Cryptography is concerned with the conceptualization, definition and construction of computing systems that address security concerns. The design of cryptographic systems must be based on firm foundations. This book presents a rigorous and systematic treatment of the foundational issues: defining cryptographic tasks and solving new cryptographic problems using existing tools. It focuses on the basic mathematical tools: computational difficulty (one-way functions), pseudorandomness and zero-knowledge proofs. The emphasis is on the clarification of fundamental concepts and on demonstrating the feasibility of solving cryptographic problems, rather than on describing ad-hoc approaches. The book is suitable for use in a graduate course on cryptography and as a reference book for experts. The author assumes basic familiarity with the design and analysis of algorithms; some knowledge of complexity theory and probability is also useful.
'The written style is excellent and natural, making the text rather comfortable to read even on quite advanced topics. The book is suitable for students in a graduate course on cryptography, and is also a useful reference text for experts.'
Source: The Mathematical Gazette
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.