Skip to main content Accessibility help
×
Home
Geometry of Quantum States
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 19
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Quantum information theory is a branch of science at the frontier of physics, mathematics, and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalized measurements, discrete Wigner function, and unitary designs; the Gleason and Kochen–Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings' non-additivity theorem. This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.

Reviews

‘True story:  A few years ago my daughter took a break from her usual question, ‘Dad, what is your favourite colour?’ and asked instead, ‘What is your favourite shape?’ I was floored! ‘What a wonderful question; my favourite shape is Hilbert space!’ ‘What does it look like?’ she asked. My answer: ‘I don't know! But every day when I go to work, that's what I think about.’ What I was speaking of, of course, is the geometry of quantum-state space. It is as much a mystery today as it was those years ago, and maybe more so as we learn to focus on its most key and mysterious features. This book, the worn first-edition of which I've had on my shelf for 11 years, is the indispensable companion for anyone's journey into that exotic terrain. Beyond all else, I am thrilled about the inclusion of two new chapters in the new edition, one of which I believe goes to the very heart of the meaning of quantum theory.’

Christopher A. Fuchs - University of Massachusetts, Boston

‘The quantum world is full of surprises as is the mathematical theory that describes it. Bengtsson and Życzkowski prove to be expert guides to the deep mathematical structure that underpins quantum information science. Key concepts such as multipartite entanglement and quantum contextuality are discussed with extraordinary clarity. A particular feature of this new edition is the treatment of SIC generalised measurements and the curious bridge they make between quantum physics and number theory.’

Gerard J. Milburn - University of Queensland

Praise for the first edition:'Geometry of Quantum States can be considered an indispensable item on a bookshelf of everyone interest in quantum information theory and its mathematical background.'

Miłosz Michalski - editor of Open Systems and Information Dynamics

Praise for the first edition:'Bengtsson’s and Zyczkowski’s book is an artful presentation of the geometry that lies behind quantum theory … the authors collect, and artfully explain, many important results scattered throughout the literature on mathematical physics. The careful explication of statistical distinguishability metrics (Fubini-Study and Bures) is the best I have read.'

Gerard Milburn - University of Queensland

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] S., Aaronson. Quantum Computing since Democritus. Cambridge: Cambridge University Press, 2013.
[2] S., Abe. A note on the qdeformation- theoretic aspect of the generalized entropy in nonextensive physics. Phys. Lett., A 224:326, 1997.
[3] S., Abe and A. K., Rajagopal. Nonadditive conditional entropy and its significance for local realism. Physica, A 289:157, 2001.
[4] L., Accardi. Non-relativistic quantum mechanics as a noncommutative Markov process. Adv. Math., 20:329, 1976.
[5] L., Accardi. Topics in quantum probability. Phys. Rep., 77:169, 1981.
[6] A., Acín, A., Andrianov, E., Jané, and R., Tarrach. Three-qubit pure state canonical forms. J. Phys., A 34:6725, 2001.
[7] M., Adelman, J. V., Corbett, and C. A., Hurst. The geometry of state space. Found. Phys., 23:211, 1993.
[8] MacAdam, , J. Opt. Soc. Am., 32: 247, 1942.
[9] I., Affleck, T., Kennedy, E., Lieb, and H., Tasaki. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett., 59:799, 1987.
[10] G., Agarwal. Relation between atomic coherent-state representation state multipoles and generalized phase space distributions. Phys. Rev., A 24:2889, 1981.
[11] S. J., Akhtarshenas and M. A., Jafarizadeh. Robustness of entanglement for Bell decomposable states. E. Phys. J., D 25:293, 2003.
[12] S. J., Akhtarshenas and M. A., Jafarizadeh. Optimal Lewenstein- Sanpera decomposition for some bipartite systems. J. Phys., A 37: 2965, 2004.
[13] S., Alaca and K. S., Williams. Introductory Algebraic Number Theory. Cambridge UP, 2004.
[14] P. M., Alberti. A note on the transition probability over Calgebras. Lett. Math. Phys., 7:25, 1983.
[15] P. M., Alberti and A., Uhlmann. Dissipative Motion in State Spaces. Leipzig: Teubner, 1981.
[16] P. M., Alberti and A., Uhlmann. Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing. Reidel, 1982.
[17] P. M., Alberti and A., Uhlmann. On Bures distance and algebraic transition probability between inner derived positive linear forms over walgebras. Acta Appl. Math., 60:1, 2000.
[18] S., Albeverio, K., Chen, and S.-M., Fei. Generalized reduction criterion for separability of quantum states. Phys. Rev., A 68:062313, 2003.
[19] E., Alfsen and F., Schultz. Unique decompositions, faces, and automorphisms of separable states. J. Math. Phys., 51:052201, 2010.
[20] E. M., Alfsen and F. W., Shultz. State Spaces of Operator Algebras. Boston: Birkhäuser, 2001.
[21] E. M., Alfsen and F. W., Shultz. Geometry of State Spaces of Operator Algebras. Boston: Birkhäuser, 2003.
[22] S. T., Ali, J.-P., Antoine, and J.-P., Gazeau. Coherent States, Wavelets and Their Generalizations. Springer-Verlag, 2000.
[23] R., Alicki. Comment on ‘Reduced dynamics need not be completely positive’. Phys. Rev. Lett., 75:3020, 1995.
[24] R., Alicki and M., Fannes. Quantum Dynamical Systems. Oxford University Press, 2001.
[25] R., Alicki and M., Fannes. Continuity of quantum conditional information. J. Phys., A 37:L55, 2004.
[26] R., Alicki and K., Lendi. Quantum Dynamical Semigroups and Applications. Springer-Verlag, 1987.
[27] R., Alicki, A., Łoziński, P., Pakoński, and K., Życzkowski. Quantum dynamical entropy and decoherence rate. J. Phys., A 37:5157, 2004.
[28] W. O., Alltop. Complex sequences with low periodic correlations. IEEE Trans. Inform. Theory., 26:350, 1980.
[29] N., Alon and L., Lovasz. Unextendible product bases. J. Combinat. Theor., A 95:169, 2001.
[30] S., Amari. Differential Geometrical Methods in Statistics. Springer- Verlag, 1985.
[31] L., Amico, R., Fazio, A., Osterloh, and V., Vedral. Entanglement in many-body systems. Rev. Mod. Phys., 80:517, 2008.
[32] G. G., Amosov, A. S., Holevo, and R. F., Werner. On some additivity problems in quantum information theory. Probl. Inform. Transm., 36:25, 2000.
[33] J., Anandan and Y., Aharonov. Geometry of quantum evolution. Phys. Rev. Lett., 65:1697, 1990.
[34] G. W., Anderson, A., Guionnet, and O., Zeitouni. An Introduction to Random Matrices. Cambridge: Cambridge University Press, 2010.
[35] D., Andersson, I., Bengtsson, K., Blanchfield, and H. B., Dang. States that are far from being stabilizer states. J. Phys., A 48:345301, 2015.
[36] O., Andersson and I., Bengtsson. Clifford tori and unbiased vectors. Rep. Math. Phys., 79:33, 2017.
[37] T., Ando. Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl., 118:163, 1989.
[38] T., Ando. Majorizations and inequalities in matrix theory. Linear Algebra Appl., 199:17, 1994.
[39] T., Ando. Cones and norms in the tensor product of matrix spaces. Lin. Alg. Appl., 379:3, 2004.
[40] P., Aniello and C., Lupo. A class of inequalities inducing new separability criteria for bipartite quantum systems. J. Phys., A 41:355303, 2008.
[41] D. M., Appleby. Properties of the extended Clifford group with applications to SIC-POVMs and MUBs. preprint arXiv:0909.5233.
[42] D. M., Appleby. Symmetric informationally complete-positive operator measures and the extended Clifford group. J. Math. Phys., 46:052107, 2005.
[43] M., Appleby, T. -Y., Chien, S., Flammia, and S., Waldron, Constructing exact symmetric informationally complete measurements from numerical solutions. preprint arXiv:1703.05981.
[44] D. M., Appleby, H. B., Dang, and C. A., Fuchs. Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states. Entropy, 16:1484, 2014.
[45] D. M., Appleby, S., Flammia, G., McConnell, and J., Yard. Generating ray class fields of real quadratic fields via complex equiangular lines. preprint arXiv:1604. 06098.
[46] D. M., Appleby, H., Yadsan- Appleby, and G., Zauner. Galois automorphisms of a symmetric measurement. Quant. Inf. Comp., 13:672, 2013.
[47] C., Aragone, G., Gueri, S., Salamó, and J. L., Tani. Intelligent spin states. J. Phys., A 7:L149, 1974.
[48] H., Araki. On a characterization of the state space of quantum mechanics. Commun. Math. Phys., 75:1, 1980.
[49] H., Araki and E., Lieb. Entropy inequalities. Commun. Math. Phys., 18:160, 1970.
[50] P., Aravind. The ‘twirl’, stella octangula and mixed state entanglement. Phys. Lett., A 233:7, 1997.
[51] P. K., Aravind. Geometry of the Schmidt decomposition and Hardy's theorem. Am. J. Phys., 64:1143, 1996.
[52] L., Arnaud and N., Cerf. Exploring pure quantum states with maximally mixed reductions. Phys. Rev., A 87:012319, 2013.
[53] V. I., Arnold. Symplectic geometry and topology. J. Math. Phys., 41:3307, 2000.
[54] V. I., Arnold. Dynamics, Statistics, and Projective Geometry of Galois Fields. Cambridge University Press, 2011.
[55] P., Arrighi and C., Patricot. A note on the correspondence between qubit quantum operations and special relativity. J. Phys., A 36:L287, 2003.
[56] P., Arrighi and C., Patricot. On quantum operations as quantum states. Ann. Phys. (N.Y.), 311:26, 2004.
[57] E., Arthurs and J. L., Kelly, Jr. On the simultaneous measurement of a pair of conjugate variables. Bell Sys. Tech. J., 44:725, 1965.
[58] S., Arunachalam, N., Johnston, and V., Russo. Is absolute separability determined by the partial transpose? Quant. Inf. Comput., 15:0694, 2015.
[59] W. B., Arveson. Sub-algebras of Calgebras. Acta Math., 123:141, 1969.
[60] Arvind, K. S., Mallesh, and N., Mukunda. A generalized Pancharatnam geometric phase formula for three-level quantum systems. J. Phys., A 30:2417, 1997.
[61] M., Aschbacher, A. M., Childs, and P., Wocjan. The limitations of nice mutually unbiased bases. J. Algebr. Comb., 25:111, 2007.
[62] A., Ashtekar and A., Magnon. Quantum fields in curved space-times. Proc. Roy. Soc. A, 346:375, 1975.
[63] A., Ashtekar and T. A., Schilling. Geometrical formulation of quantum mechanics. In A., Harvey, editor, On Einstein's Path, page 23. Springer, 1998.
[64] A., Aspect, J., Dalibard, and G., Roger. Experimental test of Bell's inequalities using timevarying analysers. Phys. Rev. Lett., 49:1804, 1982.
[65] M., Atiyah. The non-existent complex 6-sphere. preprint arXiv: 1610.09366.
[66] M. F., Atiyah. Convexity and commuting Hamiltonians. Bull. London Math. Soc., 14:1, 1982.
[67] G., Aubrun. Partial transposition of random states and non-centered semicircular distributions. Rand. Mat. Theor. Appl., 1:1250001, 2012.
[68] G., Aubrun, S., Szarek, and E., Werner. Hastings' additivity counterexample via Dvoretzky's theorem. Commun. Math. Phys., 305:85, 2011.
[69] G., Aubrun and S. J., Szarek. Alice and Bob Meet Banach. The Interface of Asymptotic Geometric Analysis and Quantum Information Theory. Amer. Math. Soc. book in preparation.
[70] K., Audenaert, J., Eisert, E., Jané, M. B., Plenio, S., Virmani, and B. D., Moor. Asymptotic relative entropy of entanglement. Phys. Rev. Lett., 87:217902, 2001.
[71] K., Audenaert, B. D., Moor, K. G. H., Vollbrecht, and R. F., Werner. Asymptotic relative entropy of entanglement for orthogonally invariant states. Phys. Rev., A 66:032310, 2002.
[72] K., Audenaert, F., Verstraete, and B. D., Moor. Variational characterizations of separability and entanglement of formation. Phys. Rev., A 64:052304, 2001.
[73] K. M. R., Audenaert and S., Scheel. On random unitary channels. New J. Phys., 10:023011, 2008.
[74] R., Augusiak, J., Grabowski,M., Kuś, and M., Lewenstein. Searching for extremal PPT entangled states. Opt. Commun., 283:805, 2010.
[75] R., Augusiak, J., Stasińska, and P., Horodecki. Beyond the standard entropic inequalities: Stronger scalar separability criteria and their applications. Phys. Rev., A 77:012333, 2008.
[76] M., Aulbach, D., Markham, and M., Murao. The maximally entangled symmetric state in terms of the geometric measure. New Jour. of Phys., 12:073025, 2010.
[77] L., Autonne. Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann. Univ. Lyon Nouvelle Ser., 38:1, 1915.
[78] J. E., Avron, L., Sadun, J., Segert, and B., Simon. Chern numbers, quaternions, and Berry's phases in Fermi systems. Commun. Math. Phys., 124:595, 1989.
[79] N., Ay and W., Tuschmann. Dually flat manifolds and global information geometry. Open Sys. Inf. Dyn., 9:195, 2002.
[80] H., Bacry. Orbits of the rotation group on spin states. J. Math. Phys., 15:1686, 1974.
[81] P., Badziag, C., Brukner, W., Laskowski, T., Paterek, and M., Żukowski. Experimentally friendly geometrical criteria for entanglement. Phys. Rev. Lett., 100:140403, 2008.
[82] P., Badziag, P., Deaur, M., Horodecki, P., Horodecki, and R., Horodecki. Concurrence in arbitrary dimensions. J. Mod. Optics, 49:1289, 2002.
[83] P., Badziag, M., Horodecki, P., Horodecki, and R., Horodecki. Local environment can enhance fidelity of quantum teleportation. Phys. Rev., A 62:012311, 2000.
[84] J., Baez. Rényi entropy and free energy. preprint arXiv:1102.2098.
[85] D., Baguette, F., Damanet, O., Giraud, and J., Martin. Anticoherence of spin states with point group symmetries. Phys. Rev., A 92:052333, 2015.
[86] R., Balian, Y., Alhassid, and H., Reinhardt. Dissipation in manybody systems: A geometric approach based on information theory. Phys. Rep., 131:1, 1986.
[87] K. M., Ball. An elementary introduction to modern convex geometry. In S., Levy, editor, Flavors of Geometry, page 1. Cambridge University Press, 1997.
[88] S., Bandyopadhyay, P. O., Boykin, V., Roychowdhury, and F., Vatan. A new proof for the existence of mutually unbiased bases. Algorithmica, 34:512, 2002.
[89] M., Barbieri, F. D., Martini, G. D., Nepi, P., Mataloni, G., D'Ariano, and C., Macciavello. Detection of entanglement with polarized photons: Experimental realization of an entanglement witness. Phys. Rev. Lett., 91:227901, 2003.
[90] M., Barbut and L., Mazliak. Commentary on the notes for Paul Léevy's 1919 lectures on the probability calculus at the Ecole Polytechnique. El. J. Hist. Probab. Stat., 4, 2008.
[91] V., Bargmann. On a Hilbert space of analytic functions and an associated analytic transform. Commun. Pure Appl. Math., 14:187, 1961.
[92] V., Bargmann. Note on Wigner's theorem on symmetry operations. J. Math. Phys., 5:862, 1964.
[93] O. E., Barndorff-Nielsen and R. D., Gill. Fisher information in quantum statistics. J. Phys., A 33:4481, 2000.
[94] H., Barnum, C. M., Caves, C. A., Fuchs, R., Jozsa, and B., Schumacher. Non-commuting mixed states cannot be broadcast. Phys. Rev. Lett., 76:2818, 1996.
[95] H., Barnum, E., Knill, G., Ortiz, and L., Viola. Generalizations of entanglement based on coherent states and convex sets. Phys. Rev., A 68:032308, 2003.
[96] H., Barnum and N., Linden. Monotones and invariants for multiparticle quantum states. J. Phys., A 34:6787, 2001.
[97] N., Barros e Sá. Decomposition of Hilbert space in sets of coherent states. J. Phys., A 34:4831, 2001.
[98] N., Barros e Sá. Uncertainty for spin systems. J. Math. Phys., 42:981, 2001.
[99] T., Bastin, S., Krins, P., Mathonet, M., Godefroid, L., Lamata, and E., Solano. Operational families of entanglement classes for symmetric n–qubit states. Phys. Rev. Lett., 103:070503, 2009.
[100] R. J., Baxter. Dimers on a rectangular lattice. J. Math. Phys., 9:650, 1968.
[101] C., Beck and F., Schlögl. Thermodynamics of Chaotic Systems. Cambridge University Press, 1993.
[102] E. F., Beckenbach and R., Bellman. Inequalities. Springer, 1961.
[103] B., Belavkin and P., Staszewski. c algebraic generalization of relative entropy and entropy. Ann. Inst. H. Poincaré, A37:51, 1982.
[104] S. T., Belinschi, B., Collins, and I., Nechita. Almost one bit violation for the additivity of the minimum output entropy. Commun. Math. Phys., 341:885, 2016.
[105] J. S., Bell. On the Einstein–Podolsky–Rosen paradox. Physics, 1:195, 1964.
[106] J. S., Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447, 1966.
[107] J. S., Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, 1987.
[108] A., Belovs. Welch bounds and quantum state tomography. MSc thesis, Univ. Waterloo, 2008.
[109] F., Benatti, R., Floreanini, and M., Piani. Quantum dynamical semigroups and non-decomposable positive maps. Phys. Lett., A 326:187, 2004.
[110] F., Benatti and H., Narnhofer. Additivity of the entanglement of formation. Phys. Rev., A 63:042306, 2001.
[111] J., Bendat and S., Sherman. Monotone and convex operator functions. Trans. Amer. Math. Soc., 79:58, 1955.
[112] I., Bengtsson, J., Brännlund, and K., Życzkowski. CPn, or entanglement illustrated. Int. J. Mod. Phys., A 17:4675, 2002.
[113] I., Bengtsson and Å., Ericsson. How to mix a density matrix. Phys. Rev., A 67:012107, 2003.
[114] I., Bengtsson, S., Weis, and K., Życzkowski. Geometry of the set of mixed quantum states: An apophatic approach. In J., Kielanowski, editor, Geometric Methods in Physics, page 175. Springer, Basel, 2013. Trends in Mathematics.
[115] C. H., Bennett, H. J., Bernstein, S., Popescu, and B., Schumacher. Concentrating partial entanglement by local operations. Phys. Rev., A 53:2046, 1996.
[116] C. H., Bennett and G., Brassard. Quantum cryptography: public key distribution and coin tossing. In Int. Conf. on Computers, Systems and Signal Processing, Bangalore, page 175. IEEE, 1984.
[117] C. H., Bennett, G., Brassard, C., Crépeau, R., Jozsa, A., Peres, and W. K., Wootters. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 70:1895, 1993.
[118] C. H., Bennett, G., Brassard, S., Popescu, B., Schumacher, J. A., Smolin, and W. K., Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 76:722, 1996.
[119] C. H., Bennett, D. P., DiVincenzo, C. A., Fuchs, T., Mor, E., Rains, P. W., Shor, J. A., Smolin, and W. K., Wootters. Quantum non-locality without entanglement. Phys. Rev., A 59:1070, 1999.
[120] C. H., Bennett, D. P., DiVincenzo, T., Mor, P. W., Shor, J. A., Smolin, and B. M., Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett., 82:5385, 1999.
[121] C. H., Bennett, D. P., DiVincenzo, J., Smolin, and W. K., Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev., A 54:3824, 1996.
[122] C. H., Bennett, S., Popescu, D., Rohrlich, J. A., Smolin, and A. V., Thapliyal. Exact and asymptotic measures of multipartite purestate entanglement. Phys. Rev., A 63:012307, 2000.
[123] C. H., Bennett and S. J., Wiesner. Communication via one- and twoparticle operations on Einstein- Podolsky-Rosen states. Phys. Rev. Lett., 69:2881, 1992.
[124] M. K., Bennett. Affine and Projective Geometry. Wiley, 1995.
[125] S., Berceanu. Coherent states, phases and symplectic areas of geodesic triangles. In M., Schliechenmaier, S. T., Ali, A., Strasburger, and A., Odzijewicz, editors, Coherent States, Quantization and Gravity, page 129. Wydawnictwa Uniwersytetu Warszawskiego, 2001.
[126] S. N., Bernstein. Theory of Probabilities. Moscow: Gostechizdat, 1928.
[127] D. W., Berry and B. C., Sanders. Bounds on general entropy measures. J. Phys., A 36:12255, 2003.
[128] M. V., Berry. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. A, 392:45, 1984.
[129] J., Bertrand and P., Bertrand. A tomographic approach to Wigner's function. Found. Phys., 17:397, 1987.
[130] R., Bhatia. Matrix Analysis. Springer-Verlag, 1997.
[131] R., Bhatia and P., Rosenthal. How and why to solve the operator equation AX - XB = Y. Bull. Lond. Math. Soc., 29:1, 1997.
[132] A., Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc., 35:99, 1943.
[133] T., Bhosale, S., Tomsovic, and A., Lakshminarayan. Entanglement between two subsystems, the Wigner semicircle and extreme value statistics. Phys. Rev., A 85:062331, 2012.
[134] G., Björk, A. B., Klimov, P. de la, Hoz, M., Grassl, G., Leuchs, and L. L., Sanchez-Soto. Extremal quantum states and their Majorana constellations. Phys. Rev., A 92: 031801, 2015.
[135] P., Blanchard, L., Jakóbczyk, and R., Olkiewicz. Measures of entanglement based on decoherence. J. Phys., A 34:8501, 2001.
[136] K., Blanchfield. Orbits of mutually unbiased bases. J. Phys., A 47:135303, 2014.
[137] W., Blaschke and H., Terheggen. Trigonometria Hermitiana. Rend. Sem. Mat. Univ. Roma, Ser. 4, 3:153, 1939.
[138] I., Bloch, J., Dalibard, and W., Zwerger. Many–body physics with ultracold gases. Rev. Mod. Phys., 80:885, 2008.
[139] F. J., Bloore. Geometrical description of the convex sets of states for systems with spin−1/2 and spin−1. J. Phys., A 9:2059, 1976.
[140] B. G., Bodmann. A lower bound for the Wehrl entropy of quantum spin with sharp high-spin asymptotics. Commun. Math. Phys., 250:287, 2004.
[141] E., Bogomolny, O., Bohigas, and P., Leboeuf. Distribution of roots of random polynomials. Phys. Rev. Lett., 68:2726, 1992.
[142] E., Bogomolny, O., Bohigas, and P., Leboeuf. Quantum chaotic dynamics and random polynomials. J. Stat. Phys., 85:639, 1996.
[143] J. J., Bollinger, W. M., Itano, D. J., Wineland, and D. J., Heinzen. Optimal frequency measurements with maximally correlated states. Phys. Rev., A54:R4649, 1996.
[144] B., Bolt, T. G., Room, and G. E., Wall. On the Clifford collineation, transform and similarity groups I. J. Austral. Math. Soc., 2:60, 1960.
[145] L., Bombelli, R. K., Koul, J., Lee, and R. D., Sorkin. Quantum source of entropy for black holes. Phys. Rev., D 34:373, 1986.
[146] A., Bondal and I., Zhdanovskiy. Orthogonal pairs and mutually unbiased bases. preprint arXiv: 1510.05317.
[147] M., Born and E., Wolf. Principles of Optics. New York: Pergamon, 1987.
[148] A., Borras, A. R., Plastino, J., Batle, C., Zander, M., Casas, and A., Plastino. <At>Multi-qubit systems: highly entangled states and entanglement distribution. J. Phys., A 40:13407, 2007.
[149] S., Boucheron, G., Lugosi, and P., Massart. Concentration Inequalities. A Nonasymptotic Theory of Independence. Oxford: Oxford University Press, 2013.
[150] J., Bouda and V., Bužek. Purification and correlated measurements of bipartite mixed states. Phys. Rev., A 65:034304, 2002.
[151] M., Bourennane, M., Eibl, C., Kurtsiefer, H., Weinfurter, O., Guehne, P., Hyllus, D., Bruß, M., Lewenstein, and A., Sanpera. Witnessing multipartite entanglement. Phys. Rev. Lett., 92:087902, 2004.
[152] D., Bouwmeester, J. W., Pan, M., Daniell, H., Weinfurter, and A., Zeilinger. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett., 82:1345, 1999.
[153] L. J., Boya, E. C. G., Sudarshan, and T., Tilma. Volumes of compact manifolds. Rep. Math. Phys., 52:401, 2003.
[154] L., Boyle. Perfect porcupines: ideal networks for low frequency gravitational wave astronomy. preprint arXiv:1003.4946.
[155] F. G. S. L., Brandão, M., Christandl, and J., Yard. Faithful squashed entanglement. Commun. Math. Phys., 306:805, 2011.
[156] F. G. S. L., Brandão and G., Gour. The general structure of quantum resource theories. Phys. Rev. Lett., 115:070503, 2015.
[157] F. G. S. L., Brandão and M., Horodecki. On Hastings' counterexamples to the minimum output entropy additivity conjecture. Open Syst. Inf. Dyn., 17:31, 2010.
[158] F. G. S. L., Brandão and M., Horodecki. An area law for entanglement from exponential decay of correlations. Nat. Phys., 9:721, 2013.
[159] D., Braun, O., Giraud, I., Nechita, C., Pellegrini, and M., Žnidarič. A universal set of qubit quantum channels. J. Phys., A 47:135302, 2014.
[160] D., Braun, M., Kuś, and K., Życzkowski. Time-reversal symmetry and random polynomials. J. Phys., A 30:L117, 1997.
[161] S. L., Braunstein. Geometry of quantum inference. Phys. Lett., A 219:169, 1996.
[162] S. L., Braunstein and C. M., Caves. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 72:3439, 1994.
[163] S. L., Braunstein, C. M., Caves, R., Jozsa, N., Linden, S., Popescu, and R., Schack. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett., 83:1054, 1999.
[164] S., Bravyi. Requirements for compatibility between local and multipartite quantum states. Quantum Inf. Comput., 4:12, 2004.
[165] S., Bravyi, M. B., Hastings, and F., Verstraete. Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett, 97:050401, 2006.
[166] S., Bravyi and A., Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev., A71:022316, 2005.
[167] U., Brehm. The shape invariant of triangles and trigonometry in twopoint homogeneous spaces. Geometriae Dedicata, 33:59, 1990.
[168] G. K., Brennen. An observable measure of entanglement for pure states of multi-qubit systems. Quant. Inf. Comp., 3:619, 2003.
[169] H.-P., Breuer. Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett., 97:080501, 2006.
[170] H.-P., Breuer and F., Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002.
[171] E., Briand, J.-G., Luque, and J.-Y., Thibon. A complete set of covariants for the four qubit system. J. Phys., A 38:9915, 2003.
[172] H. J., Briegel and R., Raussendorf. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., A 86:910, 2001.
[173] S., Brierley and A., Higuchi. On maximal entanglement between two pairs in four-qubit pure states. J. Phys., A 40:8455, 2007.
[174] S., Brierley and S., Weigert. Maximal sets of mutually unbiased quantum states in dimension six. Phys. Rev., A 78:042312, 2008.
[175] J., Briët and P., Herremoës. Properties of classical and quantum Jensen–Shannon divergence. Phys. Rev., A 79:052311, 2009.
[176] M., Brion. Sur l'image de l'application moment. In M. P., Malliavin, editor, Séminaire d'Algebre Paul Dubreil et Marie- Paule Malliavin, page 177. Springer, 1987.
[177] D. C., Brody and L. P., Hughston. Geometric quantum mechanics. J. Geom. Phys., 38:19, 2001.
[178] D. C., Brody, L. P., Hughston, and D. M., Meier. Fragile entanglement statistics. J. Phys., A 48:425301, 2015.
[179] E., Bruening, H., Makela, A., Messina, and F., Petruccione. Parametrizations of density matrices. J. Mod. Opt., 59:1, 2012.
[180] N., Brunner, D., Cavalcanti, S., Pironio, V., Scarani, and S., Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419, 2014.
[181] D., Bruß. Characterizing entanglement. J. Math. Phys., 43:4237, 2002.
[182] W., Bruzda, V., Cappellini, H.-J., Sommers, and K., Życzkowski. Random quantum operations. Phys. Lett., A 373:320, 2009.
[183] D. J. C., Bures. An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w algebras. Trans. Am. Math. Soc., 135:199, 1969.
[184] P., Busch, P., Lahti, and P., Mittelstaedt. The Quantum Theory of Measurement. Springer-Verlag, 1991.
[185] P., Caban, J., Rembieliński, K. A., Smoliński, and Z., Walczak. Classification of two-qubit states. Quant. Infor. Process., 14:4665, 2015.
[186] A., Cabello, J. M., Estebaranz, and G., García-Alcaine. Bell–Kochen–Specker theorem: A proof with 18 vectors. Phys. Lett., A 212:183, 1996.
[187] A., Cabello, S., Severini, and A., Winter. Graph theoretic approach to quantum correlations. Phys. Rev. Lett., 112:040401, 2014.
[188] K., Cahill and R., Glauber. Density operators and quasi-probability distributions. Phys. Rev., 177:1882, 1969.
[189] P., Calabrese and J., Cardy. Entanglement entropy and conformal field theory. J. Phys., A 42:504005, 2009.
[190] A. R., Calderbank, P. J., Cameron, W. M., Kantor, and J. J., Seidel. Z4- Kerdock codes, orthogonal spreads, and extremal Euclidean line sets. Proc. London Math. Soc., 75:436, 1997.
[191] A. R., Calderbank, E. M., Rains, P. W., Shor, and N. J. A., Sloane. Quantum error correction and orthogonal geometry. Phys. Rev. Lett., 78:405, 1997.
[192] L. L., Campbell. An extended Čencov characterization of the information metric. Proc. Amer. Math. Soc., 98:135, 1986.
[193] B., Carlson and J. M., Keller. Eigenvalues of density matrices. Phys. Rev., 121:659, 1961.
[194] H. A., Carteret, A., Higuchi, and A., Sudbery. Multipartite generalization of the Schmidt decomposition. J. Math. Phys., 41:7932, 2000.
[195] C. M., Caves. Measures and volumes for spheres, the probability simplex, projective Hilbert spaces and density operators. http://info.phys.unm.edu/caves/reports
[196] C. M., Caves, C. A., Fuchs, and P., Rungta. Entanglement of formation of an arbitrary state of two rebits. Found. Phys. Lett., 14:199, 2001.
[197] C. M., Caves, C. A., Fuchs, and R., Schack. Unknown quantum states: The quantum de Finetti representation. J. Math. Phys., 43:4537, 2001.
[198] A., Cayley. On the theory of linear transformations. Camb. Math. J., 4:193, 1845.
[199] N. N., Čencov. Statistical Decision Rules and Optimal Inference. American Mathematical Society, 1982.
[200] N. J., Cerf and C., Adami. Quantum extension of conditional probability. Phys. Rev., A 60:893, 1999.
[201] N. J., Cerf, C., Adami, and R. M., Gingrich. Reduction criterion for separability. Phys. Rev., A 60:898, 1999.
[202] N. J., Cerf, M., Bourennane, A., Karlsson, and N., Gisin. Security of quantum key distribution using d-level systems. Phys. Rev. Lett., 88:127902, 2002.
[203] H. F., Chau. Unconditionally secure key distribution in higher dimensions by depolarization. IEEE Trans. Inf. Theory, 51:1451, 2005.
[204] K., Chen, S., Albeverio, and S.-M., Fei. Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett., 95:040504, 2005.
[205] K., Chen and L.-A., Wu. The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett., A 306:14, 2002.
[206] K., Chen and L.-A., Wu. A matrix realignment method for recognizing entanglement. Quant. Inf. Comp., 3:193, 2003.
[207] K., Chen and L.-A., Wu. Test for entanglement using physically observable witness operators and positive maps. Phys. Rev., A 69:022312, 2004.
[208] L., Chen and D. Ž., Djoković. Qubitqudit states with positive partial transpose. Phys. Rev., A 86:062332, 2012.
[209] L., Chen and D. Ž., Ðoković. Description of rank four PPT states having positive partial transpose. J. Math. Phys., 52:122203, 2011.
[210] L., Chen and L., Yu. Entanglement cost and entangling power of bipartite unitary and permutation operators. Phys. Rev., A 93:042331, 2016.
[211] P.-X., Chen, L.-M., Liang, C.-Z., Li, and M.-Q., Huang. A lower bound on entanglement of formation of 2n system. Phys. Lett., A 295:175, 2002.
[212] S., Chern. Complex Manifolds Without Potential Theory. Springer- Verlag, 1979.
[213] M.-T., Chien and H., Nakazato. Flat portions on the boundary of the Davis Wielandt shell of 3-by-3 matrices. Lin. Alg. Appl., 430:204, 2009.
[214] E., Chitambar, D., Leung, L., Mančinska, M., Ozols, and A., Winter. Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys., 328:303, 2014.
[215] S.-J., Cho, S.-H., Kye, and S. G., Lee. Generalized Choi map in 3-dimensional matrix algebra. Lin. Alg. Appl., 171:213, 1992.
[216] M.-D., Choi. Positive linear maps on Calgebras. Can. J. Math., 3:520, 1972.
[217] M.-D., Choi. Completely positive linear maps on complex matrices. Lin. Alg. Appl., 10:285, 1975.
[218] M.-D., Choi. Positive semidefinite biquadratic forms. Lin. Alg. Appl., 12:95, 1975.
[219] M.-D., Choi. Some assorted inequalities for positive maps on Calgebras. J. Operator Theory, 4:271, 1980.
[220] M.-D., Choi and T., Lam. Extremal positive semidefinite forms. Math. Ann., 231:1, 1977.
[221] D., Chruściński and A., Jamiołkowski. Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, 2004.
[222] D., Chruściński, J., Jurkowski, and A., Kossakowski. Quantum states with strong positive partial transpose. Phys. Rev., A 77:022113, 2008.
[223] D., Chruściński and G., Sarbicki. Entanglement witnesses: construction, analysis and classification. J. Phys., A 47:483001, 2014.
[224] O., Chterental and D. Ž., Ðoković. Normal forms and tensor ranks of pure states of four qubits. In G. D., Ling, editor, Linear Algebra Research Advances, page 133. Nova Science Publishers, 2007.
[225] L., Clarisse. The distillability problem revisited. Quantum Inf. Comput., 6:539, 2006.
[226] J. F., Clauser and A., Shimony. Bell's theorem; experimental tests and implications. Rep. Prog. Phys., 41:1881, 1978.
[227] R., Clifton and H., Halvorson. Bipartite mixed states of infinite dimensional systems are generically non-separable. Phys. Rev., A 61:012108, 2000.
[228] R., Clifton, B., Hepburn, and C., Wuthrich. Generic incomparability of infinite-dimensional entangled states. Phys. Lett., A 303:121, 2002.
[229] B., Coecke. Kindergarten quantum mechanics. In G., Adenier, A., Khrennikov, and T., Nieuwenhuizen, editors, Quantum Theory— Reconsideration of Foundations–3, page 81. AIP Conf. Proc. 810, 2006.
[230] V., Coffman, J., Kundu, and W. K., Wootters. Distributed entanglement. Phys. Rev., A 61:052306, 2000.
[231] A., Coleman and V. I., Yukalov. Reduced Density Matrices. Springer, 2000.
[232] A. J., Coleman. The structure of fermion density matrices. Rev. Mod. Phys., 35:668, 1963.
[233] B., Collins and I., Nechita. Random matrix techniques in quantum information theory. J. Math. Phys., 57:015215, 2016.
[234] T., Constantinescu and V., Ramakrishna. Parametrizing quantum states and channels. Quant. Inf. Proc., 2:221, 2003.
[235] J., Cortese. Relative entropy and single qubit Holevo–Schumacher–Westmoreland channel capacity. preprint quant-ph/0207128.
[236] C. A., Coulson. Present state of molecular structure calculations. Rev. Mod. Phys., 32:170, 1960.
[237] T. M., Cover and J. A., Thomas. Elements of Information Theory. Wiley, 1991.
[238] P., Cromwell. Polyhedra. Cambridge University Press, 1997.
[239] T., Cubitt, A., Montanaro, and A., Winter. On the dimension of subspaces with bounded Schmidt rank. J. Math. Phys., 49:022107, 2008.
[240] D. G., Currie, T. F., Jordan, and E. C. G., Sudarshan. Relativistic invariance and Hamiltonian theories of interacting particles. Rev. Mod. Phys., 35:350, 1963.
[241] T., Curtright, D. B., Fairlie, and C., Zachos. A Concise Treatise on Quantum Mechanics in Phase Space. World Scientific, 2014.
[242] L., Dabrowski and A., Jadczyk. Quantum statistical holonomy. J. Phys., A 22:3167, 1989.
[243] S., Daftuar and P., Hayden. Quantum state transformations and the Schubert calculus. Ann. Phys. (N. Y.), 315:80, 2005.
[244] S., Daftuar and M., Klimesh. Mathematical structure of entanglement catalysis. Phys. Rev., A 64:042314, 2001.
[245] O. C. O., Dahlsten, R., Oliveira, and M. B., Plenio. Emergence of typical entanglement in two-party random processes. J. Phys., A 40:8081, 2007.
[246] C., Dankert. Efficient Simulation of Random Quantum States and Operators. MSc thesis, Univ. Waterloo, 2005.
[247] N., Datta, T., Dorlas, R., Jozsa, and F., Benatti. Properties of subentropy. J. Math. Phys., 55:062203, 2014.
[248] E. B., Davies. Quantum Theory of Open Systems. London: Academic Press, 1976.
[249] C., Davis. The Toeplitz–Hausdorff theorem explained. Canad. Math. Bull., 14:245, 1971.
[250] R. I. A., Davis, R., Delbourgo, and P. D., Jarvis. Covariance, correlation and entanglement. J. Phys., A 33:1895, 2000.
[251] L. De, Lathauwer, B. D., Moor, and J., Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21:1253, 2000.
[252] T. R. de, Oliveira, M. F., Cornelio, and F. F., Fanchini. Monogamy of entanglement of formation. Phys. Rev., A 89:034303, 2014.
[253] J. I. de, Vicente. Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput., 7:624, 2007.
[254] R., Delbourgo. Minimal uncertainty states for the rotation group and allied groups. J. Phys., A 10:1837, 1977.
[255] R., Delbourgo and J. R., Fox. Maximum weight vectors possess minimal uncertainty. J. Phys., A 10:L233, 1977.
[256] M., Delbrück and G., Molière. Statistische Quantenmechanik und Thermodynamik. Ab. Preuss. Akad. Wiss., 1:1, 1936.
[257] B., DeMarco, A., Ben-Kish, D., Leibfried, V., Meyer, M., Rowe, B. M., Jelenkovic, W. M., Itano, J., Britton, C., Langer, T., Rosenband, and D., Wineland. Experimental demonstration of a controlled-NOT wave-packet gate. Phys. Rev. Lett., 89:267901, 2002.
[258] I., Devetak and A., Winter. Distillation of secret key and entanglement from quantum states. Proc. Royal Soc. Lond. A Math.-Phys., 461:207, 2005.
[259] S. J., Devitt, W. J., Munro, and K., Naemoto. Quantum error correction for beginners. Rep. Prog. Phys., 76:076001, 2013.
[260] P., Diaconis. What is … a random matrix? Notices of the AMS, 52:1348, 2005.
[261] R. H., Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93:99, 1954.
[262] J., Dittmann. On the Riemannian metric on the space of density matrices. Rep. Math. Phys., 36:309, 1995.
[263] J., Dittmann. Explicit formulae for the Bures metric. J. Phys., A 32:2663, 1999.
[264] J., Dittmann. The scalar curvature of the Bures metric on the space of density matrices. J. Geom. Phys., 31:16, 1999.
[265] D., DiVincenzo, C. A., Fuchs, H., Mabuchi, J. A., Smolin, A., Thapliyal, and A., Uhlmann. Entanglement of assistance. Lecture Notes Comp. Sci., 1509:247, 1999.
[266] D., DiVincenzo, D. W., Leung, and B., Terhal. Quantum data hiding. IEEE Trans. Inf. Theory, 48:580, 2002.
[267] D. P., DiVincenzo. Two-bit gates are universal for quantum computation. Phys. Rev., A 50:1015, 1995.
[268] D. P., DiVincenzo, T., Mor, P. W., Shor, J. A., Smolin, and B. M., Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys., 238:379, 2003.
[269] A. C., Doherty, P. A., Parillo, and F. M., Spedalieri. Distinguishing separable and entangled states. Phys. Rev. Lett., 88:187904, 2002.
[270] A. C., Doherty, P. A., Parillo, and F. M., Spedalieri. Complete family of separability criteria. Phys. Rev., A 69:022308, 2004.
[271] D. Ž., Doković and A., Osterloh. On polynomial invariants of several qubits. J. Math. Phys., 50:033509, 2009.
[272] M. J., Donald. Further results on the relative entropy. Math. Proc. Cam. Phil. Soc., 101:363, 1987.
[273] M. J., Donald and M., Horodecki. Continuity of relative entropy of entanglement. Phys. Lett., A 264:257, 1999.
[274] M. J., Donald, M., Horodecki, and O., Rudolph. The uniqueness theorem for entanglement measures. J. Math. Phys., 43:4252, 2002.
[275] J. P., Dowling, G. S., Agarwal, and W. P., Schleich. Wigner function of a general angular momentum state: Applications to a collection of twolevel atoms. Phys. Rev., A 49:4101, 1994.
[276] C. F., Dunkl, P., Gawron, J. A., Holbrook, J. A., Miszczak, Z., Puchała, and K., Życzkowski. Numerical shadow and geometry of quantum states. Phys. Rev., A 61:042314, 2000.
[277] W., Dür and J. I., Cirac. Equivalence classes of non-local operations. Q. Inform. Comput., 2:240, 2002.
[278] W., Dür, G., Vidal, and J. I., Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev., A 62:062314, 2000.
[279] A., Dvoretzky. Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, page 123, 1961.
[280] F., Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys., 3:1199, 1962.
[281] C., Eckart and G., Young. The approximation of one matrix by one of lower rank. Psychometrica, 1:211, 1936.
[282] A., Edelman and E., Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc., 32:1, 1995.
[283] H. G., Eggleston. Convexity. Cambridge University Press, 1958.
[284] A., Einstein. Autobiographical notes. In P. A., Schilpp, editor, Albert Einstein: Philosopher –Scientist, page 1. Cambridge University Press, 1949.
[285] A., Einstein, B., Podolsky, and N., Rosen. Can quantum mechanical description of reality be considered complete? Phys. Rev., 47:777, 1935.
[286] J., Eisert. Entanglement in quantum information theory. Ph.D. Thesis, University of Potsdam, 2001.
[287] J., Eisert, K., Audenaert, and M. B., Plenio. Remarks on entanglement measures and non-local state distinguishability. J. Phys., A 36:5605, 2003.
[288] J., Eisert and H. J., Briegel. Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev., A 64:022306, 2001.
[289] J., Eisert, M., Cramer, and M. B., Plenio. Area laws for the entanglement entropy –a review. Rev. Mod. Phys., 82:277, 2010.
[290] J., Eisert, P., Hyllus, O., Guhne, and M., Curty. Complete hierarchies of efficient approximations to problems in entanglement theory. Phys. Rev., A 70:062317, 2004.
[291] J., Eisert and M. B., Plenio. A comparison of entanglement measures. J. Mod. Opt., 46:145, 1999.
[292] A., Ekert and P. L., Knight. Entangled quantum systems and the Schmidt decomposition. Am. J. Phys., 63:415, 1995.
[293] C., Eltschka and J., Siewert. Monogamy equalities for qubit entanglement from lorentz invariance. Phys. Rev. Lett., 114: 140402, 2015.
[294] G. G., Emch. Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley Interscience, 1972.
[295] D. M., Endres and J. E., Schindelin. A new metric for probability distributions. IEEE Trans. Inf. Theory, 49:1858, 2003.
[296] B.-G., Englert and Y., Aharonov. The mean king's problem: Prime degrees of freedom. Phys. Lett., 284:1, 2001.
[297] B.-G., Englert and N., Metwally. Remarks on 2-q-bit states. Appl. Phys., B 72:35, 2001.
[298] T., Erber and G. M., Hockney. Complex systems: equilibrium configurations of N equal charges on a sphere (2 ≤ N ≤ 112). Adv. Chem. Phys., 98:495, 1997.
[299] P., Erdös. On an elementary proof of some asymptotic formulas in the theory of partitions. Phys. Rev. Lett., 43:437, 1942.
[300] Å., Ericsson. Separability and the stella octangula. Phys. Lett., A 295:256, 2002.
[301] M., Ericsson, E., Sjöqvist, J., Brännlund, D. K. L., Oi, and A. K., Pati. Generalization of the geometric phase to completely positive maps. Phys. Rev., A 67:020101(R), 2003.
[302] G., Etesi. Complex structure on the six dimensional sphere from a spontaneous symmetry breaking. J. Math. Phys., 56:043508, 2015.
[303] D. E., Evans. Quantum dynamical semigroups. Acta Appl. Math., 2:333, 1984.
[304] H., Everett. ‘Relative state’ formulation of quantum mechanics. Rev. Mod. Phys., 29:454, 1957.
[305] G., Ewald. Combinatorial Convexity and Algebraic Geometry. New York: Springer, 1996.
[306] P., Facchi, G., Florio, G., Parisi, and S., Pascazio. Maximally multipartite entangled states. Phys. Rev., A 77:060304 R, 2008.
[307] D. K., Faddejew. Zum Begriff der Entropie eines endlichen Wahrscheinlichkeitsschemas. In H., Grell, editor, Arbeiten zur Informationstheorie I, page 86. Deutscher Verlag der Wissenschaften, 1957.
[308] M., Fannes. A continuity property of the entropy density for spin lattices. Commun. Math. Phys., 31:291, 1973.
[309] M., Fannes, F. de, Melo, W., Roga, and K., Życzkowski. Matrices of fidelities for ensembles of quantum states and the holevo quantity. Quant. Inf. Comp., 12:472, 2012.
[310] M., Fannes, B., Nachtergaele, and R. F., Werner. Finitely correlated states on quantum spin chains. Commun. Math. Phys., 144:443, 1992.
[311] U., Fano. Pairs of two-level systems. Rev. Mod. Phys., 55:855, 1983.
[312] R. A., Fisher. Theory of statistical estimation. Proc. Cambr. Phil. Soc., 22:700, 1925.
[313] R. A., Fisher. The Design of Experiments. Oliver and Boyd, 1935.
[314] J., Fiurášek. Structural physical approximations of unphysical maps and generalized quantum measurements. Phys. Rev., A 66:052315, 2002.
[315] S. K., Foong and S., Kanno. Proof of Page's conjecture on the average entropy of a subsystem. Phys. Rev. Lett., 72:1148, 1994.
[316] L. R., Ford. Automorphic Functions. Chelsea, New York, 1951.
[317] P. J., Forrester. Log–Gases and Random matrices. Princeton University Press, 2010.
[318] G., Fubini. Sulle metriche definite da una forma Hermitiana. Atti Instituto Veneto, 6:501, 1903.
[319] C. A., Fuchs. Distinguishability and Accessible Information in Quantum Theory. PhD Thesis, Univ. of New Mexico, Albuquerque, 1996.
[320] C. A., Fuchs and C. M., Caves. Mathematical techniques for quantum communication theory. Open Sys. Inf. Dyn, 3:345, 1995.
[321] C. A., Fuchs, M. C., Hoang, A. J., Scott, and B. C., Stacey. SICs: More numerical solutions. see www.physics.umb.edu/Research/Qbism/
[322] C. A., Fuchs and R., Schack. Quantum-Bayesian coherence. Rev. Mod. Phys., 85:1693, 2013.
[323] C. A., Fuchs and J. van de, Graaf. Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Th., 45:1216, 1999.
[324] A., Fujiwara and P., Algoet. Oneto- one parametrization of quantum channels. Phys. Rev., A 59:3290, 1999.
[325] M., Fukuda. Revisiting additivity violation of quantum channels. Commun. Math. Phys., 332:713, 2014.
[326] W., Ganczarek, M., Kuś, and K., Życzkowski. Barycentric measure of quantum entanglement. Phys. Rev., A 85:032314, 2012.
[327] I. M., Gelfand, M. M., Kapranov, and Z. V., Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants. Birkhauser, 1994.
[328] E., Gerjuoy. Lower bound on entanglement of formation for the qubit–qudit system. Phys. Rev., A 67:052308, 2003.
[329] S., Gharibian. Strong NP-Hardness of the quantum separability problem. Quantum Infor. Comput., 10:343, 2010.
[330] G. W., Gibbons. Typical states and density matrices. J. Geom. Phys., 8:147, 1992.
[331] G. W., Gibbons and H., Pohle. Complex numbers, quantum mechanics and the beginning of time. Nucl. Phys., B 410:375, 1993.
[332] P., Gibilisco and T., Isola. Wigner–Yanase information on quantum state space: The geometric approach. J. Math. Phys., 44:3752, 2003.
[333] R., Gill. Time, finite statistics, and Bell's fifth position. In A., Khrennikov, editor, Foundations of Probability and Physics –2, page 179. Växjö University Press, 2003.
[334] R., Gilmore. Lie Groups, Lie Algebras, and Some of Their Applications. New York: Wiley, 1974.
[335] R., Gilmore. Lie Groups, Physics, and Geometry: an Introduction for Physicists, Engineers and Chemists. Cambridge UP, 2008.
[336] J., Ginibre. Statistical ensembles of complex quaternion and real matrices. J. Math. Phys., 6:440, 1965.
[337] V., Giovannetti, S., Mancini, D., Vitali, and P., Tombesi. Characterizing the entanglement of bipartite quantum systems. Phys. Rev., A 67:022320, 2003.
[338] N., Gisin. Stochastic quantum dynamics and relativity. Helv. Phys. Acta, 62:363, 1989.
[339] N., Gisin. Bell inequality holds for all non-product states. Phys. Lett., A 154:201, 1991.
[340] N., Gisin and H., Bechmann- Pasquinucci. Bell inequality, Bell states and maximally entangled states for n qubits? Phys. Lett., A 246:1, 1998.
[341] N., Gisin and S., Massar. Optimal quantum cloning machines. Phys. Rev. Lett., 79:2153, 1997.
[342] D., Gitman and A. L., Shelepin. Coherent states of SU(N) groups. J. Phys., A 26:313, 1993.
[343] M., Giustina et al. Significantloophole- free test of Bell's theorem with entangled photons. Phys. Rev. Lett., 115:250401, 2015.
[344] R. J., Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131:2766, 1963.
[345] A. M., Gleason. Measures on the closed subspaces of a Hilbert space. J. Math. Mech., 6:885, 1957.
[346] S., Gnutzmann, F., Haake, and M., Kuś. Quantum chaos of SU(3) observables. J. Phys., A 33:143, 2000.
[347] S., Gnutzmann and M., Kuś. Coherent states and the classical limit on irreducible SU(3) representations. J. Phys., A 31:9871, 1998.
[348] S., Gnutzmann and K., Życzkowski. Rényi-Wehrl entropies as measures of localization in phase space. J. Phys., A 34:10123, 2001.
[349] C., Godsil and A., Roy. Equiangular lines, mutually unbiased bases, and spin models. Eur. J. Comb., 30:246, 2009.
[350] S., Golden. Lower bounds for the Helmholtz function. Phys. Rev., B 137:1127, 1965.
[351] V., Gorini, A., Kossakowski, and E. C. G., Sudarshan. Completely positive dynamical semigroups of n-level systems. J. Math. Phys., 17:821, 1976.
[352] D., Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology, 1997.
[353] G., Gour. Family of concurrence monotones and its applications. Phys. Rev., A 71:012318, 2004.
[354] G., Gour and N. R., Wallach. All maximally entangled four-qubit states. J. Math. Phys., 51:112201, 2010.
[355] S. K., Goyal, B. N., Simon, R., Singh, and S., Simon. Geometry of the generalized Bloch sphere for qutrit. J. Phys., A 49:165203, 2016.
[356] D., Goyeneche, D., Alsina, J. I., Latorre, A., Riera, and K., Życzkowski. Absolutely maximally entangled states, combinatorial designs and multi-unitary matrices. Phys. Rev., A 92:032316, 2015.
[357] D., Goyeneche and K., Życzkowski. Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev., A 90:022316, 2014.
[358] J., Grabowski, A., Ibort, M., Kuś, and G., Marmo. Convex bodies of states and maps. J. Phys., A 46:425301, 2013.
[359] M. R., Grasseli and R. F., Streater. On the uniqueness of the Chentsov metric in quantum information geometry. Inf. Dim. Analysis, Quantum Prob., 4:173, 2001.
[360] M., Grassl. On SIC-POVMs and MUBs in dimension 6. preprint quant-ph/040675.
[361] M., Grassl, M., Rötteler, and T., Beth. Computing local invariants of qubit systems. Phys. Rev., A 58:1833, 1998.
[362] J., Gray. The Hilbert Challenge. Oxford UP, 2000.
[363] D. M., Greenberger, M., Horne, and A., Zeilinger. Going beyond Bell's theorem. In M., Kafatos, editor, Bell's theorem, quantum theory and conceptions of the Universe, page 69. Dordrecht: Kluwer, 1989.
[364] D. M., Greenberger, M. A., Horne, A., Shimony, and A., Zeilinger. Bell's theorem without inequalities. Am. J. Phys., 58:1131, 1990.
[365] J., Griffiths and J., Harris. Principles of Algebraic Geometry. Wiley, 1978.
[366] D., Gross. Hudson's theorem for finite-dimensional quantum systems. J. Math. Phys., 47:122107, 2006.
[367] D., Gross, K., Audenaert, and J., Eisert. Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys., 48:052104, 2007.
[368] B., Grünbaum. Convex Polytopes, II ed. New York: Springer Verlag, 2003.
[369] J., Gruska. Quantum Computing. New York: McGraw-Hill, 1999.
[370] O., Gühne. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett., 92:117903, 2004.
[371] O., Gühne, P., Hyllus, D., Bruß, A., Ekert, M., Lewenstein, C., Macchiavello, and A., Sanpera. Detection of entanglement with few local measurements. Phys. Rev., A 66:062305, 2002.
[372] O., Gühne, P., Hyllus, D., Bruß, A., Ekert, M., Lewenstein, C., Macchiavello, and A., Sanpera. Experimental detection of entanglement via witness operators and local measurements. J. Mod. Opt., 50:1079, 2003.
[373] O., Gühne, P., Hyllus, O., Gittsovich, and J., Eisert. Covariance matrices and the separability problem. Phys. Rev. Lett., 99:130504, 2007.
[374] O., Gühne and M., Lewenstein. Entropic uncertainty relations and entanglement. Phys. Rev., A 70:022316, 2004.
[375] O., Gühne and G., Tóth. Entanglement detection. Physics Reports, 474:1, 2009.
[377] V., Guillemin and S., Sternberg. Symplectic Techniques in Physics. Cambridge University Press, 1984.
[376] V., Guillemin and R., Sjamaar. Convexity theorems for varieties invariant under a Borel subgroup. Pure Appl. Math. Q., 2:637, 2006.
[378] F., Gürsey and H. C., Tze. Complex and quaternionic analyticity in chiral and gauge theories, I. Ann. of Phys., 128:29, 1980.
[379] L., Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sciences, 69:448, 2004.
[380] L., Gurvits and H., Barnum. Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev., A 66:062311, 2002.
[381] L., Gurvits and H., Barnum. Separable balls around the maximally mixed multipartite quantum states. Phys. Rev., A 68:042312, 2003.
[382] K. E., Gustafson and D. K. M., Rao. Numerical Range: The Field of Values of Linear Operators and Matrices. New York: Springer-Verlag, 1997.
[383] E., Gutkin. The Toeplitz–Hausdorff theorem revisited: relating linear algebra and geometry. Math. Intelligencer, 26:8, 2004.
[384] E., Gutkin, E. A., Jonckheere, and M., Karow. Convexity of the joint numerical range: topological and differential geometric viewpoints. Lin. Alg. Appl., 376:143, 2004.
[385] E., Gutkin and K., Życzkowski. Joint numerical ranges, quantum maps, and joint numerical shadows. Lin. Alg. Appl., 438:2394, 2013.
[386] K.-C., Ha. Atomic positive linear maps in matrix algebra. Publ. RIMS Kyoto Univ., 34:591, 1998.
[387] K.-C., Ha. Separability of qubitqudit quantum states with strong positive partial transposes. Phys. Rev., A 87:024301, 2013.
[388] K.-C., Ha and S.-H., Kye. Optimality for indecomposable entanglement witnesses. Phys. Rev., A 86:034301, 2012.
[389] K.-C., Ha, S.-H., Kye, and Y.-S., Park. Entangled states with positive partial transposes arising from indecomposable positive linear maps. Phys. Lett., A 313:163, 2003.
[390] F., Haake. Quantum Signatures of Chaos, 3nd. ed. Springer, 2010.
[391] J., Hadamard. Résolution d'une question relative aux déterminants. Bull. Sci. Math., 17:240, 1893.
[392] M. J. W., Hall. Random quantum correlations and density operator distributions. Phys. Lett., A 242: 123, 1998.
[393] W., Hall. A new criterion for indecomposability of positive maps. J. Phys., 39:14119, 2006.
[394] K., Hammerer, G., Vidal, and J. I., Cirac. Characterization of non-local gates. Phys. Rev., A 66:062321, 2002.
[395] Y.-J., Han, Y.-S., Zhang, and G.-C., Guo. Compatible conditions, entanglement, and invariants. Phys. Rev., A70:042309, 2004.
[396] T., Hangan and G., Masala. A geometrical interpretation of the shape invariant geodesic triangles in complex projective spaces. Geometriae Dedicata, 49:129, 1994.
[397] J. H., Hannay. Exact statistics for 2j points on a sphere: The Majorana zeros for random spin state. J. Phys., A 29:L101, 1996.
[398] J. H., Hannay. The Berry phase for spin in theMajorana representation. J. Phys., A 31:L53, 1998.
[399] L. O., Hansen, A., Hauge, J., Myrheim, and P., Ø. Sollid. Extremal entanglement witnesses. Int. J. Quantum Inform., 13: 1550060, 2015.
[400] R. H., Hardin and N. J. A., Sloane. McLaren's improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom., 15:429, 1996.
[401] G. H., Hardy, J. E., Littlewood, and G., Pólya. Some simple inequalities satisfied by convex functions. Messenger Math., 58:145, 1929.
[402] G. H., Hardy and S., Ramanujan. Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc., 17:75, 1918.
[403] L., Hardy. Quantum theory from five reasonable axioms. preprint quantph/ 0101012.
[404] L., Hardy. Method of areas for manipulating the entanglement properties of one copy of a twoparticle pure entangled state. Phys. Rev., A 60:1912, 1999.
[405] P., Harremoës and F., Topsøe. Inequalities between entropy and index of coincidence derived from information diagrams. IEEE Trans. Inform. Theory, 47:2944, 2001.
[406] J. E., Harriman. Geometry of density matrices 1. Phys. Rev., A 17:1249, 1978.
[407] J., Harris. Algebraic Geometry. A First Course. Springer, 1992.
[408] R. V. L., Hartley. Transmission of information. Bell Sys. Tech. J., 7:535, 1928.
[409] M. B., Hastings. An area law for one dimensional quantum systems. J. Stat. Mech., page P08024, 2007.
[410] M. B., Hastings. Superadditivity of communication capacity using entangled inputs. Nat. Phys., 5:255, 2009.
[411] F., Hausdorff. Der Wertvorrat einer Bilinearform. Math. Z., 3:314, 1919.
[412] T. F., Havel. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys., 44:534, 2003.
[413] T. F., Havel, Y., Sharf, L., Viola, and D. G., Cory. Hadamard products of product operators and the design of gradient: Diffusion experiments for simulating decoherence by NMR spectroscopy. Phys. Lett., A 280:282, 2001.
[414] J., Havrda and F., Charvát. Quantification methods of classification processes: Concept of structural α entropy. Kybernetica, 3:30, 1967.
[415] M., Hayashi, S., Ishizaka, A., Kawachi, G., Kimura, and T., Ogawa. Introduction to Quantum Information Science. Springer Verlag, 2015.
[416] P., Hayden, R., Jozsa, D., Petz, and A., Winter. Structure of states which satisfy strong subadditivity of qantum entropy with equality. Commun. Math. Phys., 246:359, 2003.
[417] P., Hayden, D., Leung, and A., Winter. Aspects of generic entanglement. Commun. Math. Phys., 265:95, 2006.
[418] P., Hayden, D. W., Leung, and A., Winter. Aspects of generic entanglement. Commun. Math. Phys., 269:95, 2006.
[419] P., Hayden, B. M., Terhal, and A., Uhlmann. On the LOCC classification of bipartite density matrices. preprint quant-ph/0011095.
[420] P., Hayden and A., Winter. Counterexamples to the maximal p–norm multiplicativity conjecture for all p > 1. Commun. Math. Phys., 284:263, 2008.
[421] P. M., Hayden, M., Horodecki, and B. M., Terhal. The asymptotic entanglement cost of preparing a quantum state. J. Phys., A 34:6891, 2001.
[422] C. W., Helstrom. Quantum Detection and Estimation Theory. London: Academic Press, 1976. Mathematics in Science and Engineering vol. 123.
[423] W., Helwig. Absolutely maximally entangled qudit graph states. preprint arxiv:1306.2879.
[424] W., Helwig and W., Cui. Absolutely maximally entangled states: existence and applications. preprint arXiv:1306.2536.
[425] W., Helwig, W., Cui, J. I., Latorre, A., Riera, and H.-K., Lo. Absolute maximal entanglement and quantum secret sharing. Phys. Rev., A 86:052335, 2012.
[426] L., Henderson and V., Vedral. Information, relative entropy of entanglement and irreversibility. Phys. Rev. Lett., 84:2263, 2000.
[427] D., Henrion. Semidefinite geometry of the numerical range. Electr. J. Lin. Alg., 20:322, 2010.
[428] D., Henrion. Semidefinite representation of convex hulls of rational varieties. Acta Appl. Math., 115:319, 2011.
[429] B., Hensen et al. Loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature, 526:682, 2015.
[430] N., Herbert. FLASH—A superluminal communicator based upon a new kind of quantum measurement. Found. Phys., 12:1171, 1982.
[431] O., Hesse.Über dieWendepunkte der Curven Dritten Ordnung. J. Reine Angew. Math., 28:97, 1844.
[432] F., Hiai, M., Ohya, and M., Tsukada. Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific J. Math., 96:99, 1981.
[433] F., Hiai and D., Petz. The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys., 143:99, 1991.
[434] A., Higuchi. On the one-particle reduced density matrices of a pure three-qutrit quantum state. preprint arXiv:quant-ph/0309186.
[435] A., Higuchi and A., Sudbery. How entangled can two couples get? Phys. Lett., A 272:213, 2000.
[436] A., Higuchi, A., Sudbery, and J., Szulc. One-qubit reduced states of a pure many-qubit state: polygon inequalities. Phys. Rev. Lett., 90:107902, 2003.
[437] R., Hildebrand. Positive partial transpose from spectra. Phys. Rev., A 76:052325, 2007.
[438] S., Hill and W. K., Wootters. Entanglement of a pair of quantum bits. Phys. Rev. Lett., 78:5022, 1997.
[439] W., Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc., 58:13, 1963.
[440] H. F., Hofmann and S., Takeuchi. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev., A 68:032103, 2003.
[441] S. G., Hoggar. t-designs in projective spaces. Europ. J. Combin., 3:233, 1982.
[442] S. G., Hoggar. 64 lines from a quaternionic polytope. Geometriae Dedicata, 69:287, 1998.
[443] A. S., Holevo. Information theoretical aspects of quantum measurements. Prob. Inf. Transmission USSR, 9:177, 1973.
[444] A. S., Holevo. Some estimates for information quantity transmitted by quantum communication channels. Probl. Pered. Inf., 9:3, 1973. English tranl.: Probl. Inf. Transm. 9:177, 1973.
[445] A. S., Holevo. Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, 1982.
[446] A. S., Holevo. The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theor., 44:269, 1998.
[447] A. S., Holevo. Statistical Structure of Quantum Theory. Springer, 2001.
[448] K. J., Horadam. Hadamard Matrices and Their Applications. Princeton University Press, 2007.
[449] A., Horn. Doubly stochastic matrices and the diagonal of rotation. Am. J. Math., 76:620, 1954.
[450] R., Horn and C., Johnson. Matrix Analysis. Cambridge University Press, 1985.
[451] R., Horn and C., Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
[452] K., Horodecki, M., Horodecki, P., Horodecki, and J., Oppenheim. Secure key from bound entanglement. Phys. Rev. Lett., 94: 160502, 2005.
[453] M., Horodecki. Entanglement measures. Quant. Inf. Comp., 1:3, 2001.
[454] M., Horodecki and P., Horodecki. Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev., A 59:4206, 1999.
[455] M., Horodecki, P., Horodecki, and R., Horodecki. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett., A 223:1, 1996.
[456] M., Horodecki, P., Horodecki, and R., Horodecki. Inseparable two spin- 1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett., 78:574, 1997.
[457] M., Horodecki, P., Horodecki, and R., Horodecki. Mixed-state entanglement and distillation: Is there a ‘bound’ entanglement in nature? Phys. Rev. Lett., 80:5239, 1998.
[458] M., Horodecki, P., Horodecki, and R., Horodecki. Limits for entanglement measures. Phys. Rev. Lett., 84:2014, 2000.
[459] M., Horodecki, P., Horodecki, and R., Horodecki. Mixed-state entanglement and quantum communication. In G., Alber and M., Weiner, editors, Quantum Information –Basic Concepts and Experiments, page 1. Springer, 2000.
[460] M., Horodecki, P., Horodecki, and R., Horodecki. Separability of mixed quantum states: Linear contractions and permutations criteria. Open Sys. & Information Dyn., 13:103, 2006.
[461] M., Horodecki, P., Horodecki, and J., Oppenheim. Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev., A 67:062104, 2003.
[462] M., Horodecki and J., Oppenheim. (Quantumness in the context of) resource theories. Int. J. Mod. Phys., B27:1345019, 2013.
[463] M., Horodecki, P. W., Shor, and M. B., Ruskai. Entanglement breaking channels. Rev. Math. Phys., 15:621, 2003.
[464] P., Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett., A 232:333, 1997.
[465] P., Horodecki and A., Ekert. Method for direct detection of quantum entanglement. Phys. Rev. Lett., 89:127902, 2002.
[466] P., Horodecki, M., Horodecki, and R., Horodecki. Bound entanglement can be activated. Phys. Rev. Lett., 82:1056, 1999.
[467] P., Horodecki, M., Lewenstein, G., Vidal, and I., Cirac. Operational criterion and constructive checks for the separability of low rank density matrices. Phys. Rev., A 62:032310, 2000.
[468] R., Horodecki and M., Horodecki. Information-theoretic aspects of quantum inseparability of mixed states. Phys. Rev., A 54:1838, 1996.
[469] R., Horodecki and P., Horodecki. Quantum redundancies and local realism. Phys. Lett., A 194:147, 1994.
[470] R., Horodecki, P., Horodecki, and M., Horodecki. Quantum α-entropy inequalities: Independent condition for local realism? Phys. Lett., A 210:377, 1996.
[471] R., Horodecki, P., Horodecki, M., Horodecki, and K., Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865, 2009.
[472] S. D., Howard, A. R., Calderbank, and W., Moran. The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Sig. Process., 2006:85865, 2006.
[473] J. M., Howie. Fields and Galois Theory. Springer, 2006.
[474] L. K., Hua. Harmonic Analysis of Functions of Several Variables in the Classical Domains. American Mathematical Society, 1963. Chinese original 1958, Russian translation, Moskva 1959.
[475] R., Hübener, M., Kleinmann, T.-C., Wei, C., González-Guillén, and O., Gühne. The geometric measure of entanglement for symmetric states. Phys. Rev., A 80:032324, 2009.
[476] F., Huber, O., Gühne, and J., Siewert. Absolutely maximally entangled states of seven qubits do not exist. Phys. Rev. Lett. 118:200502, 2017.
[477] M., Hübner. Explicit computation of the Bures distance for density matrices. Phys. Lett., A 163:239, 1992.
[478] T., Huckle, K., Waldherr, and T., Schulte-Herbrüggen. Computations in quantum tensor networks. Lin. Alg. Appl., 438:750, 2013.
[479] R., Hudson. When is the Wigner quasi-probability density nonnegative? Rep. Math. Phys., 6:249, 1974.
[480] L. P., Hughston. Geometric aspects of quantum mechanics. In S. Huggett, editor, Twistor Theory. S. Marcel Dekker, p. 59, 1995.
[481] L. P., Hughston, R., Jozsa, and W. K., Wootters. A complete classification of quantum ensembles having a given density matrix. Phys. Lett., A 183:14, 1993.
[482] L. P., Hughston and S. M., Salamon. Surverying points on the complex projective plane. Adv. Math., 286:1017, 2016.
[483] F., Hulpke and D., Bruß. A twoway algorithm for the entanglement problem. J. Phys., A 38:5573, 2005.
[484] W., Hunziker. A note on symmetry operations in quantum mechanics. Helv. Phys. Acta, 45:233, 1972.
[485] K., Husimi. Some formal properties of density matrices. Proc. Phys. Math. Soc. Japan, 22:264, 1940.
[486] P., Hyllus, O., Gühne, D., Bruß, and M., Lewenstein. <At>Relations between entanglement witnesses and Bell inequalities. Phys. Rev., A 72:012321, 2005.
[487] R., Ingarden, A., Kossakowski, and M., Ohya. Information Dynamics and Open Systems. Dordrecht: Kluwer, 1997.
[488] R. S., Ingarden. Information geometry in functional spaces of classical and quantum finite statistical systems. Int. J. Engng. Sci., 19:1609, 1981.
[489] S., Ishizaka. Analytical formula connecting entangled state and the closest disentangled state. Phys. Rev., A 67:060301, 2003.
[490] S., Ishizaka and T., Hiroshima. Maximally entangled mixed states under non-local unitary operations in two qubits. Phys. Rev., A 62:022310, 2000.
[491] I. D., Ivanović. Geometrical description of quantal state determination. J. Phys., A 14:3241, 1981.
[492] L., Jakóbczyk and M., Siennicki. Geometry of Bloch vectors in two-qubit system. Phys. Lett., A 286:383, 2001.
[493] P., Jaming, M., Matolsci, P., Móra, F., Szöllʺosi, and M., Weiner. A generalized Pauli problem an infinite family of MUB-triplets in dimension 6. J. Phys., A 42:245305, 2009.
[494] A., Jamiołkowski. Linear transformations which preserve trace and positive semi-definiteness of operators. Rep. Math. Phys., 3:275, 1972.
[495] A., Jamiołkowski. An effective method of investigation of positive maps on the set of positive definite operators. Rep. Math. Phys., 5:415, 1975.
[496] R. A., Janik and M. A., Nowak. Wishart and anti-Wishart random matrices. J.Phys., A 36:3629, 2003.
[497] J. M., Jauch. Foundations of Quantum Mechanics. Addison-Wesley, 1968.
[498] J. M., Jauch and C., Piron. Generalized localizability. Helv. Phys. Acta, 45:559, 1967.
[499] E. T., Jaynes. Probability Theory. The Logic of Science. Cambridge University Press, 2003.
[500] H., Jeffreys. Theory of Probability. Oxford: Clarendon Press, 1961.
[501] A., Jenčova. Generalized relative entropies as contrast functionals on density matrices. Int. J. Theor. Phys., 43:1635, 2004.
[502] J. G., Jensen and R., Schack. A simple algorithm for local conversion of pure states. Phys. Rev., A 63:062303, 2001.
[503] N., Johnston. Non-positive-partialtranspose subspaces can be as large as any entangled subspace. Phys. Rev., A 87:064302, 2013.
[504] D., Jonathan and M. B., Plenio. Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett., 83:3566, 1999.
[505] D., Jonathan and M. B., Plenio. Minimial conditions for local pure-state entanglement manipulation. Phys. Rev. Lett., 83:1455, 1999.
[506] K. R. W., Jones. Entropy of random quantum states. J. Phys., A 23:L1247, 1990.
[507] N. S., Jones and N., Linden. Parts of quantum states. Phys. Rev., A 71:012324, 2005.
[508] P., Jordan, J. von, Neumann, and E. P., Wigner. On an algebraic generalization of the quantum mechanical formalism. Ann. Math., 56:29, 1934.
[509] R., Jozsa. Fidelity for mixed quantum states. J. Mod. Opt., 41:2315, 1994.
[510] R., Jozsa, D., Robb, and W. K., Wootters. Lower bound for accessible information in quantum mechanics. Phys. Rev., A 49:668, 1994.
[511] R., Jozsa and B., Schumacher. A new proof of the quantum noiseless coding theorem. J. Mod. Opt., 41:2343, 1994.
[512] M., Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314, 1943.
[513] W. K., Kantor. MUBs inequivalence and affine planes. J. Math. Phys., 53:032204, 2012.
[514] L. V., Kantorovich. On translocation of masses. Doklady Acad. Sci. URSS, 37:199, 1942.
[515] J., Kapur. Measures of Information and Their Applications. New York: John Wiley & Sons, 1994.
[516] B. R., Karlsson. Three-parameter complex Hadamard matrices of order 6. Linear Alg. Appl., 434:247, 2011.
[517] S., Karnas and M., Lewenstein. Separable approximations of density matrices of composite quantum systems. J. Phys., A 34:6919, 2001.
[518] D. S., Keeler, L., Rodman, and I. M., Spitkovsky. The numerical range of 3 × 3 matrices. Linear Alg. Appl., 252:115, 1997.
[519] J., Kempe. Multiparticle entanglement and its applications to cryptography. Phys. Rev., A 60:910, 1999.
[520] V., Kendon, V. K., Nemoto, and W., Munro. Typical entanglement in multiple-qubit systems. J. Mod. Opt., 49:1709, 2002.
[521] V. M., Kendon, K., Zyczkowski, and W. J., Munro. Bounds on entanglement in qudit subsystems. Phys. Rev., A 66:062310, 2002.
[522] N., Khaneja, R., Brockett, and S. J., Glaser. Time optimal control in spin systems. Phys. Rev., A 63:0323308, 2001.
[523] M., Khatirinejad. On Weyl–Heisenberg orbits of equiangular lines. J. Algebra. Comb., 28:333, 2008.
[524] A. I., Khinchin. Mathematical Foundations of Information Theory. Dover, 1957.
[525] T. W. B., Kibble. Geometrization of quantum mechanics. Commun. Math. Phys., 65:189, 1979.
[526] H.-J., Kim and S.-H., Kye. Indecomposable extreme positive linear maps in matrix algebras. Bull. London Math. Soc., 26:575, 1994.
[527] J. S., Kim, A., Das, and B. C., Sanders. Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev., A 79:012329, 2009.
[528] J. S., Kim, G., Gour, and B. C., Sanders. Limitations to sharing entanglement. Contemp. Phys., 53:417, 2012.
[529] G., Kimura. The Bloch vector for n-level systems. Phys. Lett., A 314:339, 2003.
[530] C., King. Additivity for unital qubit channels. J. Math. Phys., 43:4641, 2002.
[531] C., King and M. B., Ruskai. Minimal entropy of states emerging from noisy channels. IEEE Trans. Inf. Th., 47:192, 2001.
[532] R., Kippenhahn. Ueber den Wertevorrat einer Matrix. Math. Nachricht., 6:193, 1951.
[533] F. C., Kirwan. Convexity properties of the moment mapping. Invent. Math., 77:547, 1984.
[534] A., Klappenecker and M., Rötteler. Beyond stabilizer codes I: Nice error bases. IEEE Trans. Inform. Theory, 48:2392, 2002.
[535] A., Klappenecker and M., Rötteler. Constructions of mutually unbiased bases. Lect. Not. Computer Science, 2948:137, 2004.
[536] A., Klappenecker and M., Rötteler. Mutually Unbiased Bases are complex projective 2–designs. In Proc ISIT, page 1740. Adelaide, 2005.
[537] A., Klappenecker and M., Rötteler. On the monomiality of nice error bases. IEEE Trans. Inform. Theory, 51:1084, 2005.
[538] J. R., Klauder. The action option and a Feynman quantization of spinor fields in terms of ordinary cnumbers. Ann. Phys. (N.Y), 11:60, 1960.
[539] J. R., Klauder. Are coherent states the natural language of quantum theory? In V., Gorini and A., Frigerio, editors, Fundamental Aspects of Quantum Theory, page 1. Plenum, 1985.
[540] J. R., Klauder and B.-S., Skagerstam. Coherent States. Applications in Physics and Mathematical Physics. Singapore: World Scientific, 1985.
[541] J. R., Klauder and E. C. G., Sudarshan. Fundamentals of Quantum Optics. New York: W. A. Benjamin, 1968.
[542] O., Klein. Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Z. f. Physik, 72:767, 1931.
[543] A., Klimov, J. L., Romero, G., Björk, and L. L., Sanchez-Soto. Discrete phase space structure of n-qubit mutually unbiased bases. Ann. Phys., 324:53, 2009.
[544] A., Klyachko. Quantum marginal problem and representations of the symmetric group. preprint quantph/ 0409113.
[545] A. A., Klyachko. Stable bundles, representation theory and Hermitian operators. SelectaMath., 4:419, 1998.
[546] A. A., Klyachko and A. S., Shumovsky. General entanglement. J. Phys. Conf. Ser., 36:87, 2006.
[547] E., Knill. Group representations, error bases and quantum codes. preprint quant-ph/9608049.
[548] E., Knill and R., Laflamme. Power of one bit of quantum information. Phys. Rev. Lett., 81:5672, 1998.
[549] A., Knutson. The symplectic and algebraic geometry of Horn's problem. Linear Algebra Appl., 319:61, 2000.
[550] S., Kobayashi and K., Nomizu. Foundations of Differential Geometry I. Wiley Interscience, 1963.
[551] S., Kochen and E., Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech., 17: 59, 1967.
[552] T. G., Kolda and B. W., Bader. Tensor decompositions and applications. SIAM Rev., 51:455, 2009.
[553] H. J., Korsch, C., Müller, and H., Wiescher. On the zeros of the Husimi distribution. J. Phys., A 30:L677, 1997.
[554] A., Kossakowski. Remarks on positive maps of finite-dimensional simple Jordan algebras. Rep. Math. Phys., 46:393, 2000.
[555] A., Kossakowski. A class of linear positive maps in matrix algebras. Open Sys. & Information Dyn., 10:1, 2003.
[556] A. I., Kostrikin and P. I., Tiep. Orthogonal Decompositions and Integral Lattices. de Gruyter, 1994.
[557] B., Kraus. Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev., A82:032121, 2010.
[558] B., Kraus and J. I., Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev., A 63:062309, 2001.
[559] K., Kraus. General state changes in quantum theory. Ann. Phys.(N.Y.), 64:311, 1971.
[560] K., Kraus. States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer-Verlag, 1983.
[561] F., Kubo and T., Ando. Means of positive linear operators. Math. Ann., 246:205, 1980.
[562] R., Kueng and D., Gross. Qubit stabilizer states are complex projective 3-designs. preprint arXiv:1510.02767.
[563] S., Kullback and R. A., Leibler. On information and sufficiency. Ann. Math. Stat., 22:79, 1951.
[564] M., Kuś, J., Mostowski, and F., Haake. Universality of eigenvector statistics of kicked tops of different symmetries. J. Phys., A 21:L1073, 1988.
[565] M., Kuś and K., Zyczkowski. Geometry of entangled states. Phys. Rev., A 63:032307, 2001.
[566] S.-H., Kye. Facial structures for unital positive linear maps in the twodimensional matrix algebra. Lin. Alg. Appl., 362:57, 2003.
[567] R., Laflamme, C., Miquel, J. P., Paz, and W., Zurek. Perfect quantum error correcting code. Phys. Rev. Lett., 77:198, 1996.
[568] A., Laing, T., Lawson, E. M., López, and J. L., O'Brien. Observation of quantum interference as a function of Berry's phase in a complex Hadamard network. Phys. Rev. Lett., 108:260505, 2012.
[569] C. W. H., Lam. The search for a finite projective plane of order 10. Amer. Math. Mon., 98:305, 1991.
[570] P. W., Lamberti, A. P., Majtey, A., Borras, M., Casas, and A., Plastino. Metric character of the quantum Jensen-Shannon divergence. Phys. Rev., A77:052311, 2008.
[571] L., Landau. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys., 45:430, 1927.
[572] L. J., Landau and R. F., Streater. On Birkhoff's theorem for doubly stochastic completely positive maps of matrix algebras. Lin. Algebra Appl., 193:107, 1993.
[573] O., Lanford and D., Robinson. Mean entropy of states in quantum statistical ensembles. J. Math. Phys., 9:1120, 1968.
[574] J., Å. Larsson. Loopholes in Bell inequality tests of local realism. J. Phys., A 47:424003, 2014.
[575] J. I., Latorre and A., Riera. A short review on entanglement in quantum spin systems. J. Phys., A 42:504002, 2009.
[576] H. B., Lawson. Lectures on Minimal Submanifolds. Publish and Perish, Inc, 1980.
[577] P., Leboeuf. Phase space approach to quantum dynamics. J. Phys., A 24:4575, 1991.
[578] P., Leboeuf and P., Shukla. Universal fluctuations of zeros of chaotic wavefunctions. J. Phys., A 29:4827, 1996.
[579] P., Leboeuf and A., Voros. Chaosrevealing multiplicative representation of quantum eigenstates. J. Phys., A 23:1765, 1990.
[580] M., Ledoux. The Concentration of Measure Phenomenon. Providence: AMS Publishing, 2001.
[581] C. T., Lee. Wehrl's entropy of spin states and Lieb's conjecture. J. Phys., A 21:3749, 1988.
[582] S., Lee, D. P., Chi, S. D., Oh, and J., Kim. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev., A 68:062304, 2003.
[583] J. M., Leinaas, J., Myrheim, and E., Ovrum. Geometrical aspects of entanglement. Phys. Rev., A 74:012313, 2006.
[584] J. M., Leinaas, J., Myrheim, and P., Ø. Sollid. Low-rank extremal positivepartial- transpose states and unextendible product bases. Phys. Rev., A 81:062330, 2010.
[585] J. M., Leinaas, J., Myrheim, and P., Ø. Sollid. Numerical studies of entangled positive-partial-transpose states in composite quantum systems. Phys. Rev., A 81:062329, 2010.
[586] P. W. H., Lemmens and J. J., Seidel. Equiangular lines. J. Algebra, 24:494, 1973.
[587] U., Leonhardt. Measuring the Quantum State of Light. Cambridge University Press, 1997.
[588] A., Lesniewski and M. B., Ruskai. Monotone Riemannian metrics and relative entropy on noncommutative probability spaces. J. Math. Phys., 40:5702, 1999.
[589] P., Lévay. The geometry of entanglement: Metrics, connections and the geometric phase. J. Phys., A 37:1821, 2004.
[590] P., Lévay. On the geometry of four-qubit invariants. J. Phys., A 39:9533, 2006.
[591] P., Lévy. Leçons d'analyse fonctionnelle. Paris: Gauthier-Villars, 1922.
[592] M., Lewenstein, R., Augusiak, D., Chruściński, S., Rana, and J., Samsonowicz. Sufficient separability criteria and linear maps. Phys. Rev., A 93:042335, 2016.
[593] M., Lewenstein, D., Bruß, J. I., Cirac, B., Kraus, M., Kuś, J., Samsonowicz, A., Sanpera, and R., Tarrach. Separability and distillability in composite quantum systems: A primer. J. Mod. Opt., 47:2841, 2000.
[594] M., Lewenstein, B., Kraus, J. I., Cirac, and P., Horodecki. Optimization of entanglement witnesses. Phys. Rev., A 62:052310, 2000.
[595] M., Lewenstein and A., Sanpera. Separability and entanglement of composite quantum systems. Phys. Rev. Lett., 80:2261, 1998.
[596] C. K., Li. A simple proof of the elliptical range theorem. Proc. Am. Math. Soc., 124:1985, 1996.
[597] C.-K., Li and Y.-T., Poon. Convexity of the joint numerical range. SIAM J. Matrix Anal., A 21:668, 2000.
[598] E. H., Lieb. The classical limit of quantum spin systems. Commun. Math. Phys., 31:327, 1973.
[599] E. H., Lieb. Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math., 11:267, 1973.
[600] E. H., Lieb. Some convexity and subadditivity properties of entropy. Bull. AMS, 81:1, 1975.
[601] E. H., Lieb. Proof of an entropy conjecture of Wehrl. Commun. Math. Phys., 62:35, 1978.
[602] E. H., Lieb and D. W., Robinson. The finite group velocity of quantum spin systems. Commun. Math. Phys., 28:251, 1972.
[603] E. H., Lieb and M. B., Ruskai. Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys., 14:1938, 1973.
[604] E. H., Lieb and J. S., Solovej. Proof of an entropy conjecture for Bloch coherent states and its generalizations. Acta Math., 212:379, 2014.
[605] E. H., Lieb and J. S., Solovej. Proof of the Wehrl-type entropy conjecture for symmetric SU(N) coherent states. Commun. Math. Phys., 348:567, 2016.
[606] J., Lin. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory, 37:145, 1991.
[607] G., Lindblad. An entropy inequality for quantum measurements. Commun. Math. Phys., 28:245, 1972.
[608] G., Lindblad. Entropy, information and quantum measurement. Commun. Math. Phys., 33:305, 1973.
[609] G., Lindblad. Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys., 39:111, 1974.
[610] G., Lindblad. Completely positive maps and entropy inequalities. Commun. Math. Phys., 40:147, 1975.
[611] G., Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48:119, 1976.
[612] G., Lindblad. Quantum entropy and quantum measurements. In C., B. et al., editor, Quantum Aspects of Optical Communication, page 36. Springer-Verlag, Berlin, 1991. Lecture Notes in Physics 378.
[613] N., Linden, S., Popescu, and A., Sudbery. Non-local properties of multi-particle density matrices. Phys. Rev. Lett., 83:243, 1999.
[614] N., Linden, S., Popescu, and W. K., Wootters. Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices. Phys. Rev. Lett., 89:207901, 2002.
[615] N., Linden and A., Winter. A new inequality for the von Neumann entropy. Commun. Math. Phys., 259:129, 2005.
[616] S., Lloyd. Almost any quantum logic gate is universal. Phys. Rev. Lett., 75:346, 1995.
[617] S., Lloyd and H., Pagels. Complexity as thermodynamic depth. Ann. Phys. (N.Y.), 188:186, 1988.
[618] H.-K., Lo and S., Popescu. Concentrating entanglement by local actions: Beyond mean values. Phys. Rev., A 63:022301, 1998.
[619] R., Lockhart. Optimal ensemble length of mixed separable states. J. Math. Phys., 41:6766, 2000.
[620] R. B., Lockhart and M. J., Steiner. Preserving entanglement under perturbation and sandwiching all separable states. Phys. Rev., A 65:022107, 2002.
[621] R. B., Lockhart, M. J., Steiner, and K., Gerlach. Geometry and product states. Quant. Inf. Comp., 2:333, 2002.
[622] L., Lovász. Semidefinite programs and combinatorial optimization. In B. A., Reed and C. L., Sales, editors, Recent Advances in Algorithms and Combinatorics, page 137. Springer, 2003.
[623] K., Löwner. Über monotone Matrixfunktionen. Math. Z., 38:177, 1934.
[624] A., Łoziński, A., Buchleitner, K., Zyczkowski, and T., Wellens. Entanglement of 2 × k quantum systems. Europhys. Lett., A 62:168, 2003.
[625] E., Lubkin. Entropy of an n-system from its correlation with a kreservoir. J. Math. Phys., 19:1028, 1978.
[626] G., Lüders. Über die Zustandsänderung durch den Messprozeß. Ann. Phys. (Leipzig), 8:322, 1951.
[627] S., Luo. A simple proof of Wehrl's conjecture on entropy. J. Phys., A 33:3093, 2000.
[628] J.-G., Luque and J.-Y., Thibon. Polynomial invariants of four qubits. Phys. Rev., A 67:042303, 2003.
[629] J.-G., Luque and J.-Y., Thibon. Algebraic invariants of five qubits. J. Phys., A 39:371, 2006.
[630] X.-S., Ma et al. Quantum teleportation over 143 kilometres using active feed–forward. Nature, 489:269, 2012.
[631] H., Maassen and J. B. M., Uffink. Generalized entropic uncertainty relations. Phys. Rev. Lett., 60:1103, 1988.
[632] D. L., MacAdam, Visual sensitivities to color differences in daylight. J. Opt. Soc. Am., 32:247, 1942.
[633] A. J., MacFarlane, A., Sudbery, and P. H., Weisz. On Gell–Mann's ƛ-matrices, d- and f -tensors, octets and parametrization of SU(3) . Commun. Math. Phys., 11:77, 1968.
[634] H. F., MacNeish. Euler squares. Ann. Math., 23:221, 1921.
[635] F. J., MacWilliams and N. J. A., Sloane. The Theory of Error–Correcting Codes. North-Holland, 1977.
[636] G., Mahler and V. A., Weberruß. Quantum Networks. Springer, 1995, (2nd. ed.) 1998.
[637] W. A., Majewski. Transformations between quantum states. Rep. Math. Phys., 8:295, 1975.
[638] W. A., Majewski and M., Marciniak. On characterization of positive maps. J. Phys., A 34:5863, 2001.
[639] E., Majorana. Atomi orientati in campo magnetico variabile. Nuovo Cimento, 9:43, 1932.
[640] Y., Makhlin. Non-local properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quant. Inf. Proc., 1:243, 2002.
[641] L. C., Malacarne, R. S., Mandes, and E. K., Lenzi. Average entropy of a subsystem from its average Tsallis entropy. Phys. Rev., E 65:046131, 2002.
[642] L., Mandel and E., Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995.
[643] V. A., Marchenko and L. A., Pastur. The distribution of eigenvalues in certain sets of random matrices. Math. Sb., 72:507, 1967.
[644] D. J. H., Markham. Entanglement and symmetry in permutation symmetric states. Phys. Rev., A 83:042332, 2011.
[645] A. W., Marshall and I., Olkin. Inequalities: Theory of Majorization and its Applications. New York: Academic Press, 1979.
[646] J., Martin, O., Giraud, P. A., Braun, D., Braun, and T., Bastin. Multiqubit symmetric states with high geometric entanglement. Phys. Rev., A 81:062347, 2010.
[647] L., Masanes. An area law for the entropy of low-energy states. Phys. Rev., A 80:052104, 2009.
[648] P., Mathonet, S., Krins, M., Godefroid, L., Lamata, E., Solano, and T., Bastin. Entanglement equivalence of n-qubit symmetric states. Phys. Rev., A 81: 052315, 2010.
[649] M., Matolcsi. A Fourier analytic approach to the problem of unbiased bases. Studia Sci. Math. Hungarica, 49:482, 2012.
[650] K., McCrimmon. Jordan algebras and their applications. Bull. AMS., 84:612, 1978.
[651] M., Mehta. Random Matrices, 2nd. ed. New York: Academic Press, 1991.
[652] M. L., Mehta. Matrix Theory. Delhi: Hindustan Publishing, 1989.
[653] C. B., Mendl and M. M., Wolf. Unital quantum channels convex structure and revivals of Birkhoff's theorem. Commun. Math. Phys., 289:1057, 2009.
[654] N. D., Mermin. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys., 65:803, 1993.
[655] N. D., Mermin. The Ithaca interpretation of quantum mechanics. Pramana, 51:549, 1998.
[656] D. A., Meyer and N. R., Wallach. Global entanglement in multiparticle systems. J. Math. Phys., 43:4273, 2002.
[657] F., Mezzadri. How to generate random matrices from the classical compact groups. Notices of the AMS, 54:592, 2007.
[658] B., Mielnik. Theory of filters. Commun. Math. Phys., 15:1, 1969.
[659] B., Mielnik. Quantum theory without axioms. In C. J., Isham, R., Penrose, and D. W., Sciama, editors, Quantum Gravity II. A Second Oxford Symposium, page 638. Oxford University Press, 1981.
[660] B., Mielnik. Nonlinear quantum mechanics: A conflict with the Ptolomean structure? Phys. Lett., A 289:1, 2001.
[661] P., Migdał, J., Rodriguez-Laguna, and M., Lewenstein. Entanglement classes of permutation-symmetric qudit states: symmetric operations suffice. Phys. Rev., A 88:012335, 2013.
[662] V. D., Milman and G., Schechtman. Asymptotic theory of finite dimensional normed spaces. Springer-Verlag, 1986. Lecture Notes in Math. 1200.
[663] F., Mintert, M., Kuś, and A., Buchleitner. Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett., 92:167902, 2004.
[664] F., Mintert and K., Zyczkowski. Wehrl entropy, Lieb conjecture and entanglement monotones. Phys. Rev., A 69:022317, 2004.
[665] A., Miranowicz and A., Grudka. A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B: Quantum Semiclass. Opt., 6:542, 2004.
[666] A., Miranowicz, M., Piani, P., Horodecki, and R., Horodecki. Inseparability criteria based on matrices of moments. Phys. Rev., A 80:052303, 2009.
[667] B., Mirbach and H. J., Korsch. A generalized entropy measuring quantum localization. Ann. Phys. (N.Y.), 265:80, 1998.
[668] J. A., Miszczak, Z., Puchała, P., Horodecki, A., Uhlmann, and K., Zyczkowski. Sub–and super–fidelity as bounds for quantum fidelity. Quantum Inf. Comp., 9:103, 2009.
[669] A., Miyake. Classification of multipartite entangled states by multidimensional determinants. Phys. Rev., A 67:012108, 2003.
[670] L., Molnár. Fidelity preserving maps on density operators. Rep. Math. Phys., 48:299, 2001.
[671] C., Monroe, D. M., Meekhof, B. E., King, W. M., Itano, and D. J., Wineland. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett., 75:4714, 1995.
[672] T., Monz, P., Schindler, J. T., Barreiro, M., Chwalla, D., Nigg, W. A., Coish, M., Harlander, W., Hänsel, M., Hennrich, and R., Blatt. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett., 106:130506, 20011.
[673] E. A., Morozova and N. N., Cencov. Markov invariant geometry on state manifolds (in Russian). Itogi Nauki i Tehniki, 36:69, 1990.
[674] R., Mosseri and R., Dandoloff. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys., A 34:10243, 2001.
[675] N., Mukunda, Arvind, S., Chaturvedi, and R., Simon. Generalized coherent states and the diagonal representation of operators. J. Math. Phys., 44:2479, 2003.
[676] N., Mukunda and R., Simon. Quantum kinematic approach to the geometric phase. 1. General formalism. Ann. Phys. (N. Y), 228:205, 1993.
[677] M. E., Muller. A note on a method for generating points uniformly on N-dimensional spheres. Comm. Assoc. Comp. Mach., 2:19, 1959.
[678] M. P., Müller and C., Ududec. Structure of reversible computation determines the self-duality of quantum theory. Phys. Rev. Lett., 108:130401, 2012.
[679] D., Mumford. Tata Lectures on Theta. Birkhäuser, Boston, 1983.
[680] W. J., Munro, D. F. V., James, A. G., White, and P. G., Kwiat. Maximizing the entanglement of two mixed qubits. Phys. Rev., A 64:030302, 2001.
[681] F. D., Murnaghan. On the field of values of a square matrix. Proc. Natl. Acad. Sci., 18:246, 1932.
[682] M. K., Murray and J. W., Rice. Differential Geometry and Statistics. Chapman and Hall, 1993.
[683] B., Musto and J., Vicary. Quantum Latin squares and unitary error bases. Quantum Inf. Comp. 16: 1318, 2016.
[684] M., Musz, M., Kuś, and K., Zyczkowski. Unitary quantum gates, perfect entanglers, and unistochastic maps. Phys. Rev., A 87:022111, 2013.
[685] L., Ness. A stratification of the null cone via the moment map [with an appendix by D. Mumford]. Amer. J. Math., 106:1281, 1984.
[686] M., Neuhauser. An explicit construction of the metaplectic representation over a finite field. Journal of Lie Theory, 12:15, 2002.
[687] D., Newman. A simplified proof of the partition formula. Michigan Math. J., 9:283, 1962.
[688] M. A., Nielsen. An introduction to majorization and its applications to quantum mechanics. Course notes, October 2002, http://michaelnielsen.org/blog.
[689] M. A., Nielsen. Conditions for a class of entanglement transformations. Phys. Rev. Lett., 83:436, 1999.
[690] M. A., Nielsen. Continuity bounds for entanglement. Phys. Rev., A 61:064301, 2000.
[691] M. A., Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett., 303:249, 2002.
[692] M. A., Nielsen and I. L., Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[693] M. A., Nielsen, C., Dawson, J., Dodd, A., Gilchrist, D., Mortimer, T., Osborne, M., Bremner, A., Harrow, and A., Hines. Quantum dynamics as physical resource. Phys. Rev., A 67:052301, 2003.
[694] M. A., Nielsen and J., Kempe. Separable states are more disordered globally than locally. Phys. Rev. Lett., 86:5184, 2001.
[695] M. A., Nielsen and G., Vidal. Majorization and the interconversion of bipartite states. Quantum Infor. Comput., 1:76, 2001.
[696] D., Nion and L. D., Lathauwer. An enhanced line search scheme for complex-valued tensor decompositions. Signal Processing, 88:749, 2008.
[697] G., Nogues, A., Rauschenbeutel, S., Osnaghi, P., Bertet, M., Brune, J., Raimond, S., Haroche, L., Lutterbach, and L., Davidovich. Measurement of the negative value for the Wigner function of radiation. Phys. Rev., A 62:054101, 2000.
[698] S., Nonnenmacher. Crystal properties of eigenstates for quantum cat maps. Nonlinearity, 10:1569, 1989.
[699] M., Ohya and D., Petz. Quantum Entropy and Its Use. Springer, 1993. Second edition, Springer 2004.
[700] D. K. L., Oi. The geometry of single qubit maps. preprint quantph/ 0106035.
[701] P. J., Olver. Classical Invariant Theory. Cambridge U P, 1999.
[702] A., Orłowski. Classical entropy of quantum states of light. Phys. Rev., A 48:727, 1993.
[703] R., Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 349:117, 2014.
[704] H., Osaka. Indecomposable positive maps in low-dimensional matrix algebra. Lin. Alg. Appl., 153:73, 1991.
[705] T., Osborne and F., Verstraete. General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett., 96:220503, 2006.
[706] V. A., Osipov, H.-J., Sommers, and K., Zyczkowski. Random Bures mixed states and the distribution of their purity. J. Phys., A 43:055302, 2010.
[707] A., Osterloh. Classification of qubit entanglement: SL(2,C) versus SU(2) invariance. Appl. Phys., B 98:609, 2010.
[708] A., Osterloh and J., Siewert. Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quant. Inf., 4:531, 2006.
[709] S., Östlund and S., Rommer. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett., 75:3537, 1995.
[710] Y., Ou. Violation of monogamy inequality for higher-dimensional objects. Phys. Rev., A 75:034305, 2007.
[711] C. J., Oxenrider and R. D., Hill. On the matrix reordering and. Lin. Alg. Appl., 69:205, 1985.
[712] M., Ozawa. Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett., A 268:158, 2001.
[713] D. N., Page. Average entropy of a subsystem. Phys. Rev. Lett., 71:1291, 1993.
[714] R. E. A. C., Paley. On orthogonal matrices. J. Math.and Phys., 12:311, 1933.
[715] Ł., Pankowski, M., Piani, M., Horodecki, and P., Horodecki. A few steps more towards NPT bound entanglement. IEEE Trans. Inform. Theory, 56:4085, 2010.
[716] M. H., Partovi. Universal measure of entanglement. Phys. Rev. Lett., 92:077904, 2004.
[717] F., Pastawski, B., Yoshida, D., Harlow, and J., Preskill. Holographic quantum error-correcting codes: toy models for the bulk/ boundary correspondence. JHEP, 06:149, 2015.
[718] T., Paterek, M., Pawłowski, M., Grassl, and C, Brukner. On the connection between mutually unbiased bases and orthogonal Latin squares. Phys. Scr., T140:014031, 2010.
[719] R., Penrose. A spinor approach to general relativity. Ann. of Phys. (N. Y.), 10:171, 1960.
[720] R., Penrose. Applications of negative dimensional tensors. In D. J. A., Welsh, editor, Combinatorial Mathematics and its Appplications, page 221. Academic Press, 1971.
[721] R., Penrose. The Road to Reality. London: Jonathan Cape, 2004.
[722] R., Penrose and W., Rindler. Spinors and Spacetime: Vol. 1. Cambridge U P, 1984.
[723] R., Penrose and W., Rindler. Spinors and Spacetime: Vol. 2. Cambridge U P, 1986.
[724] A. M., Perelomov. Generalized coherent states and some of their applications. Sov. Phys. Usp., 20:703, 1977.
[725] A., Peres. Quantum Theory: Concepts and Methods. Dordrecht: Kluwer, 1995.
[726] A., Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413, 1996.
[727] A., Peres and D. R., Terno. Convex probability domain of generalized quantum measurements. J. Phys., A 31:L671, 1998.
[728] A., Peres and W. K., Wootters. Optimal detection of quantum information. Phys. Rev. Lett., 66:1119, 1991.
[729] D., Perez-Garcia, F., Verstraete, M. M., Wolf, and J. I., Cirac. Matrix product state representations. Quant. Inf. Comput., 7:401, 2007.
[730] D., Petz. Geometry of canonical correlation on the state space of a quantum system. J. Math. Phys., 35:780, 1994.
[731] D., Petz. Monotone metrics on matrix spaces. Lin. Alg. Appl., 244:81, 1996.
[732] D., Petz. Information-geometry of quantum states. Quantum Prob. Commun., X:135, 1998.
[733] D., Petz. Quantum Information Theory and Quantum Statistics. Springer Verlag, 2008.
[734] D., Petz and C., Sudár. Geometries of quantum states. J. Math. Phys., 37:2662, 1996.
[735] D., Petz and R., Temesi. Means of positive numbers and matrices. SIAM J. Matrix Anal. Appl., 27:712, 2005.
[736] R. F., Picken. The Duistermaat–Heckman integration formula on flag manifolds. J. Math. Phys., 31:616, 1990.
[737] M., Pinsker. Information and Information Stability of Random Variables and Processes. San Francisco: Holden-Day, 1964.
[738] J., Pipek and I., Varga. Universal scheme for the spacial-localization properties of one-particle states in finite d-dimensional systems. Phys. Rev., A 46:3148, 1992.
[739] I., Pitowsky. Infinite and finite Gleason's theorems and the logic of indeterminacy. J. Math. Phys., 39:218, 1998.
[740] A. O., Pittenger. Unextendible product bases and the construction of inseparable states. Lin. Alg. Appl., 359:235, 2003.
[741] A. O., Pittenger and M. H., Rubin. Separability and Fourier representations of density matrices. Phys. Rev., A 62:032313, 2000.
[742] A. O., Pittenger and M. H., Rubin. Convexity and the separability problem of quantum mechanical density matrices. Lin. Alg. Appl., 346:47, 2002.
[743] A. O., Pittenger and M. H., Rubin. Geometry of entanglement witnesses and local detection of entanglement. Phys. Rev., A 67:012327, 2003.
[744] M. B., Plenio and S., Virmani. An introduction to entanglement measures. Quantum Inf. Comput, 7:1, 2007.
[745] V., Pless. Introduction to the Theory of Error–Correcting Codes. Wiley, 1982.
[746] Y.-T., Poon and N.-K., Tsing. Inclusion relations between orthostochastic matrices and products of pinching matrices. Lin. Multilin. Algebra, 21:253, 1987.
[747] S., Popescu and D., Rohrlich. Generic quantum nonlocality. Phys. Lett., A 166:293, 1992.
[748] S., Popescu and D., Rohrlich. Thermodynamics and the measure of entanglement. Phys. Rev., A 56:R3319, 1997.
[749] D., Poulin, R., Blume–Kohout, R., Laflamme, and H., Olivier. Exponential speedup with a single bit of quantum information. Phys. Rev. Lett., 92:177906, 2004.
[750] M., Pozniak, K., Życzkowski, and M., Kuś. Composed ensembles of random unitary matrices. J. Phys., A 31:1059, 1998.
[751] J., Preskill. Lecture notes on quantum computation, 1998.See www.theory.caltech.edu/people/preskill/ph229/.
[752] J., Preskill. Reliable quantum computers. Proc. R. Soc. Lond., A 454:385, 1998.
[753] T., Prosen. Exact statistics of complex zeros for Gaussian random polynomials with real coefficients. J. Phys., A 29:4417, 1996.
[754] T., Prosen. Parametric statistics of zeros of Husimi representations of quantum chaotic eigenstates and random polynomials. J. Phys., A 29:5429, 1996.
[755] Z., Puchała, J. A., Miszczak, P., Gawron, C. F., Dunkl, J. A., Holbrook, and K., Życzkowski. Restricted numerical shadow and geometry of quantum entanglement. J. Phys., A 45:415309, 2012.
[756] E. M., Rabei, Arvind R., Simon, and N., Mukunda. Bargmann invariants and geometric phases –a generalized connection. Phys. Rev., A 60:3397, 1990.
[757] S. T., Rachev. Probability Metrics and the Stability of Stochastic Models. New York: Wiley, 1991.
[758] S. T., Rachev and L., Rüschendorf. Mass Transportation Problems. Vol. 1: Theory. Springer, 1998.
[759] J. M., Radcliffe. Some properties of coherent spin states. J. Phys., A 4:313, 1971.
[760] E. M., Rains. Bound on distillable entanglement. Phys. Rev., A 60:179, 1999.
[761] E. M., Rains. Rigorous treatment of distillable entanglement. Phys. Rev., A 60:173, 1999.
[762] E. M., Rains. A semidefinite program for distillable entanglement. IEEE Trans. Inform. Theory, 47:2921, 2001.
[763] A. K., Rajagopal and R. W., Rendell. Separability and correlations in composite states based on entropy methods. Phys. Rev., A 66:022104, 2002.
[764] M., Ramana and A. J., Goldman. Some geometric results in semidefinite programming. J. Global Optim., 7:33, 1995.
[765] S., Rana. Negative eigenvalues of partial transposition of arbitrary bipartite states. Phys. Rev., A 87:05430, 2013.
[766] C. R., Rao. Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc., 37:81, 1945.
[767] P., Raynal, X., , and B.-G., Englert. Mutually unbiased bases in dimension 6: The four most distant bases. Phys. Rev., A 83:062303, 2011.
[768] M., Reck, A., Zeilinger, H. J., Bernstein, and P., Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73:58, 1994.
[769] J., Rěhácěk and Z., Hradil. Quantification of entanglement by means of convergent iterations. Phys. Rev. Lett., 90:127904, 2003.
[770] C., Reid. Hilbert. Springer, 1970.
[771] M., Reimpell and R. F., Werner. A meaner king uses biased bases. Phys. Rev., A 75:062334, 2008.
[772] J. M., Renes, R., Blume-Kohout, A. J., Scott, and C. M., Caves. Symmetric informationally complete quantum measurements. J. Math. Phys., 45:2171, 2004.
[773] A., Rényi. On measures of entropy and information. In Proc. of the Fourth Berkeley Symp. Math. Statist. Prob. 1960, Vol. I, page 547. Berkeley: University of California Press, 1961.
[774] P., Ribeiro and R., Mosseri. Entanglement in the symmetric sector of n qubits. Phys. Rev. Lett., 106:180502, 2011.
[775] A. G., Robertson. Automorphisms of spin factors and the decomposition of positive maps. Quart. J. Math. Oxford, 34:87, 1983.
[776] W., Roga, M., Fannes, and K., Zyczkowski. Universal bounds for the Holevo quantity, coherent information and the Jensen- Shannon divergence. Phys. Rev. Lett., 105:040505, 2010.
[777] R., Rossignoli and N., Canosa. Generalized entropic criterion for separability. Phys. Rev., A 66:042306, 2002.
[778] A., Roy and A. J., Scott. Unitary designs and codes. Des. Codes Cryptogr., 53:13, 2009.
[779] O., Rudolph. A new class of entanglement measures. J. Math. Phys., A 42:5306, 2001.
[780] O., Rudolph. On the cross norm criterion for separability. J. Phys., A 36:5825, 2003.
[781] O., Rudolph. Some properties of the computable cross norm criterion for separability. Physical Review, A 67:032312, 2003.
[782] P., Rungta, V., Bužek, C. M., Caves, M., Hillery, and G. J., Milburn. Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev., A 64:042315, 2001.
[783] P., Rungta and C. M., Caves. Concurrence-based entanglement measures for isotropic states. Phys. Rev., A 67:012307, 2003.
[784] M. B., Ruskai. Inequalities for quantum entropy: A review with conditions for equality. J. Math. Phys., 43:4358, 2002.
[785] M. B., Ruskai, S., Szarek, and E., Werner. An analysis of completely-positive tracepreserving maps on 2 × 2 matrices. Lin. Alg. Appl., 347:159, 2002.
[786] E. B., Saff and A. B. J., Kuijlaars. Distributing many points on a sphere. Math. Intelligencer, 19:5, 1997.
[787] T., Salvemini. Sul calcolo degli indici di concordanza tra due caratteri quantitativi. Atti della VI Riunione della Soc. Ital. di Statistica, 1943.
[788] J., Sánchez-Ruiz. Simple proof of Page's conjecture on the average entropy of a subsystem. Phys. Rev., E 52:5653, 1995.
[789] Y., Sanders and G., Gour. Necessary conditions on entanglement catalysts. Phys. Rev., A 79:054302, 2008.
[790] I. N., Sanov. On the probability of large deviations of random variables (in Russian). Mat. Sbornik, 42:11, 1957.
[791] A., Sanpera, R., Tarrach, and G., Vidal. Local description of quantum inseparability. Phys. Rev., A 58:826, 1998.
[792] G., Sarbicki and I., Bengtsson. Dissecting the qutrit. J. Phys., A 46:035306, 2013.
[793] A., Sawicki, A., Huckleberry, and M., Kuś. Symplectic geometry of entanglement. Commun. Math. Phys., 305:421, 2011.
[794] A., Sawicki, M., Oszmaniec, and M., Kuś. Convexity of momentum map, Morse index and quantum entanglement. Rev. Math. Phys., 26:1450004, 2014.
[795] A., Sawicki, M., Walter, and M., Kuś. When is a pure state of three qubits determined by its single-particle reduced density matrices? J. Phys., A 46:055304, 2013.
[796] J., Scharlau and M. P., Müller. Quantum Horn lemma, finite heat baths, and the third law of thermodynamics. preprint arxiv:1605.06092.
[797] R., Schatten. A Theory of Crossspaces. Princeton University Press, 1950.
[798] S., Schirmer, T., Zhang, and J. V., Leahy. Orbits of quantum states and geometry of Bloch vectors for nlevel systems. J. Phys., A 37:1389, 2004.
[799] E., Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann., 63:433, 1907.
[800] U., Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Phys., 326:96, 2011.
[801] E., Schrödinger. Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften, 14:664, 1926.
[802] E., Schrödinger. Die Gesichtsempfindungen. In O., Lummer, editor, Müller-Pouillets Lehrbuch der Physik, 11th edn, Vol. 2, pages 456–560. Friedr. Vieweg und Sohn, 1926.
[803] E., Schrödinger. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 32:446, 1935.
[804] E., Schrödinger. Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc., 31:555, 1935.
[805] E., Schrödinger. Probability relations between separated systems. Proc. Camb. Phil. Soc., 32:446, 1936.
[806] E., Schrödinger. Space–Time Structure. Cambridge University Press, 1950.
[807] N., Schuch, M. M., Wolf, F., Verstraete, and J. I., Cirac. Computational complexity of projected entangled pair states. Phys. Rev. Lett., 98:140506, 2007.
[808] B., Schumacher. Quantum coding. Phys. Rev., A 51:2738, 1995.
[809] B., Schumacher. Sending entanglement through noisy quantum channels. Phys. Rev., A 54:2614, 1996.
[810] B., Schumacher and M., Nielsen. Quantum data processing and error correction. Phys. Rev., A 54:2629, 1996.
[811] B., Schumacher and M., Westmoreland. Relative entropy in quantum information theory. preprint quantph/0004045.
[812] B., Schumacher and M. D., Westmoreland. Sending classical information via noisy quantum channels. Phys. Rev., A 56:131, 1997.
[813] P., Schupp. On Lieb's conjecture for the Wehrl entropy of Bloch coherent states. Commun. Math. Phys., 207:481, 1999.
[814] J., Schur. Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzber. Berl. Math. Ges., 22:9, 1923.
[815] J., Schwinger. Unitary operator bases. Proc. Natl. Acad. Sci., 46:570, 1960.
[816] J., Schwinger. On angular momentum. In L. C., Biedenharn and H. van, Dam, editors, Quantum Theory of Angular Momentum, page 229. Academic Press, 1965.
[817] J., Schwinger. Quantum Mechanics —Symbolism of Atomic Measurements. Springer, 2003.
[818] A. J., Scott. SICs: Extending the list of solutions. preprint arXiv: 1703.03993.
[819] A. J., Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev., A 69:052330, 2004.
[820] A. J., Scott. Tight informationally complete measurements. J. Phys., A 39:13507, 2006.
[821] A. J., Scott and M., Grassl. SICPOVMs: A new computer study. J. Math. Phys., 51:042203, 2010.
[822] H., Scutaru. On Lieb's conjecture. preprint FT-180 (1979) Bucharest and math-ph/9909024.
[823] I. E., Segal. Postulates for general quantum mechanics. Ann. Math., 48:930, 1947.
[824] C., Segre. Remarques sur les transformations uniformes des courbes elliptiques en elles-mèmes. Math. Ann. 27:296, 1886.
[825] S., Sen. Average entropy of a quantum subsystem. Phys. Rev. Lett., 77:1, 1996.
[826] P. D., Seymour and T., Zaslawsky. Averaging sets: a generalization of mean values and spherical designs. Adv. Math., 52:213, 1984.
[827] L. K., Shalm et al. A strong loophole-free test of local realism. Phys. Rev. Lett., 115:250402, 2015.
[828] C. E., Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379, 623, 1948.
[829] C. E., Shannon and W., Weaver. The Mathematical Theory of Communication. Univ. of Illinois Press, 1949.
[830] A., Shapere and F., Wilczek. Geometric Phases in Physics. World Scientific, 1989.
[831] S.-Q., Shen, M., Li, and L., Li. A bipartite separable ball and its applications. J. Phys., A 48:095302, 2015.
[832] S.-Q., Shen, M.-Y., Wang, M., Li, and S.-M., Fei. Separability criteria based on the realignment of density matrices and reduced density matrices. Phys. Rev., A 92:042332, 2015.
[833] S.-Q., Shen, J., Yu, M., Li, and S.-M., Fei. Improved separability criteria based on Bloch representation of density matrices. Sci. Rep., 6:28850, 2016.
[834] A., Shimony. Degree of entanglement. Ann. NY. Acad. Sci., 755:675, 1995.
[835] P., Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev., A52:R2493, 1995.
[836] P. W., Shor. Additivity of the classical capacity of entanglementbreaking quantum channels. J. Math. Phys., 43:4334, 2002.
[837] P. W., Shor. Equivalence of additivity questions in quantum information theory. Commun. Math. Phys., 246:453, 2004.
[838] P. W., Shor, J. A., Smolin, and B. M., Terhal. Non-additivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states. Phys. Rev. Lett., 86:2681, 2001.
[839] M., Sinołeçka, K., Życzkowski, and M., Kuś. Manifolds of equal entanglement for composite quantum systems. Acta Phys. Pol., B 33:2081, 2002.
[840] Ł., Skowronek. Three-by-three bound entanglement with general unextendible product bases. J. Math. Phys., 52:122202, 2011.
[841] Ł., Skowronek. There is no direct generalization of positive partial transpose criterion to the threeby- three case. J. Math. Phys., 57:112201, 2016.
[842] P. B., Slater. Hall normalization constants for the Bures volumes of the n-state quantum systems. J. Phys., A 32:8231, 1999.
[843] P. B., Slater. A priori probabilities of separable quantum states. J. Phys., A 32:5261, 1999.
[844] P. B., Slater. Silver mean conjectures for 15-d volumes and 14-d hyperareas of the separable two-qubit systems. J. Geom. Phys., 53:74, 2005.
[845] P. B., Slater. A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities. J. Phys., A 46:445302, 2013.
[846] W., Słomczyński. Subadditivity of entropy for stochastic matrices. Open Sys. & Information Dyn., 9:201, 2002.
[847] W., Słomczyński and K., Życzkowski. Mean dynamical entropy of quantum maps on the sphere diverges in the semiclassical limit. Phys. Rev. Lett., 80:1880, 1998.
[848] D. T., Smithey, M., Beck, M., Raymer, and A., Faridani. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett., 70:1244, 1993.
[849] H.-J., Sommers and K., Życzkowski. Bures volume of the set of mixed quantum states. J. Phys., A 36:10083, 2003.
[850] H.-J., Sommers and K., Życzkowski. Statistical properties of random density matrices. J. Phys., A 37: 8457, 2004.
[851] R. D., Sorkin. On the entropy of the vacuum outside a horizon. In B., Bertotti, F. de, Felice, and A., Pascolini, editors, 10th Iinternational Conference on General Relativity and Gravitation, Contributed Papers, vol. II, page 734. Roma, Consiglio Nazionale delle Richerche, 1983.
[852] J., Spanier and K. B., Oldham. An Atlas of Functions. Washington: Hemisphere Publishing Corporation, 1987.
[853] C., Spengler, M., Huber, S., Brierley, T., Adaktylos, and B. C., Hiesmayr. Entanglement detection via mutually unbiased bases. Phys. Rev., A 86:022311, 2012.
[854] J., Sperling and W., Vogel. Necessary and sufficient conditions for bipartite entanglement. Phys. Rev., A 79:022318, 2009.
[855] S. F., Springer. Symmetry in Mechanics. Birkhäuser, 2001.
[856] A. M., Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793, 1996.
[857] A. M., Steane. Introduction to quantum error correction. Phil. Trans R. Soc. Lond., A356:1739, 1998.
[858] M., Steiner. Generalized robustness of entanglement. Phys. Rev., A 67:054305, 2003.
[859] W. F., Stinespring. Positive functions on C–algebras. Proc. Am. Math. Soc., 6:211, 1955.
[860] D. R., Stinson. Combinatorial Designs: Constructions and Analysis. Springer, 2004.
[861] E., Størmer. Positive linear maps of operator algebras. Acta Math., 110:233, 1963.
[862] E., Størmer. Decomposable positive maps on C–algebras. Proc. Amer. Math. Soc., 86:402, 1982.
[863] R. F., Streater. Statistical Dynamics. London: Imperial College Press, 1995.
[864] F., Strocchi. Complex coordinates and quantum mechanics. Rev. Mod. Phys., 38:36, 1966.
[865] E., Study. Kürzeste Wege in komplexen Gebiet. Math. Annalen, 60:321, 1905.
[866] E. C. G., Sudarshan. Equivalence of semiclassical and quantum mechanical descriptions of light beams. Phys. Rev. Lett., 10:277, 1963.
[867] E. C. G., Sudarshan, P. M., Mathews, and J., Rau. Stochastic dynamics of quantum-mechanical systems. Phys. Rev., 121:920, 1961.
[868] E. C. G., Sudarshan and A., Shaji. Structure and parametrization of stochastic maps of density matrices. J. Phys., A 36:5073, 2003.
[869] A., Sudbery. Computer-friendly dtensor identities for SU(n) . J. Phys., A 23:L705, 1990.
[870] A., Sudbery. On local invariants of pure three-qubit states. J. Phys., A 34:643, 2001.
[871] A., Sugita. Proof of the generalized Lieb–Wehrl conjecture for integer indices more than one. J. Phys., A 35:L621, 2002.
[872] A., Sugita. Moments of generalized Husimi distribution and complexity of many-body quantum states. J. Phys., A 36:9081, 2003.
[873] M. A., Sustik, J., Tropp, I. S., Dhillon, and R. W., Heath. On the existence of equiangular tight frames. Lin. Alg. Appl., 426:619, 2007.
[874] G., Svetlichny. Distinguishing threebody from two-body nonseparability by a Bell-type inequality. Phys. Rev., D35:3066, 1987.
[875] J., Sylvester. Sur l'equation en matrices px = xq . C. R. Acad. Sci. Paris, 99:67, 115, 1884.
[876] J. J., Sylvester. A word on nonions. John Hopkins Univ. Circulars., 1:1, 1882.
[877] S., Szarek. The volume of separable states is super-doubly-exponentially small. Phys. Rev., A 72:032304, 2005.
[878] S., Szarek, I., Bengtsson, and K., Życzkowski. On the structure of the body of states with positive partial transpose. J. Phys., A 39:L119, 2006.
[879] S., Szarek, E., Werner, and K., Życzkowski. Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive. J. Math. Phys., 49:032113, 2008.
[880] F., Szöllʺosi. Construction, classification and parametrization of complex Hadamard matrices. PhD thesis, CEU, Budapest, 2011.
[881] F., Szöllʺosi. Complex Hadamard matrices of order 6: a fourparameter family. J. London Math. Soc., 85:616, 2012.
[882] K., Szymański, S., Weis, and K., Życzkowski. Classification of joint numerical ranges of three hermitian matrices of size three. preprint arxiv:1603.06569.
[883] W., Tadej and K., Życzkowski. A concise guide to complex Hadamard matrices. Open Sys. Inf. Dyn., 13:133, 2006.
[884] T., Takagi. On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Japan J. Math., 1:83, 1925.
[885] M., Talagrand. New concentration inequalities in product spaces. Invent. Math., 126:505, 1996.
[886] M., Talagrand. A new look at independence. Ann. Probab., 24:1, 1996.
[887] K., Tanahashi and J., Tomiyama. Indecomposable positive maps in matrix algebra. Canad. Math. Bull., 31:308, 1988.
[888] W., Tang. On positive linear maps between matrix algebra. Lin. Alg. Appl., 79:33, 1986.
[889] B., Terhal, I., Chuang, D., DiVincenzo, M., Grassl, and J., Smolin. Simulating quantum operations with mixed environments. Phys. Rev., A 60:88, 1999.
[890] B., Terhal, M., Horodecki, D. W., Leung, and D., DiVincenzo. The entanglement of purification. J. Math. Phys., 43:4286, 2002.
[891] B. M., Terhal. Bell inequalities and the separability criterion. Phys. Lett., A 271:319, 2000.
[892] B. M., Terhal. A family of indecomposable positive linear maps based on entangled quantum states. Lin. Alg. Appl., 323:61, 2000.
[893] B. M., Terhal and K. G. H., Vollbrecht. Entanglement of formation for isotropic states. Phys. Rev. Lett., 85:2625, 2000.
[894] A. V., Thapliyal. On multi-particle pure states entanglement. Phys. Rev., A 59:3336, 1999.
[895] E., Thiele and J., Stone. A measure of quantum chaos. J. Chem. Phys., 80:5187, 1984.
[896] O., Toeplitz. Das algebraische Analogon zu einem Satze von Fejér. Math. Z., 2:187, 1918.
[897] F., Topsøe. Bounds for entropy and divergence for distributions over a two element set. J. Ineq. P. Appl. Math., 2:25, 2001.
[898] M., Tribus and E. C., McIrvine. Energy and information. Scient. Amer., 224:178, 1971.
[899] C., Tsallis. Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons, Fract., 13:371, 2002.
[900] C., Tsallis, S., Lloyd, and M., Baranger. Peres criterion for separability through non-extensive entropy. Phys. Rev., A 63:042104, 2001.
[901] R. R., Tucci. All moments of the uniform ensemble of quantum density matrices. preprint quantph/0206193.
[902] R. R., Tucci. Relaxation method for calculating quantum entanglement. preprint quant-ph/0101123.
[903] J., Tura, A. B., Sainz, T., Grass, R., Augusiak, A., Acín, and M., Lewenstein. Entanglement and nonlocality in many-body systems: a primer. Proceedings of the International School of Physics “Enrico Fermi” 191, p. 505, Ed. by M. Inguscio et. al, IOS Press, Amsterdam 2016.
[904] A., Uhlmann. Endlich dimensionale Dichtematrizen. Wiss. Z. Karl- Marx-Univ., 20:633, 1971.
[905] A., Uhlmann. Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys., 54:21, 1977.
[906] A., Uhlmann. The metric of Bures and the geometric phase. In R., Gielerak, editor, Quantum Groups and Related Topics, page 267. Dordrecht: Kluwer, 1992.
[907] A., Uhlmann. Density operators as an arena for differential geometry. Rep. Math. Phys., 33:253, 1993.
[908] A., Uhlmann. Geometric phases and related structures. Rep. Math. Phys., 36:461, 1995.
[909] A., Uhlmann. Spheres and hemispheres as quantum state spaces. J. Geom. Phys., 18:76, 1996.
[910] A., Uhlmann. Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Sys. & Information Dyn., 5:209, 1998.
[911] A., Uhlmann. Fidelity and concurrence of conjugated states. Phys. Rev., A 62:032307, 2000.
[912] A., Uhlmann. Roofs and convexity. Entropy, 2010:1799, 2010.
[913] A., Uhlmann. Anti- (conjugate) linearity. Science China, 59:630301, 2016.
[914] H., Umegaki. Conditional expectation in an operator algebra IV: entropy and information. Ködai Math. Sem. Rep., 14:59, 1962.
[915] W. van, Dam and P., Hayden. Rényi-entropic bounds on quantum communication. preprint quant-ph/ 0204093.
[916] V. S., Varadarajan. Geometry of Quantum Theory. Springer, 1985.
[917] V., Vedral. The role of relative entropy in quantum information theory. Rev. Mod. Phys., 74:197, 2002.
[918] V., Vedral and E., Kashefi. Uniqueness of the entanglement measure for bipartite pure states and thermodynamics. Phys. Rev. Lett., 89:037903, 2002.
[919] V., Vedral and M. B., Plenio. Entanglement measures and purification procedures. Phys. Rev., A 57:1619, 1998.
[920] V., Vedral, M. B., Plenio, M. A., Rippin, and P. L., Knight. Quantifying entanglement. Phys. Rev. Lett., 78:2275, 1997.
[921] F., Verstraete, K., Audenaert, J., Dehaene, and B., DeMoor. A comparison of the entanglement measures negativity and concurrence. J. Phys., A 34:10327, 2001.
[922] F., Verstraete, K., Audenaert, and B., DeMoor. Maximally entangled mixed states of two qubits. Phys. Rev., A 64:012316, 2001.
[923] F., Verstraete and J. I., Cirac. Renormalization algorithms for quantum-many body systems in two and higher dimensions. preprint arxiv:0407066.
[924] F., Verstraete and J. I., Cirac. Matrix product states represent ground states faithfully. Phys. Rev., B 73:094423, 2006.
[925] F., Verstraete, J., Dahaene, and B., DeMoor. On the geometry of entangled states. J. Mod. Opt., 49:1277, 2002.
[926] F., Verstraete, J., Dahaene, B., DeMoor, and H., Verschelde. Four qubits can be entangled in nine different ways. Phys. Rev., A 65:052112, 2002.
[927] F., Verstraete, V., Murg, and J. I., Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys., 57:143, 2008.
[928] F., Verstraete and H., Verschelde. Fidelity of mixed states of two qubits. Phys. Rev., A 66:022307, 2002.
[929] G., Vidal. Entanglement of pure states for a single copy. Phys. Rev. Lett., 83:1046, 1999.
[930] G., Vidal. Entanglement monotones. J. Mod. Opt., 47:355, 2000.
[931] G., Vidal. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91:147902, 2003.
[932] G., Vidal, W., Dür, and J. I., Cirac. Entanglement cost of bipartite mixed states. Phys. Rev. Lett., 89:027901, 2002.
[933] G., Vidal and R., Tarrach. Robustness of entanglement. Phys. Rev., A 59:141, 1999.
[934] G., Vidal and R. F., Werner. A computable measure of entanglement. Phys. Rev., A 65:032314, 2002.
[935] O., Viehmann, C., Eltschka, and J., Siewert. Polynomial invariants for discrimination and classification of four-qubit entanglement. Phys. Rev., A 83:052330, 2011.
[936] S., Virmani and M., Plenio. Ordering states with entanglement measures. Phys. Lett., A 268:31, 2000.
[937] K. G. H., Vollbrecht and R. F., Werner. Why two qubits are special. J. Math. Phys., 41:6772, 2000.
[938] K. G. H., Vollbrecht and R. F., Werner. Entanglement measures under symmetry. Phys. Rev., A 64:062307, 2001.
[939] R. von, Mises. Probability, Statistics and Truth. New York: Dover, 1957.
[940] J. von, Neumann. Thermodynamik quantummechanischer Gesamtheiten. Gött. Nach., 1:273, 1927.
[941] J. von, Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955.
[942] A., Vourdas. Quantum systems with finite Hilbert space. Rep. Prog. Phys., 67:267, 2004.
[943] M., Waegell and K., Aravind. Critical noncolorings of the 600-cell proving the Bell–Kochen–Specker theorem. J. Phys., A43:105304, 2010.
[944] R. M., Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Univ. of Chicago Press, 1994.
[945] M., Walter, B., Doran, D., Gross, and M., Christandl. Entanglement polytopes: Multiparticle entanglement from single-particle information. Science, 340:6137, 2013.
[946] P., Walther, K. J., Resch, and A., Zeilinger. Local conversion of GHZ states to approximate W states. Phys. Rev. Lett., 94:240501, 2005.
[947] J., Watrous. Mixing doubly stochastic quantum channels with the completely depolarizing channel. Quant. Inform. Comput., 9:406, 2009.
[948] Z., Webb. The Clifford group forms a unitary 3-design. Quant. Inf. Comp., 16:1379, 2016.
[949] A., Wehrl. General properties of entropy. Rev. Mod. Phys., 50:221, 1978.
[950] A., Wehrl. On the relation between classical and quantum mechanical entropies. Rep. Math. Phys., 16:353, 1979.
[951] T.-C., Wei and P. M., Goldbart. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev., A 68:042307, 2003.
[952] T. C., Wei, K., Nemoto, P. M., Goldbart, P. G., Kwiat, W. J., Munro, and F., Verstraete. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev., A 67:022110, 2003.
[953] S., Weigert and T., Durt. Affine constellations without mutually unbiased counterparts. J. Phys., A43:402002, 2010.
[954] M., Weiner. A gap for the maximum number of mutually unbiased bases. Proc. Amer. Math. Soc., 141:1963, 2013.
[955] S., Weis. Quantum convex support. Linear Alg. Appl., 435:3168, 2011.
[956] L. R., Welch. Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory., 20:397, 1974.
[957] T., Wellens and M., Kuś. Separable approximation for mixed states of composite quantum systems. Phys. Rev., A 64:052302, 2001.
[958] R. F., Werner. Quantum states with Einstein–Podolski–Rosen correlations admitting a hidden-variable model. Phys. Rev., A 40:4277, 1989.
[959] R. F., Werner. Optimal cloning of pure states. Phys. Rev., A 58:1827, 1998.
[960] R. F., Werner. All teleportation and dense coding schemes. J. Phys., A 34:7081, 2001.
[961] H., Weyl. Group Theory and Quantum Mechanics. E. P. Dutton, New York, 1932.
[962] H., Weyl. The Classical Groups. Princeton UP, New Jersey, 1939.
[963] S. R., White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863, 1992.
[964] M., Wieśniak, T., Paterek, and A., Zeilinger. Entanglement in mutually unbiased bases. New J. Phys., 13:053047, 2011.
[965] E. P., Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749, 1932.
[966] E. P., Wigner. Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, 1959.
[967] E. P., Wigner. Normal form of antiunitary operators. J. Math. Phys., 1:409, 1960.
[968] A., Wilce. Four and a half axioms for finite dimensional quantum mechanics. In Y., Ben-Menahem and M., Hemmo, editors, Probability in Physics, page 281. Springer, Berlin, 2012.
[969] M. M., Wilde. Quantum Information Theory. Cambridge University Press, Cambridge, 2013.
[970] S. J., Williamson and H. Z., Cummins. Light and Color in Nature and Art. Wiley, 1983.
[971] A., Winter. Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys., 344:1, 2016.
[972] C., Witte and M., Trucks. A new entanglement measure induced by the Hilbert–Schmidt norm. Phys. Lett., A 257:14, 1999.
[973] P., Wocjan and T., Beth. New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comp., 5:93, 2005.
[974] K., Wódkiewicz. Stochastic decoherence of qubits. Optics Express, 8:145, 2001.
[975] H. J., Woerdeman. The separability problem and normal completions. Lin. Alg. Appl., 376:85, 2004.
[976] A., Wong and N., Christensen. Potential multiparticle entanglement measure. Phys. Rev., A 63:044301, 2001.
[977] Y.-C., Wong. Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. USA, 47:589, 1967.
[978] W. K., Wootters. Statistical distance and Hilbert space. Phys. Rev., D 23:357, 1981.
[979] W. K., Wootters. A Wigner function formulation of finite-state quantum mechanics. Ann. Phys. (N.Y.), 176:1, 1987.
[980] W. K., Wootters. Random quantum states. Found. Phys., 20:1365, 1990.
[981] W. K., Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245, 1998.
[982] W. K., Wootters. Entanglement of formation and concurrence. Quant. Inf. Comp., 1:27, 2001.
[983] W. K., Wootters and B. F., Fields. Optimal state determination by mutually unbiased measurements. Ann. Phys. (N.Y.), 191:363, 1989.
[984] S. L., Woronowicz. Non-extendible positive maps. Commun. Math. Phys., 51:243, 1976.
[985] S. L., Woronowicz. Positive maps of low-dimensional matrix algebra. Rep. Math. Phys., 10:165, 1976.
[986] N., Wu and R., Coppins. Linear Programming and Extensions. New York: McGraw-Hill, 1981.
[987] D., Yang, M., Horodecki, and Z. D., Wang. An additive and operational entanglement measure: conditional entanglement of mutual information. Phys. Rev. Lett., 101:140501, 2008.
[988] D., Ye. On the Bures volume of separable quantum states. J. Math. Phys., 50:083502, 2009.
[989] D. A., Yopp and R. D., Hill. On completely copositive and decomposable linear transformations. Lin. Alg. Appl., 312:1, 2000.
[990] S., Yu and C. H., Oh. Stateindependent proof of Kochen–Specker theorem with 13 rays. Phys. Rev. Lett, 108:030402, 2012.
[991] Y.-K., Yu and Y.-C., Zhang. On the anti-Wishart distribution. Physica, A 312:1, 2002.
[992] C., Zalka and E., Rieffel. Quantum operations that cannot be implemented using a small mixed environment. J. Math. Phys., 43:4376, 2002.
[993] P., Zanardi. Entanglement of quantum evolution. Phys. Rev., A 63:040304(R), 2001.
[994] P., Zanardi and D. A., Lidar. Purity and state fidelity of quantum channels. Phys. Rev., A 70:012315, 2004.
[995] P., Zanardi, C., Zalka, and L., Faoro. On the entangling power of quantum evolutions. Phys. Rev., A 62:030301(R), 2000.
[996] G., Zauner. Quantendesigns. PhD thesis, Univ. Wien, 1999.
[997] A., Zeilinger, M. A., Horne, and D. M., Greenberger. Higher-order quantum entanglement. In D., Han, Y. S., Kim, and W. W., Zachary, editors, Proc. of Squeezed States and Quantum Uncertainty, pages 73–81, 1992. NASA Conf. Publ.
[998] B., Zeng, X., Chen, D.-L., Zhou, and X.-G., Wen. Quantum Information Meets Quantum Matter. book in preparation and preprint arxiv:1508.02595.
[999] C.-J., Zhang, Y.-S., Zhang, S., Zhang, and G.-C., Guo. Entanglement detection beyond the cross-norm or realignment criterion. Phys. Rev., A 77:060301(R), 2008.
[1000] J., Zhang, J., Vala, S., Sastry, and K., Whaley. Geometric theory of non-local two-qubit operations. Phys. Rev., A 67:042313, 2003.
[1001] W.-M., Zhang, D. H., Feng, and R., Gilmore. Coherent states: Theory and some applications. Rev. Mod. Phys., 62:867, 1990.
[1002] H., Zhu. Multiqubit Clifford groups are unitary 3–designs. preprint arXiv:1510.02619.
[1003] H., Zhu. SIC-POVMs and Clifford groups in prime dimensions. J. Phys., A 43:305305, 2010.
[1004] H., Zhu. Mutually unbiased bases as minimal Clifford covariant 2–designs. Phys. Rev., A 91:060301, 2015.
[1005] H., Zhu. Permutation symmetry determines the discrete Wigner function. Phys. Rev. Lett., 116: 040501, 2016.
[1006] K., Życzkowski. Indicators of quantum chaos based on eigenvector statistics. J. Phys., A 23:4427, 1990.
[1007] K., Życzkowski. Volume of the set of separable states II. Phys. Rev., A 60:3496, 1999.
[1008] K., Życzkowski. Localization of eigenstates & mean Wehrl entropy. Physica, E 9:583, 2001.
[1009] K., Życzkowski. Rényi extrapolation for Shannon entropy. Open Sys. & Information Dyn., 10:297, 2003.
[1010] K., Życzkowski, P., Horodecki, A., Sanpera, and M., Lewenstein. Volume of the set of separable states. Phys. Rev., A 58:883, 1998.
[1011] K., Życzkowski and M., Kuś. Random unitary matrices. J. Phys., A 27:4235, 1994.
[1012] K., Życzkowski, K. A., Penson, I., Nechita, and B., Collins. Generating random density matrices. J. Math. Phys., 52:062201, 2011.
[1013] K., Życzkowski and W., Słomczy ński. The Monge distance between quantum states. J. Phys., A 31:9095, 1998.
[1014] K., Życzkowski and W., Słomczy ński. Monge metric on the sphere and geometry of quantum states. J. Phys., A 34:6689, 2001.
[1015] K., Życzkowski and H.-J., Sommers. Truncations of random unitary matrices. J. Phys., A 33:2045, 2000.
[1016] K., Życzkowski and H.-J., Sommers. Induced measures in the space of mixed quantum states. J. Phys., A 34:7111, 2001.
[1017] K., Życzkowski and H.-J., Sommers. Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys., A 36:10115, 2003.
[1018] K., Życzkowski and H.-J., Sommers. Average fidelity between random quantum states. Phys. Rev, A 71:032313, 2005.