, Journal of Philosophical Logic 2: 136–54.
Smith, P. (2013), An Introduction to Gödel’s Theorems (2nd ed.), Cambridge University Press.
Sorell, T. (2016), ‘Knowledge (Scientia)’, in Nolan, L. (ed.), The Cambridge Descartes Lexicon, Cambridge University Press: 423–8.
Tarski, A. (1994), Introduction to Logic and to the Methodology of Deductive Sciences (4th ed.), Oxford University Press.
Tarski, A. and Givant, S. (1999), ‘Tarksi’s System of Geometry’, Bulletin of Symbolic Logic 5: 175214.
Wardhaugh, B. (2020), The Book of Wonders: The Many Lives of Euclid’s Elements, William Collins.
Whitehead, A. N. and Russell, B. (1910/1927), Principia Mathematica to *56 (2nd ed.), Cambridge University Press.
Wrigley, W. (2022a), ‘Gödelian Platonism and Mathematical Intuition’, European Journal of Philosophy 30: 578600.
Wrigley, W. (2022b), ‘Gödel’s Disjunctive Argument’, Philosophia Mathematica 30: 306–42.
Zermelo, E. (1930), ‘On Boundary Numbers and Domains of Sets: New Investigations in the Foundations of Set Theory’, transl. by M. Hallett in W. Ewald (1996), From Kant to Hilbert vol. 2, Oxford University Press: 1219–33.
Zuppolini, B. (2020), ‘Comprehension, Demonstration, and Accuracy in Aristotle’, Journal of the History of Philosophy 58: 2948.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.