Skip to main content Accessibility help
×
  • Cited by 31
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      April 2013
      April 1984
      ISBN:
      9780511721250
      9780521277389
      Dimensions:
      Weight & Pages:
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.3kg, 176 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This is the first book on the subject of FPF rings and the systematic use of the notion of the generator of the category mod-R of all right R-modules and its relationship to faithful modules. This carries out the program, explicit of inherent, in the work of G Azumaya, H. Bass, R. Dedekind, S. Endo, I. Kaplansky, K. Morita, T. Nakayama, R. Thrall, and more recently, W. Brandal, R. Pierce, T. Shores, R. and S. Wiegand and P. Vamos, among others. FPF rings include quasi-Frobenius rings (and thus finite rings over fields), pseudo-Frobenius (PF) rings (and thus injective cogenerator rings), bounded Dedekind prime rings and the following commutative rings; self-injective rings, Prufer rings, all rings over which every finitely generated module decomposes into a direct sum of cyclic modules (=FGC rings), and hence almost maximal valuation rings. Any product (finite or infinite) of commutative or self-basic PFP rings is FPF. A number of important classes of FPF rings are completely characterised including semiprime Neotherian, semiperfect Neotherian, perfect nonsingular prime, regular and self-injective rings. Finite group rings over PF or commutative injective rings are FPF. This work is the culmination of a decade of research and writing by the authors and includes all known theorems on the subject of noncommutative FPF rings. This book will be of interest to professional mathematicians, especially those with an interest in noncommutative ring theory and module theory.

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.