Skip to main content Accessibility help
×
×
Home
Field Theories of Condensed Matter Physics
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 295
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Kobayashi, Ryohei Shiozaki, Ken Kikuchi, Yuta and Ryu, Shinsei 2019. Lieb-Schultz-Mattis type theorem with higher-form symmetry and the quantum dimer models. Physical Review B, Vol. 99, Issue. 1,

    Schilling, Christian and Schilling, Rolf 2019. Diverging Exchange Force and Form of the Exact Density Matrix Functional. Physical Review Letters, Vol. 122, Issue. 1,

    Magnifico, G. Vodola, D. Ercolessi, E. Kumar, S. P. Müller, M. and Bermudez, A. 2019. Symmetry-protected topological phases in lattice gauge theories: Topological QED2. Physical Review D, Vol. 99, Issue. 1,

    Lee, Sangjin and Moon, Eun-Gook 2019. Spin-lattice coupling in U(1) quantum spin liquids. Physical Review B, Vol. 99, Issue. 1,

    Bazeia, D. Losano, L. Marques, M. A. and Menezes, R. 2018. First Order Framework for Gauge k-Vortices. Advances in High Energy Physics, Vol. 2018, Issue. , p. 1.

    Tiwari, Apoorv Chen, Xiao Shiozaki, Ken and Ryu, Shinsei 2018. Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging. Physical Review B, Vol. 97, Issue. 24,

    Ostahie, B. Niţă, M. and Aldea, A. 2018. Edge-state mechanism for the anomalous quantum Hall effect in a diatomic square lattice. Physical Review B, Vol. 98, Issue. 12,

    Cats, P. Quelle, A. Viyuela, O. Martin-Delgado, M. A. and Morais Smith, C. 2018. Staircase to higher-order topological phase transitions. Physical Review B, Vol. 97, Issue. 12,

    Binder, Moritz and Barthel, Thomas 2018. Infinite boundary conditions for response functions and limit cycles within the infinite-system density matrix renormalization group approach demonstrated for bilinear-biquadratic spin-1 chains. Physical Review B, Vol. 98, Issue. 23,

    Zheng, Wayne and Weng, Zheng-Yu 2018. Charge-spin mutual entanglement: A case study by exact diagonalization of the one hole doped t-J loop. Scientific Reports, Vol. 8, Issue. 1,

    Huang, Chun-Jiong Deng, Youjin Wan, Yuan and Meng, Zi Yang 2018. Dynamics of Topological Excitations in a Model Quantum Spin Ice. Physical Review Letters, Vol. 120, Issue. 16,

    Farajollahpour, T. and Jafari, S. A. 2018. Topological phase transition of the anisotropic XY model with Dzyaloshinskii-Moriya interaction. Physical Review B, Vol. 98, Issue. 8,

    Teo, Jeffrey C. Y. 2018. Topology in Magnetism. Vol. 192, Issue. , p. 357.

    Bazeia, D. Marques, M. A. and Olmo, Gonzalo J. 2018. Small and hollow magnetic monopoles. Physical Review D, Vol. 98, Issue. 2,

    Fräßdorf, Christian 2018. Abelian Chern-Simons theory for the fractional quantum Hall effect in graphene. Physical Review B, Vol. 97, Issue. 11,

    Goldman, Hart and Fradkin, Eduardo 2018. Loop models, modular invariance, and three-dimensional bosonization. Physical Review B, Vol. 97, Issue. 19,

    Giudici, G. Mendes-Santos, T. Calabrese, P. and Dalmonte, M. 2018. Entanglement Hamiltonians of lattice models via the Bisognano-Wichmann theorem. Physical Review B, Vol. 98, Issue. 13,

    Sohal, Ramanjit Santos, Luiz H. and Fradkin, Eduardo 2018. Chern-Simons composite fermion theory of fractional Chern insulators. Physical Review B, Vol. 97, Issue. 12,

    Delcamp, Clement and Dittrich, Bianca 2018. Towards a dual spin network basis for (3+1)d lattice gauge theories and topological phases. Journal of High Energy Physics, Vol. 2018, Issue. 10,

    Olsen, K. S. Limseth, H. S. and Lütken, C. A. 2018. Universality of modular symmetries in two-dimensional magnetotransport. Physical Review B, Vol. 97, Issue. 4,

    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Field Theories of Condensed Matter Physics
    • Online ISBN: 9781139015509
    • Book DOI: https://doi.org/10.1017/CBO9781139015509
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. 1979. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42,673.
Abrikosov, A. A., Gor’kov, L. P., and Dzyaloshinskii, I. E. 1963. Methods of Quantum Field Theory in Statistical Physics. Englewood Cliffs, NJ: Prentice-Hall.
Affleck, I. 1985. Large-N limit of SU(N ) quantum “spin” chains. Phys. Rev. Lett., 54, 966.
Affleck, I. 1986a. Exact critical exponents for quantum spin chains, non-linear σ -models at θ = π and the quantum Hall effect. Nucl. Phys. B, 265, 409.
Affleck, I. 1986b. Universal term in the free energy at a critical point and the conformal anomaly. Phys. Rev. Lett., 56, 746.
Affleck, I. 1990. Field theory methods and quantum critical phenomena, in Fields, Strings and Critical Phenomena. Proceedings of the Les Houches Summer School 1988, Session XLIX, Brézin, E. and Zinn-Justin, J. (eds.). Amsterdam: North-Holland, p. 563.
Affleck, I. 1998. Exact correlation amplitude for the S = 1/2 Heisenberg antiferromagnetic chain. J. Phys. A: Math. Gen., 31, 4573.
Affleck, I. 2010. Quantum impurity problems in condensed matter physics, in Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing. Proceedings of the Les Houches Summer School 2008, Session LXXXIX, Jacobson, J., Ouvry, S., Pasquier, V., Serban, D., and Cugliandolo, L. F. (eds.). Oxford: Oxford University Press.
Affleck, I., and Haldane, F. D. M. 1987. Critical theory of quantum spin chains. Phys. Rev. B, 36, 5291.
Affleck, I., and Ludwig, A. W. W. 1991. Universal noninteger “ground-state degeneracy” in critical quantum systems. Phys. Rev. Lett., 67, 161.
Affleck, I., and Marston, J. B. 1988. Large-N limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. Phys. Rev. B, 37, 3774.
Affleck, I., Zou, Z., Hsu, T., and Anderson, P. W. 1988a. SU(2) gauge symmetry of the large-U limit of the Hubbard model. Phys. Rev. B, 38, 745.
Affleck, I., Kennedy, T., Lieb, E. H., and Tasaki, H. 1988b. Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys., 115, 477.
Affleck, I., Harvey, J., Palla, L., and Semenoff, G. W. 1989. The Chern-Simons term versus the monopole. Nucl. Phys. B, 328, 575.
Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H., and Oz, Y. 2000. Large N field theories, string theory and gravity. Phys. Rep., 323, 183.
Albuquerque, A. F., and Alet, F. 2010. Critical correlations for short-range valence-bond wave functions on the square lattice. Phys. Rev. B, 82, 180408(R).
Alet, F., Jacobsen, J. L., Misguich, G. et al. 2005. Interacting classical dimers on the square lattice. Phys. Rev. Lett., 94, 235702.
Alet, F., Ikhlef, Y., Jacobsen, J. L., Misguich, G., and Pasquier, V. 2006. Classical dimers with aligning interactions on the square lattice. Phys. Rev. E, 74, 041124.
Alicea, J., Oreg, Y., Refael, G., von Oppen, F., and Fisher, M. P. A. 2011. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Phys., 7, 412.
Amit, D. J. 1980. Field Theory, the Renormalization Group and Critical Phenomena. New York, NY: McGraw-Hill.
Amit, D. J., Goldschmidt, Y., and Grinstein, G. 1980. Renormalisation group analysis of the phase transition in the 2D Coulomb gas, sine-Gordon theory and XY -model. J. Phys. A: Math. Gen., 13, 585.
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492.
Anderson, P. W. 1970. A poor man’s derivation of the scaling laws of the Kondo problem. J. Phys. C: Solid State Phys., 3, 2436.
Anderson, P. W. 1973. Resonating valence bonds: A new kind of insulator?Mater. Res. Bull., 8, 153.
Anderson, P. W. 1987. The resonating valence bond state in La2CuO4 and superconductivity. Science, 235, 1196.
Anderson, P. W., Yuval, G., and Hamann, D. R. 1970. Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B, 1, 4464.
Ardonne, E., Fendley, P., and Fradkin, E. 2004. Topological order and conformal quantum critical points. Ann. Phys., 310, 493.
Armour, W., Hands, S., Kogut, J. B. et al. 2011. Magnetic monopole plasma phase in (2 + 1)d compact quantum electrodynamics with fermionic matter. Phys. Rev. D, 84, 014502.
Arovas, D., Schrieffer, J. R., and Wilczek, F. 1984. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett., 53, 722.
Arovas, D. P., and Auerbach, A. 1988. Functional integral theories of low-dimensional quantum Heisenberg models. Phys. Rev. B, 38, 316.
Arovas, D. P., Schrieffer, J. R., Wilczek, F., and Zee, A. 1985. Statistical mechanics of anyons. Nucl. Phys. B, 251, 117.
Assaad, F. F. 2005. Phase diagram of the half-filled two-dimensional SU(N ) Hubbard- Heisenberg model: A quantum Monte Carlo study. Phys. Rev. B, 71, 075103.
Auerbach, A. 1994. Interacting Electrons and Quantum Magnetism, 2nd edn. Berlin: Springer-Verlag.
Avron, J. E., Seiler, R., and Simon, B. 1983. Homotopy and quantization in condensed matter physics. Phys. Rev. Lett., 51, 51.
Avron, J. E., Seiler, R. and Zograf, P. G. 1995. Viscosity in quantum Hall fluids. Phys. Rev. Lett., 75, 697.
Babujian, H. M., and Tsvelik, A. M. 1986. Heisenberg magnet with an arbitrary spin and anisotropic chiral field. Nucl. Phys. B, 265, 24.
Bais, F. A., van Driel, P., and de Wild Propitius, M. 1992. Quantum symmetries in discrete gauge theories. Phys. Lett. B, 280, 63.
Balatsky, A., and Fradkin, E. 1991. Singlet quantum Hall effect and Chern-Simons theories. Phys. Rev. B, 43, 10622.
Balian, R., Drouffe, J. M., and Itzykson, C. 1975. Gauge fields on a lattice. II. Gaugeinvariant Ising model. Phys. Rev. D, 11, 2098.
Bander, M., and Itzykson, C. 1977. Quantum-field-theory calculation of the two-dimensional Ising model correlation function. Phys. Rev. D, 15, 463.
Banks, T., and Lykken, J. D. 1990. Landau-Ginzburg description of anyonic superconductors. Nucl. Phys. B, 336, 500.
Banks, T., Myerson, R., and Kogut, J. 1977. Phase transitions in abelian lattice gauge theories. Nucl. Phys. B, 129, 493.
Barkeshli, M., and Wen, X. G. 2010a. Classification of Abelian and non-Abelian multilayer fractional quantum Hall states through the pattern of zeros. Phys. Rev. B, 82, 245301.
Barkeshli, M., and Wen, X. G. 2010b. Effective field theory and projective construction for ℤk parafermion fractional quantum Hall states. Phys. Rev. B, 81, 155302.
Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W., and Tycko, R. 1995. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett., 74, 5112.
Baskaran, G., and Anderson, P. W. 1988. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B, 37, 580.
Baskaran, G., Zou, Z., and Anderson, P. W. 1987. The resonating valence bond state and high-Tc superconductivity - a mean field theory. Solid State Commun., 63, 973.
Baxter, R. J. 1982. Exactly Solved Models in Statistical Mechanics. New York, NY: Academic Press.
Baym, G. 1974. Lectures on Quantum Mechanics. New York, NY: Benjamin.
Baym, G., and Pethick, C. J. 1991. Landau Fermi Liquid Theory. New York, NY: John Wiley & Sons.
Bekenstein, J. D. 1973. Black holes and entropy. Phys. Rev. D, 7, 2333.
Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B. 1984. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B, 241, 333.
Bergknoff, H., and Thacker, H. B. 1979. Structure and solution of the massive Thirring model. Phys. Rev. D, 19, 3666.
Bernevig, B. A., Hughes, T. L., and Zhang, S. C. 2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314, 1757.
Berry, M. V. 1984. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London A, 392, 45.
Bethe, H. 1931. Theory of metals. I. Eigenvalues and eigenfunctions of the linear atomic chain. Z. Phys., 71, 205.
Bishara, W., Bonderson, P., Nayak, C., Shtengel, K., and Slingerland, J. K. 2009. Interferometric signature of non-abelian anyons. Phys. Rev. B, 80, 155303.
Bloch, F. 1930. Theory of ferromagnetism. Z. Phys., 61, 206.
Bloch, F. 1933. Stopping power of atoms with several electrons. Z. Phys., 81, 363.
Blok, B., and Wen, X. G. 1990. Effective theories of the fractional quantum Hall effect: Hierarchy construction. Phys. Rev. B, 42, 8145.
Blöte, H. W. J., Cardy, J. L., and Nightingale, M. P. 1986. Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett., 56, 742.
Bombelli, L., Koul, R. K., Lee, J., and Sorkin, R. D. 1986. Quantum source of entropy for black holes. Phys. Rev. D, 34, 373.
Bonderson, P., Kitaev, A., and Shtengel, K. 2006. Detecting non-abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett., 96, 016803.
Borzi, R. A., Grigera, S. A., Farrell, J. et al. 2007. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science, 315, 214.
Boyanovsky, D., Dagotto, E., and Fradkin, E. 1987. Anomalous currents, induced charge and bound states on a domain wall of a semiconductor. Nucl. Phys. B, 285, 340.
Cabra, D. C., Fradkin, E., Rossini, G. L., and Schaposnik, F. A. 2000. Non-abelian fractional quantum Hall states and chiral coset conformal field theories. Int. J. Mod. Phys. A, 30, 4857.
Calabrese, P., and Cardy, J. 2004. Entanglement entropy and quantum field theory. JSTAT J. Statist. Mech.: Theor. Exp. 04, P06002.
Calabrese, P., and Cardy, J. 2007. Entanglement and correlation functions following a local quench: A conformal field theory approach. JSTAT J. Statist. Mech.: Theor. Exp., 2007, P10004.
Calabrese, P., and Cardy, J. 2009. Entanglement entropy and conformal field theory. J. Phys. A: Math. Theor., 42, 504005.
Calabrese, P., and Essler, F. H. L. 2010. Universal corrections to scaling for block entanglement in spin-1/2 X X chains. JSTAT J. Statist. Mech.: Theor. Exp., 2010, P08029.
Calabrese, P., and Lefevre, A. 2008. Entanglement spectrum in one-dimensional systems. Phys. Rev. A, 78, 032329.
Calabrese, P., Cardy, J., and Tonni, E. 2009. Entanglement entropy of two disjoint intervals in conformal field theory. JSTAT J. Statist. Mech.: Theor. Exp., 2009, P11001.
Callan, C. G., and Harvey, J. A. 1985. Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B, 250, 427.
Callan, C. G., and Wilczek, F. 1994. On geometric entropy. Phys. Lett. B, 333, 55.
Camino, F. E., Zhou, W., and Goldman, V. J. 2005. Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B, 72, 075342.
Cano, J., and Fendley, P. 2010. Spin Hamiltonians with resonating-valence-bond ground states. Phys. Rev. Lett., 105, 067205.
Canright, G. S., Girvin, S. M., and Brass, A. 1989. Statistics and flux in two dimensions. Phys. Rev. Lett., 63, 2291.
Cardy, J. 1996. Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press.
Cardy, J., and Peschel, I. 1988. Finite-size dependence of the free energy in two-dimensional critical systems. Nucl. Phys. B, 300, 377.
Cardy, J. L. 1984. Conformal invariance and universality in finite-size scaling. J. Phys. A: Math. Gen., 17, L385.
Cardy, J. L. 1986. Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B, 275, 200.
Cardy, J. L. 1989. Boundary conditions, fusion rules, and the Verlinde formula. Nucl. Phys. B, 324, 581.
Cardy, J. L., and Calabrese, P. 2010. Unusual corrections to scaling in entanglement entropy. JSTAT J. Statist. Mech.: Theor. Exp., P04023.
Cardy, J. L., Castro-Alvaredo, O. A., and Doyon, B. 2007. Form factors of branch-point twist fields in quantum integrable models and entanglement entropy. J. Stat. Phys., 130, 129.
Carlson, E. W., Emery, V. J., Kivelson, S. A., and Orgad, D. 2004. Concepts in high temperature superconductivity, in The Physics of Conventional and Unconventional Superconductors, Bennemann, K. H. and Ketterson, J. B. (eds.). Berlin: Springer-Verlag. arXiv:cond-mat/0206217.
Casini, H., and Huerta, M. 2005. Entanglement and alpha entropies for a massive scalar field in two dimensions. JSTAT J. Statist. Mech.: Theor. Exp., 2005, P12012.
Casini, H., and Huerta, M. 2007. Universal terms for the entanglement entropy in 2 + 1 dimensions. Nucl. Phys. B, 764, 183.
Casini, H., and Huerta, M. 2009. Entanglement entropy in free quantum field theory. J. Phys. A: Math. Theor., 42, 504007.
Casini, H., Fosco, C. D., and Huerta, M. 2005. Entanglement and alpha entropies for a massive Dirac field in two dimensions. JSTAT J. Statist. Mech.: Theor. Exp., 2005, P07007.
Casini, H., Huerta, M., and Myers, R. C. 2011. Towards a derivation of holographic entanglement entropy. JHEP J. High Energy Phys., 2011, 036.
Castelnovo, C., Chamon, C., Mudry, C., and Pujol, P. 2004. From quantum mechanics to classical statistical physics: Generalized Rokhsar-Kivelson Hamiltonians and the “stochastic matrix form” decomposition. Ann. Phys., 318, 316.
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K. 2009. The electronic properties of graphene. Rev. Mod. Phys., 81, 109.
Chaikin, P. M., and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.
Chakravarty, S. 2010. Scaling of von Neumann entropy at the Anderson transition. Int. J. Mod. Phys. B, 24, 1823 (Special volume on Fifty Years of Anderson Localization).
Chakravarty, S., Halperin, B. I., and Nelson, D. R. 1988. Low-temperature behavior of two-dimensional quantum antiferromagnets. Phys. Rev. Lett., 60, 1057.
Chamon, C., Fradkin, E., and López, A. 2007. Fractional statistics and duality: Strong tunneling behavior of edge states of quantum Hall liquids in the Jain sequence. Phys. Rev. Lett., 98, 176801.
Chamon, C., Jackiw, R., Nishida, Y., Pi, S. Y., and Santos, L. 2010. Quantizing Majorana fermions in a superconductor. Phys. Rev. B, 81, 224515.
Chamon, C., and Fradkin, E. 1997. Distinct universal conductances in tunneling to quantum Hall states: The role of contacts. Phys. Rev. B, 56, 2012.
Chamon, C., Freed, D. E., and Wen, X. G. 1996. Nonequilibrium quantum noise in chiral Luttinger liquids. Phys. Rev. B, 53, 4033.
Chamon, C., Freed, D. E., Kivelson, S. A., Sondhi, S. L., and Wen, X. G. 1997. Two-point-contact interferometer for quantum Hall systems. Phys. Rev. B, 55, 2331.
Chandra, P., Coleman, P., and Larkin, A. I. 1990. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett., 64, 88.
Chang, A. M. 2003. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys., 75, 1449.
Chang, A. M., Pfeiffer, L. N., and West, K. W. 1996. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett., 77, 2538.
Chen, Y.-H., Wilczek, F., Witten, E., and Halperin, B. I. 1989. On anyon superconductivity. Int. J. Mod. Phys. B, 3, 1001.
Cho, G. Y., and Moore, J. E. 2011. Topological BF field theory description of topological insulators. Ann. Phys., 326, 1515.
Cho, H., Young, J. B., Kang, W. et al. 1998. Hysteresis and spin transitions in the fractional quantum Hall effect. Phys. Rev. Lett., 81, 2522.
Chubukov, A. V. 1993. Kohn-Luttinger effect and the instability of a two-dimensional repulsive Fermi liquid at T = 0. Phys. Rev. B, 48, 1097.
Chung, S. B., Bluhm, H., and Kim, E.-A. 2007. Stability of half-quantum vortices in px + i py superconductors. Phys. Rev. Lett., 99, 197002.
Coleman, P. 1984. New approach to the mixed-valence problem. Phys. Rev. B, 29, 3035.
Coleman, S. 1975. Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D, 11, 2088.
Coleman, S. 1985. Aspects of Symmetry. Cambridge: Cambridge University Press.
Cooper, N. R., Wilkin, N. K., and Gunn, J. M. F. 2001. Quantum phase of vortices in rotating Bose-Einstein condensates. Phys. Rev. Lett., 87, 120405.
Creutz, M. 2001. Aspects of chiral symmetry and the lattice. Rev. Mod. Phys., 73, 119.
Dagotto, E., and Moreo, A. 1989. Phase diagram of the frustrated spin-1/2 Heisenberg antiferromagnet in 2 dimensions. Phys. Rev. Lett., 63, 2148.
Dagotto, E., Fradkin, E., and Moreo, A. 1988. SU(2) gauge invariance and order parameters in strongly coupled electronic systems. Phys. Rev. B, 38, 2926.
Das Sarma, S., and Pinczuk, A. (eds.). 1997. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Two-Dimensional Semiconductor Structures. New York, NY: Wiley.
Das Sarma, S., Freedman, M., and Nayak, C. 2005. Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett., 94, 166802.
Das Sarma, S., Freedman, M., Nayak, C., Simon, S. H., and Stern, A. 2008. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys., 80, 1083.
Dashen, R., and Frishman, Y. 1975. Four-fermion interactions and scale invariance. Phys. Rev. D, 11, 2781.
Dashen, R., Hasslacher, B., and Neveu, A. 1975. Particle spectrum in model field theories from semiclassical functional integral techniques. Phys. Rev. D, 12, 2443.
de Gennes, P. G. 1966. Superconductivity of Metals and Alloys. New York, NY: W. A. Benjamin.
de Gennes, P. G., and Prost, J. 1993. The Physics of Liquid Crystals. Oxford: Oxford Science/Clarendon.
de Picciotto, R., Reznikov, M., Heiblum, M. et al. 1997. Direct observation of a fractional charge. Nature, 389, 162.
den Nijs, M. P. M. 1981. Derivation of extended scaling relations between critical exponents in two-dimensional models from the one-dimensional Luttinger model. Phys. Rev. B, 23, 6111.
Deser, S., Jackiw, R., and Templeton, S. 1982. Three-dimensional massive gauge theories. Phys. Rev. Lett., 48, 975.
Di Francesco, P., Mathieu, P., and Sénéchal, D. 1997. Conformal Field Theory. Berlin: Springer-Verlag.
Dirac, P. A. M. 1931. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. London, 133, 60.
Dirac, P. A. M. 1955. Gauge invariant formulation of quantum electrodynamics. Can. J. Phys., 33, 650.
Dixon, L., Friedan, D., Martinec, E., and Shenker, S. 1987. The conformal field theory of orbifolds. Nucl. Phys. B, 282, 13.
Dolev, M., Heiblum, M., Umansky, V., Stern, A., and Mahalu, D. 2008. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall statejournal. Nature, 452, 829.
Dombre, T., and Kotliar, G. 1989. Instability of the long-range resonating-valence-bond state in the mean-field approach. Phys. Rev. B, 39, 855.
Dombre, T., and Read, N. 1988. Absence of the Hopf invariant in the long-wavelength action of two-dimensional antiferromagnets. Phys. Rev. B, 38, 7181.
Dong, S., Fradkin, E., Leigh, R. G., and Nowling, S. 2008. Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids. JHEP J. High Energy Phys., 05, 016.
Doniach, S., and Sondheimer, E. H. 1974. Green’s Functions for Solid State Physicists. New York, NY: Benjamin.
Dotsenko, V. S. 1984. Critical behaviour and associated conformal algebra of the ℤ3 Potts model. Nucl. Phys. B, 235, 54.
Dyson, F. J. 1956a. General theory of spin-wave interactions. Phys. Rev., 102, 1217.
Dyson, F. J. 1956b. Thermodynamic behavior of an ideal ferromagnet. Phys. Rev., 102, 1230.
Dzyaloshinskii, I., Polyakov, A. M., and Wiegmann, P. B. 1988. Neutral fermions in paramagnetic insulators. Phys. Lett. A, 127, 112.
Eguchi, T., Gilkey, P. B., and Hanson, A. J. 1980. Gravitation, gauge theories and differential geometry. Phys. Rep., 66, 213.
Einarsson, T., Sondhi, S. L., Girvin, S. M., and Arovas, D. P. 1995. Fractional spin for quantum Hall effect quasiparticles. Nucl. Phys. B, 441, 515.
Einstein, A., Podolsky, P., and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev., 47, 777.
Eisenstein, J. P., and MacDonald, A. H. 2004. Bose-Einstein condensation of excitons in bilayer electron systems. Nature, 432, 691.
Eisenstein, J. P., Störmer, H. L., Pfeiffer, L. N., and West, K. W. 1990. Evidence for a spin transition in the ν = 2/3 fractional quantum Hall effect. Phys. Rev. B, 41, 7910.
Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W., and He, S 1992. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett., 68.
Eliezer, D., and Semenoff, G. W. 1992a. Anyonization of lattice Chern-Simons theory. Ann. Phys., 217, 66.
Eliezer, D., and Semenoff, G. W. 1992b. Intersection forms and the geometry of lattice Chern-Simons theory. Phys. Lett. B, 286, 118.
Elitzur, S. 1975. Impossibility of spontaneous breaking of local symmetries. Phys. Rev. D, 12, 3978.
Elitzur, S., Moore, G., Schwimmer, A., and Seiberg, N. 1989. Remarks on the canonical quantization of the Chern-Simons-Witten theory. Nucl. Phys. B, 326, 108.
Elstner, N., Singh, R. P. P., and Young, A. P. 1993. Finite temperature properties of the spin-1/2 Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. Lett., 71, 1629.
Emery, V. J. 1979. Theory of the one-dimensional electron gas, in Highly Conducting One-Dimensional Solids. Devreese, J. T., Evrard, R. P., and van Doren, V. E. (eds.). New York, NY: Plenum.
Erdélyi, A. (ed). 1953. Higher Transcendental Functions. New York, NY: McGraw-Hill.
Essin, A. M., Moore, J. E., and Vanderbilt, D. 2009. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 102, 146805.
Essler, F. H. L., Frahm, H., Gohmann, F., Klumper, A., and Korepin, V. E. 2005. The One-Dimensional Hubbard Model. Cambridge: Cambridge University Press.
Evenbly, G., and Vidal, G. 2009. Entanglement renormalization in two spatial dimensions. Phys. Rev. Lett., 102, 180406.
Faddeev, L. D. 1976. Introduction to functional methods, in Methods of Field Theory. Proceedings of the Les Houches Summer School 1975, Session XXVIII, Stora, R. and Zinn-Justin, J. (eds.). Amsterdam: North-Holland.
Faddeev, L. D. 1984. Integrable models in (1 + 1)-dimensional quantum field theory, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the 1982 Les Houches Summer School, Session XXXIX, Zuber, J.-B. and Stora, R. (eds.). Amsterdam: North-Holland.
Fagotti, M., Calabrese, P., and Moore, J. E. 2011. Entanglement spectrum of randomsinglet quantum critical points. Phys. Rev. B, 83, 045110.
Feenberg, E. 1969. Theory of Quantum Fluids. New York, NY: Academic Press.
Fendley, P., and Fradkin, E. 2005. Realizing non-abelian statistics in time-reversal-invariant systems. Phys. Rev. B, 72, 024412.
Fendley, P., Saleur, H., and Warner, N. P. 1994. Exact solution of a massless scalar field with a relevant boundary interaction. Nucl. Phys. B, 430, 577.
Fendley, P., Ludwig, A. W. W., and Saleur, H. 1995a. Exact conductance through point contacts in the ν = 1/3 fractional quantum Hall effect. Phys. Rev. Lett., 74, 3005.
Fendley, P., Ludwig, A. W. W., and Saleur, H. 1995b. Exact nonequilibrium transport through point contacts in quantum wires and fractional quantum Hall devices. Phys. Rev. B, 52, 8934.
Fendley, P., Moessner, R., and Sondhi, S. L. 2002. Classical dimers on the triangular lattice. Phys. Rev. B, 66, 214513.
Fendley, P., Fisher, M. P. A., and Nayak, C. 2006. Dynamical disentanglement across a point contact in a non-Abelian quantum Hall state. Phys. Rev. Lett., 97, 036801.
Fetter, A. L., and Walecka, J. D. 1971. Quantum Theory of Many-Particle Systems. New York, NY: McGraw-Hill.
Fetter, A. L., Hanna, C. B., and Laughlin, R. B. 1989. Random-phase approximation in the fractional-statistics gas. Phys. Rev. B, 39, 9679.
Feynman, R. P. 1972. Statistical Mechanics, A Set of Lectures. Reading, MA: W. A. Benjamin Inc.
Feynman, R. P., and Hibbs, A. R. 1965. Path Integrals and Quantum Mechanics. New York, NY: McGraw-Hill.
Fidkowski, L., Freedman, M., Nayak, C., Walker, K., and Wang, Z. 2009. From string nets to nonabelions. Commun. Math. Phys., 287, 805.
Fisher, D. S. 1994. Random antiferromagnetic quantum spin chains. Phys. Rev. B, 50, 3799.
Fisher, D. S. 1995. Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B, 51, 6411.
Fisher, M. E., and Stephenson, J. 1963. Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev, 132, 1411.
Fradkin, E. 1989. Jordan-Wigner transformation for quantum-spin systems in two dimensions and fractional statistics. Phys. Rev. Lett., 63, 322.
Fradkin, E. 1990a. Superfluidity of the lattice anyon gas and topological invariance. Phys. Rev. B, 42, 570.
Fradkin, E. 1990b. The spectrum of short range resonating valence bond theories, in Field Theories in Condensed Matter Physics, A Workshop. Proceedings of the Johns Hopkins Workshop on Field Theories in Condensed Matter Physics, Baltimore 1988, Tešanović, Z. (ed.). Redwood City, CA: Addison-Wesley, p. 73.
Fradkin, E. 2009. Scaling of entanglement entropy at 2D quantum Lifshitz fixed points and topological fluids. J. Phys. A: Math. Theor., 42, 504011.
Fradkin, E., and Hirsch, J. E. 1983. Phase diagram of one-dimensional electron-phonon systems. I. The Su-Schrieffer-Heeger model. Phys. Rev. B, 27, 1680.
Fradkin, E., and Kadanoff, L. P. 1980. Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B, 170, 1.
Fradkin, E., and Kivelson, S. A. 1990. Short range resonating valence bond theories and superconductivity. Mod. Phys. Lett. B, 4, 225.
Fradkin, E., and Kohmoto, M. 1987. Quantized Hall effect and geometric localization of electrons on lattices. Phys. Rev. B, 35, 6017.
Fradkin, E., and Moore, J. E. 2006. Entanglement entropy of 2D conformal quantum critical points: Hearing the shape of a quantum drum. Phys. Rev. Lett., 97, 050404.
Fradkin, E., and Schaposnik, F. A. 1991. Chern-Simons gauge theories, confinement, and the chiral spin liquid. Phys. Rev. Lett., 66, 276.
Fradkin, E., and Shenker, S. H. 1979. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D, 19, 3682.
Fradkin, E., and Stone, M. 1988. Topological terms in one- and two-dimensional quantum Heisenberg antiferromagnets. Phys. Rev. B, 38, 7215(R).
Fradkin, E., and Susskind, L. 1978. Order and disorder in gauge systems and magnets. Phys. Rev. D, 17, 2637.
Fradkin, E., Dagotto, E., and Boyanovsky, D. 1986. Physical realization of the parity anomaly in condensed matter physics. Phys. Rev. Lett., 57, 2967. Erratum: Ibid. 58, 961 (1987).
Fradkin, E., Moreno, E., and Schaposnik, F. A. 1993. Ground state wave functions for 1+1 dimensional fermion field theories. Nucl. Phys. B, 392, 667.
Fradkin, E., Nayak, C., Tsvelik, A., and Wilczek, F. 1998. A Chern-Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B, 516, 704.
Fradkin, E., Nayak, C., and Schoutens, K. 1999. Landau-Ginzburg theories for non-Abelian quantum Hall states. Nucl. Phys. B, 546, 711.
Fradkin, E., Huse, D., Moessner, R., Oganesyan, V., and Sondhi, S. L. 2004. On bipartite Rokhsar-Kivelson points and Cantor deconfinement. Phys. Rev. B, 69, 224415.
Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P., and Mackenzie, A. P. 2010. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys., 1, 7.1.
Freedman, M., Nayak, C., Shtengel, K., and Walker, K. 2004. A class of P, T -invariant topological phases of interacting electrons. Ann. Phys., 310, 428.
Freedman, M. H. 2001. Quantum computation and the localization of modular functors. Found. Comput. Math., 1, 183.
Freedman, M. H. 2003. A magnetic model with a possible Chern-Simons phase. Commun. Math. Phys., 234, 129.
Freedman, M. H., Kitaev, A., and Wang, Z. 2002a. Simulation of topological field theories by quantum computers. Commun. Math. Phys., 227, 587.
Freedman, M. H., Kitaev, A., Larsen, M. J., and Wang, Z. 2002b. Topological quantum computation. Commun. Math. Phys., 227, 605.
Friedan, D. 1982. A proof of the Nielsen-Ninomiya theorem. Commun. Math. Phys., 85, 481.
Friedan, D., and Shenker, S. 1987. The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B, 281, 509.
Friedan, D. H. 1984. Introduction to Polyakov’s string theory, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the Les Houches Summer School 1982, Session XXXIX, Zuber, J.-B. and Stora, R. (eds.). Amsterdam: North-Holland.
Friedan, D. H. 1985. Nonlinear models in 2 + dimensions. Ann. Phys., 163, 318.
Friedan, D. H., Qiu, Z., and Shenker, S. H. 1984. Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett., 52, 1575.
Fröhlich, J., and Kerler, T. 1991. Universality in quantum Hall systems. Nucl. Phys. B, 354, 369.
Fröhlich, J., and Marchetti, P. A. 1988. Quantum field theory of anyons. Lett. Math. Phys., 16, 347.
Fröhlich, J., and Zee, A. 1991. Large-scale physics of the quantum Hall fluid. Nucl. Phys. B, 364, 517.
Fu, L., and Kane, C. L. 2006. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B, 74, 195312.
Fu, L., and Kane, C. L. 2007. Topological insulators with inversion symmetry. Phys. Rev. B, 76, 045302.
Fu, L., and Kane, C. L. 2008. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100, 096407.
Fu, L., Kane, C. L., and Mele, E. J. 2007. Topological insulators in three dimensions. Phys. Rev. Lett., 98, 106803.
Fuchs, J. 1992. Affine Lie Algebras and Quantum Groups. Cambridge: Cambridge University Press.
Fursaev, D. V. 2006. Entanglement entropy in critical phenomena and analog models of quantum gravity. Phys. Rev. D, 73, 124025.
Furukawa, S., and Misguich, G. 2007. Topological entanglement entropy in the quantum dimer model on the triangular lattice. Phys. Rev. B, 75, 214407.
Georgi, H. 1982. Lie Algebras in Particle Physics. New York, NY: Benjamin/Cummings.
Gepner, D. 1987. New conformal field theories associated with Lie algebras and their partition functions. Nucl. Phys. B, 290, 10.
Ginsparg, P. 1989. Applied conformal field theory, in Fields, Strings and Critical Phenomena. Proceedings of the Les Houches Summer School 1988, Session XLIX, Brézin, E. and Zinn-Justin, J. (eds.). Amsterdam: North-Holland.
Gioev, D., and Klich, I. 2006. Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett., 96, 100503.
Girvin, S. M., and Jach, T. 1984. Formalism for the quantum Hall effect: Hilbert space of analytic functions. Phys. Rev. B, 29, 5617.
Girvin, S. M., and MacDonald, A. H. 1987. Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect. Phys. Rev. Lett., 58, 1252.
Girvin, S. M., MacDonald, A. H., and Platzman, P. M. 1986. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B, 33, 2481.
Gogolin, A. O., Nersesyan, A. A., and Tsvelik, A. M. 1998. Bosonization and Strongly Correlated Systems. Cambridge: Cambridge University Press.
Goldenfeld, N. 1992. Lectures on Phase Transitions and the Renormalization Group. Reading, MA: Addison-Wesley.
Goldhaber, A. S. 1998. Hairs on the unicorn: Fine structure of monopoles and other solitons, in Proceedings of the CRM-FIELDS-CAP Workshop “Solitons,” Queen’s University, Kingston (Ontario, Canada), July 1997. New York: Springer-Verlag. arXiv:9712190.
Goldstone, J., and Wilczek, F. 1981. Fractional quantum numbers on solitons. Phys. Rev. Lett., 47, 986.
Golterman, M. F. L., Jansen, K., and Kaplan, D. B. 1993. Chern-Simons currents and chiral fermions on the lattice. Phys. Lett. B, 301, 219.
Greiter, M., Wen, X. G., and Wilczek, F. 1991. Paired Hall state at half-filling. Phys. Rev. Lett., 66, 3205.
Greiter, M., Wen, X. G., and Wilczek, F. 1992. Paired Hall states. Nucl. Phys. B, 374, 567.
Grinstein, G. 1981. Anisotropic sine-Gordon model and infinite-order phase transitions in three dimensions. Phys. Rev. B, 23, 4615.
Grinstein, G., and Pelcovits, R. A. 1982. Nonlinear elastic theory of smectic liquid crystals. Phys. Rev. A, 26, 915.
Gross, D. J., and Neveu, A. 1974. Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D, 10, 3235.
Gubser, S. S., Klebanov, I. R., and Polyakov, A. M. 1998. Gauge theory correlators from non-critical string theory. Phys. Lett. B, 428, 105.
Haldane, F. D. M. 1981. Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C: Solid State Phys., 14, 2585.
Haldane, F. D. M. 1982. Spontaneous dimerization in the S = 1/2 Heisenberg antiferromagnetic chain with competing interactions. Phys. Rev. B, 25, 4925.
Haldane, F. D. M. 1983a. Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. A, 93, 464.
Haldane, F. D. M. 1983b. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett., 51, 605.
Haldane, F. D. M. 1983c. Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett., 50, 1153.
Haldane, F. D. M. 1985a. Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling. Phys. Rev. Lett., 55, 2095.
Haldane, F. D. M. 1985b. “θ Physics” and quantum spin chains. J. Appl. Phys., 57, 3359.
Haldane, F. D. M. 1988a. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly.”Phys. Rev. Lett., 61, 2015.
Haldane, F. D. M. 1988b. O(3) non-linear σ model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett., 61, 1029.
Haldane, F. D. M. 2011. Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett., 107, 116801.
Haldane, F. D. M., and Rezayi, E. H. 1985. Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B, 31, 2529.
Hallberg, K. 2006. New trends in density matrix renormalization. Adv. Phys., 55, 477.
Halperin, B. I. 1982. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25, 2185.
Halperin, B. I. 1983. Theory of the quantized Hall conductance. Helv. Phys. Acta, 56, 75.
Halperin, B. I. 1984. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett., 52, 1583.
Halperin, B. I., Lee, P. A., and Read, N. 1993. Theory of the half-filled Landau level. Phys. Rev. B, 47, 7312.
Halperin, B. I., Stern, A., Neder, I., and Rosenow, B. 2011. Theory of the Fabry-Pérot quantum Hall interferometer. Phys. Rev. B, 83, 155440.
Hamma, A., Ionicioiu, R., and Zanardi, P. 2005a. Bipartite entanglement and entropic boundary law in lattice spin systems. Phys. Rev. A, 71, 022315.
Hamma, A., Ionicioiu, R., and Zanardi, P. 2005b. Ground state entanglement and geometric entropy in the Kitaev model. Phys. Lett. A, 337, 22.
Hansson, T. H., Oganesyan, V., and Sondhi, S. L. 2004. Superconductors are topologically ordered. Ann. Phys., 313, 497.
Hartnoll, S. A. 2012. Horizons, holography and condensed matter, in Black Holes in Higher Dimensions, Horowitz, G. (ed.). Cambridge: Cambridge University Press. pp. 387–419.
Hartnoll, S. A., Polchinski, J., Silverstein, E., and Tong, D. 2010. Towards strange metal holography. J. High Energy Phys. JHEP, 2010, 120.
Hasan, M. Z., and Kane, C. L. 2010. Colloquium: Topological insulators. Rev. Mod. Phys., 82, 3045.
Hasan, M. Z., and Moore, J. E. 2011. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2, 55.
Hastings, M., and Koma, T. 2006. Spectral gap and exponential decay of correlations. Commun. Math. Phys., 265, 781.
Hawking, S. W. 1975. Particle creation by black holes. Commun. Math. Phys., 43, 199.
Heeger, A. J., Kivelson, S., Schrieffer, J. R., and Su, W. P. 1988. Solitons in conducting polymers. Rev. Mod. Phys., 60, 781.
Heemskerk, I., and Polchinski, J. 2011. Holographic and Wilsonian renormalization groups. J. High Energy Phys. JHEP, 2011, 031.
Heinonen, O. (ed.). 1998. Composite Fermions: A Unified View of the Quantum Hall Regime. Singapore: World-Scientific Publishing Co.
Hirsch, J. E. 1990. Spin-split states in metals. Phys. Rev. B, 41, 6820.
Hirsch, J. E. 1999. Spin Hall effect. Phys. Rev. Lett., 83, 1834.
Ho, T. L. 1995. Broken symmetry of two-component ν = 1/2 quantum Hall states. Phys. Rev. Lett., 75, 1186.
Hofstadter, D. R. 1976. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14, 2239.
Hohenadler, M., Lang, T. C., and Assaad, F. F. 2011. Correlation effects in quantum spin-Hall insulators: A quantum Monte Carlo study. Phys. Rev. Lett., 106, 100403.
Hohenadler, M., Meng, Z. Y., Lang, T. C. et al. 2012. Quantum phase transitions in the Kane-Mele-Hubbard model. Phys. Rev. B, 85, 115132.
Holstein, T., and Primakoff, H. 1940. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev., 58, 1098.
Holzhey, C., Larsen, F., and Wilczek, F. 1994. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B, 424, 443.
Hosotani, Y., and Chakravarty, S. 1990. Superconductivity in the anyon model. Phys. Rev. B, 42, 342.
Hoyos, C., and Son, D. T. 2012. Hall viscosity and electromagnetic response. Phys. Rev. Lett., 108, 066805.
Hsu, B., and Fradkin, E. 2010. Universal behavior of entanglement in 2D quantum critical dimer models. JSTAT J. Statist. Mech.: Theor. Exp., 2010, P09004.
Hsu, B., Grosfeld, E., and Fradkin, E. 2009a. Quantum noise and entanglement generated by a local quantum quench. Phys. Rev. B, 80, 235412.
Hsu, B., Mulligan, M., Fradkin, E., and Kim, E.-A. 2009b. Universal behavior of the entanglement entropy in 2D conformal quantum critical points. Phys. Rev. B, 79, 115421.
Ioffe, L. B., and Larkin, A. I. 1988. Effective action of a two-dimensional antiferromagnet. Int. J. Mod. Phys. B, 2, 203.
Itzykson, C., and Zuber, J. B. 1980. Quantum Field Theory, 1st edn. New York, NY: McGraw-Hill.
Ivanov, D. A. 2001. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett., 86, 268.
Jackiw, R., and Rebbi, C. 1976. Solitons with fermion number 1/2. Phys. Rev. D, 13, 3398.
Jackiw, R., and Rossi, P. 1981. Zero modes of the vortex-fermion system. Nucl. Phys. B, 190, 681.
Jackiw, R., and Schrieffer, J. R. 1981. Solitons with fermion number 1/2 in condensed matter and relativistic field theories. Nucl. Phys. B, 190, 253.
Jain, J. K. 1989a. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett., 63, 199.
Jain, J. K. 1989b. Incompressible quantum Hall states. Phys. Rev. B, 40, 8079.
Jain, J. K. 1990. Theory of the fractional quantum Hall effect. Phys. Rev. B, 41, 7653.
Jain, J. K. 2007. Composite Fermions, 1st edn. Cambridge: Cambridge University Press.
Jalabert, R. A., and Sachdev, S. 1991. Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model. Phys. Rev. B, 44, 686.
Jang, J., Ferguson, D. G., Vakaryuk, V. et al. 2011. Observation of half-height magnetization steps in Sr2RuO4. Science, 331, 186.
Jansen, K. 1996. Domain wall fermions and chiral gauge theories. Phys. Rep., 273, 1.
Jia, X., Subramanian, A. R., Gruzberg, I. A., and Chakravarty, S. 2008. Entanglement entropy and multifractality at the localization transition. Phys. Rev. B, 77, 014208.
Jiang, H. C., Yao, H., and Balents, L. 2012. Spin liquid ground state of the spin-1/2 square J1-J2 Heisenberg model. Phys. Rev. B, 86, 024424.
Jongeward, G. A., Stack, J. D., and Jayaprakash, C. 1980. Monte Carlo calculations on Z 2 gauge-Higgs theories. Phys. Rev. D, 21, 3360.
Jordan, P., and Wigner, E. P. 1928. Pauli’s equivalence prohibition. Z. Phys., 47, 631.
José, J. V., Kadanoff, L. P., Kirkpatrick, S., and Nelson, D. R. 1977. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B, 16, 1217.
Ju, H., Kallin, A. B., Fendley, P., Hastings, M. B., and Melko, R. G. 2012. Universal largescale entanglement in two-dimensional gapless systems. Phys. Rev. B, 85, 165121.
Kac, M. 1966. Can you hear the shape of a drum?Amer. Math. Monthly, 73, 1.
Kadanoff, L. P. 1969. Operator algebra and the determination of critical indices. Phys. Rev. Lett., 23, 1430.
Kadanoff, L. P. 1977. The application of renormalization group techniques to quarks and strings. Rev. Mod. Phys., 49, 267.
Kadanoff, L. P. 1979. Multicritical behavior at the Kosterlitz-Thouless critical point. Ann. Phys., 120, 39.
Kadanoff, L. P., and Baym, G. 1962. Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Non-Equilibrium Problems. New York, NY: Benjamin.
Kadanoff, L. P., and Brown, A. C. 1979. Correlation functions on the critical lines of the Baxter and Ashkin-Teller models. Ann. Phys., 121, 318.
Kadanoff, L. P., and Ceva, H. 1971. Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B, 3, 3918.
Kadanoff, L. P., and Martin, P. C. 1961. Theory of many-particle systems. II. Superconductivity. Phys. Rev., 124, 670.
Kalmeyer, V., and Laughlin, R. B. 1987. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett., 59, 2095.
Kane, C. L., and Fisher, M. P. A. 1992. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B, 46, 15233.
Kane, C. L., and Fisher, M. P. A. 1994. Nonequilibrium noise and fractional charge in the quantum Hall effect. Phys. Rev. Lett., 72, 724.
Kane, C. L., and Mele, E. J. 2005a. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801.
Kane, C. L., and Mele, E. J. 2005b. Z2 Topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802.
Kane, C. L., Lee, P. A., Ng, T. K., Chakraborty, B., and Read, N. 1990. Mean-field theory of the spiral phases of a doped antiferromagnet. Phys. Rev. B, 41, 2653.
Kane, C. L., Fisher, M. P. A., and Polchinski, J. 1994. Randomness at the edge: Theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett., 72, 4129.
Kaplan, D. B. 1992. A method for simulating chiral fermions on the lattice. Phys. Lett. B, 288, 342.
Kennedy, T., and King, C. 1985. Symmetry breaking in the lattice Abelian Higgs model. Phys. Rev. Lett., 55, 776.
Kennedy, T., Lieb, E., and Shastri, S. 1988. The XY model has long-range order for all spins and all dimensions greater than one. Phys. Rev. Lett., 61, 2582.
King-Smith, R. D., and Vanderbilt, D. 1993. Theory of polarization of crystalline solids. Phys. Rev. B, 47, 1651.
Kitaev, A. 2009. Periodic table for topological insulators and superconductors, in Advances in Theoretical Physics: Landau Memorial Conference, Feigelman, M. (ed.). College Park, MA: AIP Conference Proceedings, for the American Institute of Physics, p. 22.
Kitaev, A., and Preskill, J. 2006. Topological entanglement entropy. Phys. Rev. Lett., 96, 110404.
Kitaev, A. 2001. Unpaired Majorana fermions in quantum wires. Physics - Uspekhi, 44, 131. (Proceedings of the Mesoscopic and Strongly Correlated Electron Systems Conference (9–16 July 2000, Chernogolovka, Moscow Oblast).)
Kitaev, A. 2003. Fault-tolerant quantum computation by anyons. Ann. Phys., 303, 2. arXiv:quant-ph/9707021.
Kitazawa, Y., and Murayama, H. 1990. Topological phase transition of anyon systems. Nucl. Phys. B, 338, 777.
Kivelson, S., and Roček, M. 1985. Consequences of gauge invariance for fractionally charged quasi-particles. Phys. Lett. B, 156, 85.
Kivelson, S. A., and Rokhsar, D. S. 1990. Bogoliubov quasiparticles, spinons, and spin- charge decoupling in superconductors. Phys. Rev. B, 41, 11693(R).
Kivelson, S. A., Kallin, C., Arovas, D. P., and Schrieffer, J. R. 1986. Cooperative ring exchange theory of the fractional quantized Hall effect. Phys. Rev. Lett., 56, 873.
Kivelson, S. A., Rokhsar, D., and Sethna, J. P. 1987. Topology of the resonating valence-bond state: Solitons and high Tc superconductivity. Phys. Rev. B, 35, 865.
Kivelson, S. A., Fradkin, E., and Emery, V. J. 1998. Electronic liquid-crystal phases of a doped Mott insulator. Nature, 393, 550.
Kivelson, S. A., Fradkin, E., and Geballe, T. H. 2004. Quasi-1D dynamics and the nematic phase of the 2D Emery model. Phys. Rev. B, 69, 144505.
Klauder, J. 1979. Path integrals and stationary phase approximations. Phys. Rev. D, 19, 2349.
Klich, I., and Levitov, L. 2009. Quantum noise and an entanglement meter. Phys. Rev. Lett., 102, 100502.
Knizhnik, V. G., and Zamolodchikov, A. B. 1984. Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys. B, 247, 83.
Kogut, J., and Susskind, L. 1975. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 11, 395.
Kogut, J. B. 1979. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51, 659.
Kogut, J. B. 1983. The lattice gauge theory approach to quantum chromodynamics. Rev. Mod. Phys., 55, 775.
Kogut, J. B. 1984. A review of the lattice gauge theory approach to quantum chromodynamics, 1982, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the Les Houches Summer School in Theoretical Physics, 1982, Session XXXIX, Zuber, L. B. and Stora, R. (eds.). Amsterdam: North-Holland.
Kohmoto, M. 1983. Metal-insulator transition and scaling for incommensurate systems. Phys. Rev. Lett., 51, 1198.
Kohmoto, M. 1985. Topological invariant and the quantization of the Hall conductance. Ann. Phys., 160, 343.
Kohmoto, M., and Shapir, Y. 1988. Antiferromagnetic correlations of the resonating-valence-bond state. Phys. Rev. B, 37, 9439.
Kohn, W. 1961. Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas. Phys. Rev., 123, 1242.
Kohn, W., and Luttinger, J. M. 1965. New mechanism for superconductivity. Phys. Rev. Lett., 15, 524.
Kondev, J. 1997. Liouville field theory of fluctuating loops. Phys. Rev. Lett., 78, 4320.
Kondev, J., and Henley, C. L. 1996. Kac-Moody symmetries of critical ground states. Nucl. Phys. B, 464, 540.
König, M., Steffen, S., Brüne, C. et al. 2007. Quantum spin Hall insulator state in HgTe quantum wells. Science, 318, 766.
König, M., Buhmann, H., Molenkamp, L. W. et al. 2008. The quantum spin Hall effect: Theory and experiment. J. Phys. Soc. Japan, 77, 031007.
Kopp, A., Jia, X., and Chakravarty, S. 2007. Non-analyticity of von Neumann entropy as a criterion for quantum phase transitions. Ann. Phys. (N.Y.), 322, 1466.
Kosterlitz, J. M. 1974. The critical properties of the two-dimensional XY model. J. Phys. C: Solid State Phys., 7, 1046.
Kosterlitz, J. M. 1977. The d-dimensional Coulomb gas and the roughening transition. J. Phys. C: Solid State Phys., 10, 3753.
Kosterlitz, J. M., and Thouless, D. J. 1973. Order, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys., 6, 1181.
Kotliar, G. 1988. Resonating valence bonds and d-wave superconductivity. Phys. Rev. B, 37, 3664.
Kramers, H. A., and Wannier, G. H. 1941. Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev., 60, 252.
Krauss, L. M., and Wilczek, F. 1989. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62, 1221.
Kuklov, A. B., Matsumoto, M., Prokof’ev, N. V., Svistunov, B. V., and Troyer, M. 2008. Deconfined criticality: Generic first-order transition in the SU(2) symmetry case. Phys. Rev. Lett., 101, 050405.
Kwon, H. J., Houghton, A., and Marston, J. B. 1994. Gauge interactions and bosonized fermion liquids. Phys. Rev. Lett., 73, 284.
Laflorencie, N., Sørensen, E. S., Chang, M.-S., and Affleck, I. 2006. Boundary effects in the critical scaling of entanglement entropy in 1D systems. Phys. Rev. Lett., 96, 100603.
Landau, L. D., and Lifshitz, E. M. 1975a. Statistical Physics, 3rd edn. Oxford: Pergamon Press.
Landau, L. D., and Lifshitz, E. M. 1975b. The Classical Theory of Fields, 3rd edn. Oxford: Pergamon Press.
Laughlin, R. B. 1983. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50, 1395.
Laughlin, R. B. 1987. Elementary theory: The incompressible quantum fluid, in The Quantum Hall Effect, Prange, R. and Girvin, S. M. (eds.). New York, NY: Springer-Verlag, p. 233.
Laughlin, R. B. 1988a. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett., 60, 2677.
Laughlin, R. B. 1988b. The relationship between high-temperature superconductivity and the fractional quantum Hall effect. Science, 242, 525.
Lee, D.-H., and Fisher, M. P. A. 1989. Anyon superconductivity and the fractional quantum Hall effect. Phys. Rev. Lett., 63, 903.
Lee, S. S. 2008. Stability of the U(1) spin liquid with a spinon Fermi surface in 2 + 1 dimensions. Phys. Rev. B, 78, 085129.
Lee, S. S. 2010. Holographic description of quantum field theory. Nucl. Phys. B, 832, 567.
Lee, S. S. 2011. Holographic description of large N gauge theory. Nucl. Phys. B, 851, 143.
Leggett, A. J. 1975. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys., 47, 331.
Leinaas, J. M., and Myrheim, J. 1977. On the theory of identical particles. Il Nuovo Cimento, 37B, 1.
Leung, P. W., and Elser, V. 1993. Numerical studies of a 36-site kagome antiferromagnet. Phys. Rev. B, 47, 5459.
Leung, P. W., Chiu, K. C., and Runge, K. J. 1996. Columnar dimer and plaquette resonating-valence-bond orders in the quantum dimer model. Phys. Rev. B, 54, 12938.
Levin, M., and Stern, A. 2009. Fractional topological insulators. Phys. Rev. Lett., 103, 196803.
Levin, M., and Wen, X.-G. 2005. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B, 71, 045110.
Levin, M., and Wen, X.-G. 2006. Detecting topological order in a ground state wave function. Phys. Rev. Lett., 96, 110405.
Levin, M., Burnell, F. J., Koch-Janusz, M., and Stern, A. 2011. Exactly soluble models for fractional topological insulators in two and three dimensions. Phys. Rev. B, 84, 235145.
Levine, H., Libby, S. B., and Pruisken, A. M. M. 1983. Electron delocalization by a magnetic field in two dimensions. Phys. Rev. Lett., 51, 1915.
Li, H., and Haldane, F. D. M. 2008. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett., 101, 010504.
Liang, S. 1990a. Existence of Néel order at T = 0 in the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. B, 42, 6555.
Liang, S. 1990b. Monte Carlo simulations of the correlation functions for Heisenberg spin chains at T = 0. Phys. Rev. Lett., 64, 1597.
Liang, S. D., Douçot, B., and Anderson, P. W. 1988. Some new variational resonating-valence-bond-type wave functions for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. B, 61, 365.
Lieb, E., and Mattis, D. C. 1965. Exact solution of a many fermion system and its associated boson field. J. Math. Phys., 6, 304.
Lieb, E., Schultz, T., and Mattis, D. C. 1961. Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.), 16, 407.
Lieb, E. H., and Ruskai, M. B. 1973. Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys., 14, 1938.
Lieb, E. H., and Wu, F. Y. 1968. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20, 1445.
Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. 1999. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett., 82, 394.
Liu, H., McGreevy, J., and Vegh, D. 2011. Non-Fermi liquids from holography. Phys. Rev. D, 83, 065029.
López, A., and Fradkin, E. 1991. Fractional quantum Hall effect and Chern-Simons gauge theories. Phys. Rev. B, 44, 5246.
López, A., and Fradkin, E. 1993. Response functions and spectrum of collective excitations of fractional quantum Hall effect systems. Phys. Rev. B, 47, 7080.
López, A., and Fradkin, E. 1995. Fermionic Chern-Simons theory for the fractional quantum Hall effect in bilayers. Phys. Rev. B, 51, 4347.
López, A., and Fradkin, E. 1999. Universal structure of the edge states of the fractional quantum Hall states. Phys. Rev. B, 59, 15323.
López, A., and Fradkin, E. 2001. Effective field theory for the bulk and edge states of quantum Hall states in unpolarized single layer and bilayer systems. Phys. Rev. B, 63, 085306.
López, A., Rojo, A. G., and Fradkin, E. 1994. Chern-Simons theory of the anisotropic quantum Heisenberg antiferromagnet on a square lattice. Phys. Rev. B, 49, 15139.
Lowenstein, J. 1984. Introduction to the Bethe-Ansatz approach in (1 + 1)-dimensional models, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the 1982 Les Houches Summer School, Session XXXIX, Zuber, J.-B. and Stora, R. (eds.). Amsterdam: North Holland.
Luther, A., and Peschel, I. 1975. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B, 12, 3908.
Maciejko, J., Hughes, T. L., and Zhang, S. C. 2011. The quantum spin Hall effect. Annu. Rev. Condens. Matter Phys., 2, 31.
Mackenzie, A. P., and Maeno, Y. 2003. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys., 75, 657.
Mahan, G. 1990. Many-Particle Physics, 2nd edn. New York, NY: Plenum Press.
Maldacena, J. M. 1998. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231.
Maldacena, J. M. 2012. The gauge/gravity duality, in Black Holes in Higher Dimensions, Horowitz, G. (ed.). Cambridge: Cambridge University Press.
Maldacena, J. M., and Strominger, A. 1996. Statistical entropy of four-dimensional extremal black holes. Phys. Rev. Lett., 77, 428.
Maleev, S. V. 1957. Scattering of slow neutrons in ferromagnetics (in Russian). Zh. Éksp. Teor. Fiz., 33, 1010; English translation JETP 6, 776 (1958).
Mandelstam, S. 1975. Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D, 11, 3026.
Manousakis, E. 1991. The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys., 63, 1.
Marshall, W. 1955. Antiferromagnetism. Proc. Roy. Soc. A, 232, 48.
Marston, J. B., and Affleck, I. 1989. Large-N limit of the Hubbard-Heisenberg model. Phys. Rev. B, 39, 11538.
Martin, P. C. 1967. Measurements and Correlation Functions. New York, NY: Gordon & Breach.
Mattis, D. C. 1965. The Theory of Magnetism. New York, NY: Harper & Row.
McCoy, B., and Wu, T. T. 1973. The Two-Dimensional Ising Model, 1st edn. Cambridge, MA: Harvard University Press.
McGreevy, J. 2010. Holographic duality with a view toward many-body physics. Adv. High Energy Phys., 2010, 723105.
Melik-Alaverdian, K.Park, V., Bonesteel, N. E., and Jain, J. K. 1998. Possibility of p-wave pairing of composite fermions at ν = 12. Phys. Rev. B, 58, R10167.
Meng, Z. Y., Lang, T. C., Wessel, S., Assaad, F. F., and Muramatsu, A. 2010. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature, 464, 847.
Mermin, N. D. 1979. The topological theory of defects in ordered media. Rev. Mod. Phys., 51, 591.
Metlitski, M., Hermele, M., Senthil, T., and Fisher, M. P. A. 2008. Monopoles in C P N−1 model via the state-operator correspondence. Phys. Rev. B, 78, 214418.
Metlitski, M. A., and Grover, T. 2011. Entanglement entropy in systems with spontaneously broken continuous symmetry. arXiv:1112.5166 (unpublished).
Metlitski, M. A., and Sachdev, S. 2010. Quantum phase transitions of metals in two spatial dimensions. I. Ising-nematic order. Phys. Rev. B, 82, 075127.
Metlitski, M. A., Fuertes, C. A., and Sachdev, S. 2009. Entanglement entropy in the O(N ) model. Phys. Rev. B, 80, 115122.
Miller, J. B., Radu, I. P., Zumbühl, D. Z. et al. 2007. Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2. Nature Phys., 3, 561.
Milliken, F. P., Umbach, C. P., and Webb, R. A. 1996. Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun., 97, 309.
Milovanović, M., and Read, N. 1996. Edge excitations of paired fractional quantum Hall states. Phys. Rev. B, 53, 13559.
Misguich, G., Jolicoeur, Th., and Girvin, S. M. 2001. Magnetization plateaus of SrCu2(BO3)2 from a Chern-Simons theory. Phys. Rev. Lett., 87, 097203.
Moessner, R., and Sondhi, S. L. 2001a. Ising models of quantum frustration. Phys. Rev. B, 63, 224401.
Moessner, R., and Sondhi, S. L. 2001b. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett., 86, 1881.
Moessner, R., Sondhi, S. L., and Chandra, P. 2000. Two-dimensional periodic frustrated Ising models in a transverse field. Phys. Rev. Lett., 84, 4457.
Moessner, R., Sondhi, S. L., and Fradkin, E. 2001. Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B, 65, 024504.
Moore, G., and Read, N. 1991. Non-abelions in the fractional quantum Hall effect. Nucl. Phys. B, 360, 362.
Moore, G., and Seiberg, N. 1989. Classical and quantum conformal field theory. Commun. Math. Phys., 123, 177.
Moore, J. E., and Balents, L. 2007. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B, 75, 121306.
Moreo, A. 1987. Conformal anomaly and critical exponents of Heisenberg spin models with half-integer spin. Phys. Rev. B, 36, 8582.
Morf, R. H. 1998. Transition from quantum Hall to compressible states in the second Landau level: New light on the ν = 5/2 enigma. Phys. Rev. Lett., 80, 1505.
Mudry, C., and Fradkin, E. 1994. Separation of spin and charge quantum numbers in strongly correlated systems. Phys. Rev. B, 49, 5200.
Murthy, G., and Shankar, R. 2003. Hamiltonian theories of the fractional quantum Hall effect. Rev. Mod. Phys., 75, 1101.
Myers, R. C., and Singh, A. 2012. Comments on holographic entanglement entropy and RG flows. JHEP J. High Energy Phys., 2012, 122.
Nandkishore, R., and Levitov, L. 2010. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B, 82, 115124.
Nash, C., and Sen, S. 1983. Topology and Geometry for Physicists. New York, NY: Academic Press.
Nayak, C., and Wilczek, F. 1994. Non-Fermi liquid fixed point in 2 + 1 dimensions. Nucl. Phys. B, 417, 359.
Nayak, C., and Wilczek, F. 1996. 2n Quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B, 479, 529.
Nayak, C., Shtengel, K., Orgad, D., Fisher, M. P. A., and Girvin, S. M. 2001. Electrical current carried by neutral quasiparticles. Phys. Rev. B, 64, 235113.
Negele, J. W., and Orland, H. 1988. Quantum Many-Particle Systems. New York, NY: Addison-Wesley.
Neupert, T., Santos, L., Chamon, C., and Mudry, C. 2011. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett., 106, 236804.
Nielsen, H. B., and Ninomiya, M. 1981. Absence of neutrinos on a lattice: (I). Proof by homotopy theory. Nucl. Phys. B, 185, 20.
Nienhuis, B. 1987. Two dimensional critical phenomena and the Coulomb gas, in Phase Transitions and Critical Phenomena, vol. 11, Domb, C., Green, M., and Lebowitz, J. L. (eds.). London: Academic Press.
Nishida, Y., Santos, L., and Chamon, C. 2010. Topological superconductors as nonrelativistic limits of Jackiw-Rossi and Jackiw-Rebbi models. Phys. Rev. B, 82, 144513.
Nishioka, T., Ryu, S., and Takayanagi, T. 2009. Holographic entanglement entropy: An overview. J. Phys. A: Math. Theor., 42, 504008.
Niu, Q., Thouless, D. J., and Wu, Y.-S. 1985. Quantized Hall conductance as a topological invariant. Phys. Rev. B, 31, 3372.
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al. 2004. Electric field effect in atomically thin carbon films. Science, 306, 666.
Oganesyan, V., Kivelson, S. A., and Fradkin, E. 2001. Quantum theory of a nematic Fermi fluid. Phys. Rev. B, 64, 195109.
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 65, 117.
Ortiz, G., and Martin, R. M. 1994. Macroscopic polarization as a geometric quantum phase: Many-body formulation. Phys. Rev. B, 49, 14202.
Oshikawa, M. 2010. Boundary conformal field theory and entanglement entropy in two-dimensional quantum Lifshitz critical point. arXiv:1007.3739v1.
Pan, W., Xia, J. S., Shvarts, V. et al. 1999. Exact quantization of the even-denominator fractional quantum Hall state at ν = 5/2 Landau level filling factor. Phys. Rev. Lett., 83, 3530.
Pan, W., Störmer, H. L., Tsui, D. C. et al. 2003. Fractional quantum Hall effect of composite fermions. Phys. Rev. Lett., 90, 016801.
Pan, W., Xia, J. S., Störmer, H. L. et al. 2008. Experimental studies of the fractional quantum Hall effect in the first excited Landau level. Phys. Rev. B, 77, 075307.
Papanikolaou, S., Raman, K. S., and Fradkin, E. 2007a. Devil’s staircases, quantum dimer models, and stripe formation in strong coupling models of quantum frustration. Phys. Rev. B, 75, 094406.
Papanikolaou, S., Luijten, E., and Fradkin, E. 2007b. Quantum criticality, lines of fixed points, and phase separation in doped two-dimensional quantum dimer models. Phys. Rev. B, 76, 134514.
Papanikolaou, S., Raman, K. S., and Fradkin, E. 2007c. Topological phases and topological entropy of two-dimensional systems with finite correlation length. Phys. Rev. B, 76, 224421.
Pasquier, V., and Haldane, F. D. M. 1998. A dipole interpretation of the ν = 1/2 state. Nucl. Phys. B, 516, 719.
Perelomov, A. 1986. Generalized Coherent States and Their Applications. Berlin: Springer-Verlag.
Peskin, M. E. 1980. Critical point behavior of the Wilson loop. Phys. Lett. B, 94, 161.
Pines, D., and Nozières, P. 1966. The Theory of Quantum Liquids. New York, NY: Benjamin.
Polchinski, J. 1984. Renormalization and effective Lagrangians. Nucl. Phys. B, 231, 269.
Polchinski, J. 1993. Effective field theory and the Fermi surface, in Recent Directions in Particle Theory: From Superstrings and Black Holes to the Standard Model (TASI - 92), Harvey, J. and Polchinski, J. (eds.). Singapore: World Scientific, for the Theoretical Advanced Study Institute in High Elementary Particle Physics, Boulder, CO.
Polchinski, J. 1994. Low-energy dynamics of the spinon-gauge system. Nucl. Phys. B, 422, 617.
Polchinski, J. 1998. String Theory. Cambridge: Cambridge University Press.
Pollmann, F., and Moore, J. E. 2010. Entanglement spectra of critical and near-critical systems in one dimension. New J. Phys., 12, 025006.
Pollmann, F., Mukerjee, S., Turner, A. M., and Moore, J. E. 2009. Theory of finiteentanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett., 102, 255701.
Pollmann, F., Turner, A. M., Berg, E., and Oshikawa, M. 2010. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B, 81, 064439.
Polyakov, A. M. 1975. Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett. B, 59, 79.
Polyakov, A. M. 1977. Quark confinement and topology of gauge theories. Nucl. Phys. B, 120, 429.
Polyakov, A. M. 1981. Quantum geometry of bosonic strings. Phys. Lett. B, 103, 211.
Polyakov, A. M. 1987. Gauge Fields and Strings. London: Harwood Academic Publishers.
Polyakov, A. M. 1988. Fermi-Bose transmutations induced by gauge fields. Mod. Phys. Lett. A, 3, 325.
Polyakov, A. M., and Wiegmann, P. B. 1983. Theory of non-Abelian Goldstone bosons in 2 dimensions. Phys. Lett. B, 131, 121.
Polyakov, A. M., and Wiegmann, P. B. 1984. Goldstone fields in two dimensions with multivalued actions. Phys. Lett. B, 141, 223.
Prange, R., and Girvin, S. M. 1990. The Quantum Hall Effect, 2nd edn. Berlin: Springer-Verlag.
Preskill, J. 2004. Topological quantum computation, in Lecture Notes for Physics 219: Quantum Computation, Chapter 9; Caltech (unpublished).
Preskill, J., and Krauss, P. 1990. Local discrete symmetry and quantum-mechanical hair. Nucl. Phys. B, 341, 50.
Privman, V. 1988. Universal size dependence of the free energy of finite systems near criticality. Phys. Rev. B, 38, 9261.
Privman, V., and Fisher, M. E. 1984. Universal critical amplitudes in finite-size scaling. Phys. Rev. B, 30, 322.
Pruisken, A. M. M. 1984. On localization in the theory of the quantized Hall effect: A two-dimensional realization of the θ-vacuum. Nucl. Phys. B, 235, 277.
Qi, X. L. 2011. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett., 107, 126803.
Qi, X. L., and Zhang, S. C. 2011. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057.
Qi, X. L., Wu, Y. S., and Zhang, S. C. 2006a. General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B, 74, 045125.
Qi, X. L., Wu, Y. S., and Zhang, S. C. 2006b. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 74, 085308.
Qi, X. L., Hughes, T. L., and Zhang, S. C. 2008. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78, 195424.
Radu, I., Miller, J. B., Marcus, C. M. et al. 2008. Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum Hall state. Science, 320, 899.
Raghu, S., and Kivelson, S. A. 2011. Superconductivity from repulsive interactions in the two-dimensional electron gas. Phys. Rev. B, 83, 094518.
Raghu, S., Qi, X.-L., Honerkamp, C., and Zhang, S. C. 2008. Topological Mott insulators. Phys. Rev. Lett., 100, 156401.
Rajaraman, R. 1985. Solitons and Instantons. Amsterdam: North-Holland.
Randjbar-Daemi, S., Salam, A., and Strathdee, J. 1990. Chern-Simons superconductivity at finite temperature. Nucl. Phys. B, 340, 403.
Read, N. 1989. Order parameter and Ginzburg-Landau theory for the fractional quantum Hall effect. Phys. Rev. Lett., 62, 86.
Read, N. 1998. Lowest-Landau-level theory of the quantum Hall effect: The Fermi-liquidlike state of bosons at filling factor one. Phys. Rev. B, 58, 16262.
Read, N. 2009. Non-abelian adiabatic statistics and Hall viscosity in quantum Hall states and px + i py paired superfluids. Phys. Rev. B, 79, 045308.
Read, N., and Green, D. 2000. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B, 61, 10267.
Read, N., and Newns, D. M. 1983. On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique. J. Phys. C: Solid State Phys., 16, 3273.
Read, N., and Rezayi, E. 1999. Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level. Phys. Rev. B, 59, 8084.
Read, N., and Sachdev, S. 1989. Some features of the phase diagram of the square lattice SU(N ) antiferromagnet. Nucl. Phys. B, 316, 609.
Read, N., and Sachdev, S. 1991. Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett., 66, 1773.
Redlich, A. N. 1984. Parity violation and gauge noninvariance of the effective gauge field action in three dimensions. Phys. Rev. D, 29, 2366.
Refael, G., and Moore, J. E. 2004. Entanglement entropy of random quantum critical points in one dimension. Phys. Rev. Lett., 93, 260602.
Refael, G., and Moore, J. E. 2009. Criticality and entanglement in random quantum systems. J. Phys. A: Math. Theor., 42, 504010.
Rezayi, E. H., and Haldane, F. D. M. 1988. Off-diagonal long-range order in fractional quantum-Hall-effect states. Phys. Rev. Lett., 61, 1985.
Rezayi, E. H., and Haldane, F. D. M. 2000. Incompressible paired Hall state, stripe order, and the composite fermion liquid phase in half-filled Landau levels. Phys. Rev. Lett., 84, 4685.
Rieger, H., and Kawashima, N. 1999. Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet. Eur. Phys. J. B - Condens. Matter Complex Systems, 9, 233.
Roddaro, S., Pellegrini, V., Beltram, F., Biasiol, G., and Sorba, L. 2004. Interedge strongto-weak scattering evolution at a constriction in the fractional quantum Hall regime. Phys. Rev. Lett., 93, 046801.
Rokhsar, D., and Kivelson, S. A. 1988. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett., 61, 2376.
Roy, R. 2009. Z2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B, 79, 195321.
Roy, R. 2010. Topological Majorana and Dirac zero modes in superconducting vortex cores. Phys. Rev. Lett., 105, 186401.
Ruckenstein, A. E., Hirschfeld, P. J., and Appel, J. 1987. Mean-field theory of high-T c superconductivity: The superexchange mechanism. Phys. Rev. B, 36, 857.
Ryu, S., and Takayanagi, T. 2006a. Aspects of holographic entanglement entropy. JHEP J. High Energy Phys., 08, 045.
Ryu, S., and Takayanagi, T. 2006b. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96, 181602.
Ryu, S., Schnyder, A. P., Furusaki, A., and Ludwig, A. W. W. 2010. Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys., 12, 065010.
Sachdev, S. 1999. Quantum Phase Transitions. Cambridge: Cambridge University Press.
Sachdev, S., and Read, N. 1991. Large N expansion for frustrated and doped quantum antiferromagnets. Int. J. Mod. Phys. B, 5, 219.
Saminadayar, L., Glattli, D. C., Jin, Y., and Etienne, B. 1997. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett., 79, 2526.
Sandvik, A. W. 2007. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Phys. Rev. Lett., 98, 227202.
Sandvik, A. W. 2010. Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: Evidence for logarithmic corrections to scaling. Phys. Rev. Lett., 104, 177201.
Santos, L., Neupert, T., Ryu, S., Chamon, C., and Mudry, C. 2011. Time-reversal symmetric hierarchy of fractional incompressible liquids. Phys. Rev. B, 84, 165138.
Schnyder, A. P., Ryu, S., Furusaki, A., and Ludwig, A. W. W. 2008. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B, 78, 195125.
Schollwöck, U. 2005. The density-matrix renormalization group. Rev. Mod. Phys., 77, 259.
Schonfeld, J. F. 1981. A mass term for three-dimensional gauge fields. Nucl. Phys. B, 185, 157.
Schrieffer, J. R. 1964. Theory of Superconductivity. New York, NY: Addison-Wesley.
Schulman, L. S. 1981. Techniques and Applications of Path Integration. New York, NY: Wiley & Sons.
Schultz, T. D., Mattis., D. C., and Lieb, E. H. 1964. Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys., 36, 856.
Semenoff, G. W. 1984. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett., 53, 2449.
Semenoff, G. W. 1988. Canonical quantum field theory with exotic statistics. Phys. Rev. Lett., 61, 517.
Semenoff, G. W., Sodano, P., and Wu, Y. S. 1989. Renormalization of the statistics parameter in three-dimensional electrodynamics. Phys. Rev. Lett., 62, 715.
Senthil, T., Vishwanath, A., Balents, L., Sachdev, S., and Fisher, M. P. A.. 2004a. Deconfined quantum critical points. Science, 303, 1490.
Senthil, T., Balents, L., Sachdev, S., Vishwanath, A., and Fisher, M. P. A.. 2004b. Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm. Phys. Rev. B, 70, 144407.
Shankar, R. 1994. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66, 129.
Sheng, D. N., Gu, Z. C., Sun, K., and Sheng, L. 2011. Fractional quantum Hall effect in the absence of Landau levels. Nature Commun., 2, 389.
Shenker, S. H., and Tobochnik, J. 1980. Monte Carlo renormalization group analysis of the classical Heisenberg model in two dimensions. Phys. Rev. B, 22, 4462.
Shirane, G., Endoh, Y., Birgeneau, R., and Kastner, M. 1987. Two-dimensional antiferromagnetic quantum spin-fluid state in La2CuO4. Phys. Rev. Lett., 59, 1613.
Shraiman, B. I., and Siggia, E. D. 1989. Spiral phase of a doped quantum antiferromagnet. Phys. Rev. Lett., 62, 1564.
Simon, B. 1983. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett., 51, 2167.
Singh, R. R. P., and Huse, D. A. 1992. Three-sublattice order in triangular- and kagomélattice spin-half antiferromagnets. Phys. Rev. Lett., 68, 1766.
Sondhi, S. L., Karlhede, A., Kivelson, S. A., and Rezayi, E. H. 1993. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B, 47, 16419.
Sørensen, E. S., Chang, M.-S., Laflorencie, N., and Affleck, I. 2007a. Impurity entanglement entropy and the Kondo screening cloud. JSTAT J. Statist. Mech.: Theor. Exp., 07, L01001.
Sørensen, E. S., Chang, M.-S., Laflorencie, N., and Affleck, I. 2007b. Quantum impurity entanglement. JSTAT J. Statist. Mech.: Theor. Exp., 07, P08003.
Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. 2000. Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet. Phys. Rev. Lett., 84, 5808.
Srednicki, M. 1993. Entropy and area. Phys. Rev. Lett., 71, 666.
Stefano, S., Pellegrini, V., and Beltram, F. 2004. Quasi-particle tunneling at a constriction in a fractional quantum Hall state. Solid State Commun., 131, 565.
Stell, G. 1964. Cluster expansions for classical systems in equilibrium, in The Equilibrium Theory of Classical Fluids, Frisch, H. L. and Lebowitz, J. L. (eds.). New York, NY: W. A. Benjamin Inc, pp. 171–267.
Stéphan, J. M., Furukawa, S., Misguich, G., and Pasquier, V. 2009. Shannon and entanglement entropies of one- and two-dimensional critical wave functions. Phys. Rev. B, 80, 184421.
Stéphan, J. M., Misguich, G., and Pasquier, V. 2010. Rényi entropy of a line in two-dimensional Ising models. Phys. Rev. B, 82, 125455.
Stéphan, J. M., Misguich, G., and Pasquier, V. 2011. Phase transition in the Rényi-Shannon entropy of Luttinger liquids. Phys. Rev. B, 84, 195128.
Stern, A., and Halperin, B. I. 2006. Proposed experiments to probe the non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett., 96, 016802.
Stone, M. 1986. Born-Oppenheimer approximation and the origin of Wess-Zumino terms: Some quantum-mechanical examples. Phys. Rev. D, 33, 1191.
Stone, M. 1991. Vertex operators in the quantum Hall effect. Int. J. Mod. Phys. B, 5, 509.
Su, W. P., and Schrieffer, J. R. 1981. Fractionally charged excitations in charge-densitywave systems with commensurability 3. Phys. Rev. Lett., 46, 738.
Su, W. P., Schrieffer, J. R., and Heeger, A. J. 1979. Solitons in polyacetylene. Phys. Rev. Lett., 42, 1698.
Sun, K., and Fradkin, E. 2008. Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids. Phys. Rev. B, 78, 245122.
Sun, K., Yao, H., Fradkin, E., and Kivelson, S. A. 2009. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett., 103, 046811.
Susskind, L. 1977. Lattice fermions. Phys. Rev. D, 16, 3031.
Susskind, L. 1995. The world as a hologram. J. Math. Phys., 36, 6377.
Susskind, L. 2008. The Black Hole War. New York, NY: Back Bay Books, Little Brown & Co.
Susskind, L., and Witten, E. 1998. The holographic bound in anti-de Sitter space. arXiv:hep-th/9805114 (unpublished).
Sutherland, B. 1988. Systems with resonating-valence-bond ground states: Correlations and excitations. Phys. Rev. B, 37, 3786.
’t Hooft, G. 1978. On the phase transition towards permanent quark confinement. Nucl. Phys. B, 138, 1.
’t Hooft, G. 1979. A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B, 153, 141.
’t Hooft, G. 1993. Dimensional reduction in quantum gravity. arXiv:gr-gc/9310026v2 (unpublished).
Tang, E., Mei, J. W., and Wen, X. G. 2011a. High-temperature fractional quantum Hall states. Phys. Rev. Lett., 106, 236802.
Tang, Y., Sandvik, A. W., and Henley, C. L. 2011b. Properties of resonating-valence-bond spin liquids and critical dimer models. Phys. Rev. B, 84, 174427.
Thouless, D. J. 1983. Quantization of particle transport. Phys. Rev. B, 27, 6083.
Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. P. M. 1982. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405.
Tomonaga, S. 1950. Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys., 5, 544.
Trebst, S., Werner, P., Troyer, M., Shtengel, K., and Nayak, C. 2007. Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension. Phys. Rev. Lett., 98, 070602.
Trugman, S. A. 1983. Localization, percolation, and the quantum Hall effect. Phys. Rev. B, 27, 7539.
Trugman, S. A., and Kivelson, S. 1985. Exact results for the fractional quantum Hall effect with general interactions. Phys. Rev. B, 31, 5280.
Tsui, D. C., Stormer, H. L., and Gossard, A. C. 1982. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48, 1559.
Tupitsyn, I. S., Kitaev, A., Prokof’ev, N. V., and Stamp, P. C. E. 2010. Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model. Phys. Rev. B, 82, 085114.
Vafek, O. 2010. Interacting fermions on the honeycomb bilayer: From weak to strong coupling. Phys. Rev. B, 82, 205106.
Vafek, O., and Yang, K. 2010. Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach. Phys. Rev. B, 81, 041401(R).
Vakaryuk, V., and Leggett, A. J. 2009. Spin polarization of half-quantum vortex in systems with equal spin pairing. Phys. Rev. Lett., 103, 057003.
Varney, C. N., Sun, K., Rigol, M., and Galitski, V. 2010. Interaction effects and quantum phase transitions in topological insulators. Phys. Rev. B, 82, 115125.
Verlinde, E. 1988. Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B, 300, 360.
Verstraete, F., Wolf, M. M., Perez-García, D., and Cirac, J. I. 2006. Criticality, the area law, and the computational power of PEPS. Phys. Rev. Lett., 96, 220601.
Vishwanath, A., Balents, L., and Senthil, T. 2004. Quantum criticality and deconfinement in phase transitions between valence bond solids. Phys. Rev. B, 69, 224416.
Vollhardt, D., and Wölfle, P. 1990. The Superfluid Phases of Helium 3. London: Taylor & Francis.
Volovik, G. E. 1988. An analog of the quantum Hall effect in a superfluid 3He film. Sov. Phys. JETP, 67, 1804.
von Klitzing, K., Dorda, G., and Pepper, M. 1980. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, 494.
Wang, L., Gu, Z. C., Wen, X. G., and Verstraete, F. 2011. Possible spin liquid state in the spin 1/2 J 1-J 2 antiferromagnetic Heisenberg model on square lattice: A tensor product state approach. arXiv:1112.3331.
Wegner, F. 1979. The mobility edge problem: Continuous symmetry and a conjecture. Z. Phys. B Condens. Matter, 35, 207.
Wegner, F. J. 1971. Duality in generalized Ising models and phase transitions without local order parameters. J. Math. Phys., 12, 2259.
Wen, X. G. 1989. Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B, 40, 7387.
Wen, X. G. 1990a. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B, 41, 12838.
Wen, X. G. 1990b. Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states. Phys. Rev. Lett., 64, 2206.
Wen, X. G. 1990c. Topological orders in rigid states. Int. J. Mod. Phys. B, 4, 239.
Wen, X. G. 1991a. Edge excitations in the fractional quantum Hall states at general filling fractions. Mod. Phys. Lett. B, 5, 39.
Wen, X. G. 1991b. Gapless boundary excitations in the quantum Hall states and in the chiral spin states. Phys. Rev. B, 43, 11025.
Wen, X. G. 1991c. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B, 44, 2664.
Wen, X. G. 1995. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys., 44, 405.
Wen, X. G. 1999. Projective construction of non-Abelian quantum Hall liquids. Phys. Rev. B, 60, 8827.
Wen, X.-G. 2002. Quantum orders and symmetric spin liquids. Phys. Rev. B, 65, 165113.
Wen, X. G., and Niu, Q. 1990. Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B, 41, 9377.
Wen, X. G., and Zee, A. 1988. Spin waves and topological terms in the mean-field theory of two-dimensional ferromagnets and antiferromagnets. Phys. Rev. Lett., 61(1025).
Wen, X. G., and Zee, A. 1989. Winding number, family index theorem, and electron hopping in a magnetic field. Nucl. Phys. B, 316, 641.
Wen, X. G., and Zee, A. 1990. Compressibility and superfluidity in the fractional-statistics liquid. Phys. Rev. B, 41, 240.
Wen, X.-G., and Zee, A. 1992. Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Phys. Rev. B, 46, 2290.
Wen, X. G., Wilczek, F., and Zee, A. 1989. Chiral spin states and superconductivity. Phys. Rev. B, 39, 11413.
Wen, X. G., Dagotto, E., and Fradkin, E. 1990. Anyons on a torus. Phys. Rev. B, 42, 6110.
Wesolowski, D., Hosotani, Y., and Ho, C. L. 1994. Multiple Chern-Simons fields on a torus. Int. J. Mod. Phys., A9, 969.
White, S. R. 1992. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69, 2863.
Wiegmann, P. B. 1988. Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon. Phys. Rev. Lett., 60, 821.
Wiegmann, P. B. 1989. Multivalued functionals and geometrical approach for quantization of relativistic particles and strings. Nucl. Phys. B, 323, 311.
Wilczek, F. 1982. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett., 48, 1144.
Wilczek, F., and Zee, A. 1983. Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett., 51, 2250.
Willett, R., Eisenstein, J. P., Störmer, H. L. et al. 1987. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett., 59, 1776.
Willett, R. L., Pfeiffer, l. N., and West, K. W. 2010. Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles. Phys. Rev. B, 82, 205301.
Williams, J. R., Bestwick, A. J., Gallagher, P. et al. 2012. Signatures of Majorana fermions in hybrid superconductor-topological insulator devices. Phys. Rev. Lett., 109, 056803.
Wilson, K. G. 1969. Non-Lagrangian models of current algebra. Phys. Rev., 179, 1499.
Wilson, K. G. 1973. Quantum field theory models in less than 4 dimensions. Phys. Rev. D, 7, 2911.
Wilson, K. G. 1974. Confinement of quarks. Phys. Rev. D, 10, 2445.
Wilson, K. G. 1975. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 47, 773.
Wilson, K. G. 1983. The renormalization group and critical phenomena. Rev. Mod. Phys., 55, 583.
Wilson, K. G., and Kogut, J. B. 1974. The renormalization group and the expansion. Physics Reports C, 12, 75.
Witten, E. 1979. Dyons of charge eθ/2π. Phys. Lett. B, 86, 283.
Witten, E. 1983. Current algebra, baryons, and quark confinement. Nucl. Phys. B, 223, 422.
Witten, E. 1984. Non-Abelian bosonization in two dimensions. Commun. Math. Phys., 92, 455.
Witten, E. 1989. Quantum field theory and the Jones polynomial. Commun. Math. Phys., 121, 351.
Witten, E. 1992. On holomorphic factorization of WZW and coset models. Commun. Math. Phys., 144, 189.
Witten, E. 1998. Anti de Sitter space and holography. Adv. Theor. Math. Phys., 2, 253.
Wolf, M. M. 2006. Violation of the entropic area law for fermions. Phys. Rev. Lett., 96, 010404.
Wu, C., Sun, K., Fradkin, E., and Zhang, S. C. 2007. Fermi liquid instabilities in the spin channel. Phys. Rev. B, 75, 115103.
Wu, T. T., and Yang, C. N. 1975. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D, 12, 3845.
Wu, T. T., and Yang, C. N. 1976. Dirac monopole without strings: Monopole harmonics. Nucl. Phys. B, 107, 365.
Wu, Y. S., and Zee, A. 1984. Comments on the Hopf Lagrangian and fractional statistics of solitons. Phys. Lett. B, 147, 325.
Xia, J. S., Pan, W., Vicente, C. L. et al. 2004. Electron correlation in the second Landau level: A competition between many nearly degenerate quantum phases. Phys. Rev. Lett., 93, 176809.
Yakovenko, V. M. 1990. Chern-Simons terms and n field in Haldane’s model for the quantum Hall effect without Landau levels. Phys. Rev. Lett., 65(Jul), 251.
Yang, C. N., and Yang, C. P. 1969. Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 10, 1115.
Yang, K., Warman, L. K., and Girvin, S. M. 1993. Possible spin-liquid states on the triangular and kagomé lattices. Phys. Rev. Lett., 70, 2641.
Yang, K., Moon, K., Zheng, L. et al. 1994. Quantum ferromagnetism and phase transitions in double-layer quantum Hall systems. Phys. Rev. Lett., 72, 732.
Youngblood, R., Axe, J., and McCoy, B. M. 1980. Correlations in ice-rule ferroelectrics. Phys. Rev. B, 21, 5212.
Zak, J. 1964. Magnetic translation group. Phys. Rev., 134, A1602.
Zamolodchikov, A. B. 1986. “Irreversibility” of the flux of the renormalization group in a 2D field theory. Pis’ma Zh. Éksp. Teor. Fiz., 43, 565; JETP Lett. 43, 730 (1986).
Zamolodchikov, A. B., and Zamolodchikov, A. B. 1979. Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys., 120, 253.
Zhang, H., Liu, C. X., Qi, X. L. et al. 2009. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys., 5, 438.
Zhang, S. C., Hansson, T. H., and Kivelson, S. 1989. Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett., 62, 82.
Zheng, D., Zhang, G. M., and Wu, C. 2011. Particle-hole symmetry and interaction effects in the Kane-Mele-Hubbard model. Phys. Rev. B, 84, 205121.
Ziman, T., and Schulz, H. J. 1987. Are antiferromagnetic spin chains representations of the higher Wess-Zumino models?Phys. Rev. Lett., 59, 140.
Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena, 4th edn. Oxford: Oxford University Press.
Zozulya, O. S., Haque, M., and Regnault, N. 2009. Entanglement signatures of quantum Hall phase transitions. Phys. Rev. B, 79, 045409.
Zuber, J. B., and Itzykson, C. 1977. Quantum field theory and the two-dimensional Ising model. Phys. Rev. D, 15, 2875.