Skip to main content Accessibility help
×
  • Cited by 1333
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      August 2012
      April 1995
      ISBN:
      9780511623813
      9780521655958
      Dimensions:
      Weight & Pages:
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.52kg, 356 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Now in paperback, the main theme of this book is the study of geometric properties of general sets and measures in euclidean spaces. Applications of this theory include fractal-type objects such as strange attractors for dynamical systems and those fractals used as models in the sciences. The author provides a firm and unified foundation and develops all the necessary main tools, such as covering theorems, Hausdorff measures and their relations to Riesz capacities and Fourier transforms. The last third of the book is devoted to the Beisovich-Federer theory of rectifiable sets, which form in a sense the largest class of subsets of euclidean space posessing many of the properties of smooth surfaces. These sets have wide application including the higher-dimensional calculus of variations. Their relations to complex analysis and singular integrals are also studied. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.

    Reviews

    "Provides a unified theory for the study of the topic and develops the main tools used in its study including theorems, Hausdorff measures, and their relations to Riesz capacities and Fourier transforms." Book News, Inc.

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.