References
Anderson, D. F. (2007). A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys., 127, 214107.
Anderson, R. M., & May, R. M. (1991). Infectious Diseases of Humans. Oxford: Oxford University Press.
Andersson, H., & Britton, T. (2000). Stochastic Epidemic Models and Their Statistical Analysis. New York: Springer.
Barrat, A., Barthélemy, M., & Vespignani, A. (2008). Dynamical Processes on Complex Networks. Cambridge: Cambridge University Press.
Barrio, M., Burrage, K., Leier, A., & Tian, T. (2006). Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation. PLoS Comput. Biol., 2, e117.
Bartlett, M. S. (1953). Stochastic processes or the statistics of change. J. R. Statist. Soc. C, 2, 44–64.
Black, A. J., & McKane, A. J. (2012). Stochastic formulation of ecological models and their applications. Trends Ecol. Evol., 27, 337–345.
Blue, J. L., Beichl, I., & Sullivan, F. (1995). Faster Monte Carlo simulations. Phys. Rev. E, 51, R867–R868.
Boguñá, M., Lafuerza, L. F., Toral, R., & Serrano, M. Á. (2014). Simulating non-Markovian stochastic processes. Phys. Rev. E, 90, 042108.
Bortz, A. B., Kalos, M. H., & Lebowitz, J. L. (1975). A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys., 17, 10–18.
Bratsun, D., Volfson, D., Tsimring, L. S., & Hasty, J. (2005). Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA, 102, 14593–14598.
Britton, T. (2010). Stochastic epidemic models: A survey. Math. Biosci, 225, 24–35.
Cai, X. (2007). Exact stochastic simulation of coupled chemical reactions with delays. J. Chem. Phys., 126, 124108.
Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton, NJ: Princeton University Press.
Carletti, T., & Filisetti, A. (2012). The stochastic evolution of a protocell: The Gillespie algorithm in a dynamically varying volume. Comput. Math. Methods Med., 2012, 423627.
Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Rev. Mod. Phys., 81, 591–646.
Chen, J., Edelkamp, S., Elmasry, A., & Katajainen, J. (2012). In-place heap construction with optimized comparisons, moves, and cache misses. Lecture Notes on Computer Science, 7464, 259–270.
Clementi, A. E. F., Macci, C., Monti, A., Pasquale, F., & Silvestri, R. (2008). Flooding time in edge-Markovian dynamic graphs. In Proceedings of the 27th ACM SIGACT-SIGOPS Annual Symposium on Principles of Distributed Computing (PODC’08) (pp. 213–222).
Codling, E. A., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology. J. R. Soc. Interface, 5, 813–834.
Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA, 103, 2015–2020.
Colizza, V., Pastor-Satorras, R., & Vespignani, A. (2007). Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys., 3, 276–282.
Cornforth, D., Green, D. G., & Newth, D. (2005). Ordered asynchronous processes in multi-agent systems. Physica D: Nonlinear Phenom., 204, 70–82.
Cota, W., & Ferreira, S. C. (2017). Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks. Comput. Phys. Commun., 219, 303–312.
Cox, D. R. (1962). Renewal Theory. York, UK: Methuen & Co. Ltd.
Daley, D. J., & Gani, J. (1999). Epidemic Modelling: An Introduction. Cambridge: Cambridge University Press.
de Arruda, G. F., Rodrigues, F. A., & Moreno, Y. (2018). Fundamentals of spreading processes in single and multilayer complex networks. Phys. Rep., 756, 1–59.
Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical Epidemiology of Infectious Diseases. Chichester, UK: John Wiley & Sons, Ltd.
Dobrinevski, A., & Frey, E. (2012). Extinction in neutrally stable stochastic Lotka-Volterra models. Phys. Rev. E, 85, 051903.
Doob, J. L. (1942). Topics in the theory of Markoff chains. Trans. Am. Math. Soc., 52, 37–64.
Doob, J. L. (1945). Markoff chains: Denumerable case. Trans. Am. Math. Soc., 58, 455–473.
Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., & Massoulié, L. (2004). Epidemic information dissemination in distributed systems. Computer, 37, 60–67.
Farrington, C. P., Kanaan, M. N., & Gay, N. J. (2003). Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics, 4, 279–295.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Volume II (2nd ed.). New York: John Wiley & Sons.
Fennell, P. G., Melnik, S., & Gleeson, J. P. (2016). Limitations of discrete-time approaches to continuous-time contagion dynamics. Phys. Rev. E, 94, 052125.
Fonseca dos Reis, E., Li, A., & Masuda, N. (2020). Generative models of simultaneously heavy-tailed distributions of inter-event times on nodes and edges. Phys. Rev. E, 102, 052303.
Fosdick, B. K., Larremore, D. B., Nishimura, J., & Ugander, J. (2018). Configuring random graph models with fixed degree sequences. SIAM Rev., 60, 315–355.
Gabbiani, F., & Cox, S. J. (2010). Mathematics for Neuroscientists. Amsterdam: Academic Press.
Gibson, M. A., & Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A, 104, 1876–1889.
Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434.
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.
Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemicallyreacting systems. J. Chem. Phys., 115, 1716–1733.
Gokhale, C. S., Papkou, A., Traulsen, A., & Schulenburg, H. (2013). Lotka–Volterra dynamics kills the Red Queen: Population size fluctuations and associated stochasticity dramatically change host-parasite coevolution. BMC Evol. Biol., 13, 254.
Gómez, S., Gómez-Gardeñes, J., Moreno, Y., & Arenas, A. (2011). Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks. Phys. Rev. E, 84, 036105.
Goutsias, J., & Jenkinson, G. (2013). Markovian dynamics on complex reaction networks. Phys. Rep., 529, 199–264.
Greil, F., & Drossel, B. (2005). Dynamics of critical Kauffman networks under asynchronous stochastic update. Phys. Rev. Lett., 95, 048701.
Gross, T., & Blasius, B. (2008). Adaptive coevolutionary networks: A review. J. R. Soc. Interface, 5, 259–271.
Gross, T., & Sayama, H. (Eds.). (2009). Adaptive Networks. Berlin: Springer.
Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41–49.
Hanson, F. B. (2007). Applied Stochastic Processes and Control for Jump- Diffusions: Modeling, Analysis and Computation. Philadelphia: Society for Industrial and Applied Mathematics.
Haramoto, H., Matsumoto, M., Nishimura, T., Panneton, F., & L’Ecuyer, P. (2008). Efficient jump ahead for -linear random number generators. INFORMS J. Comput., 20, 385–390.
Hidalgo, R., C. A. (2006). Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems. Physica A: Stat. Mech. Appl., 369, 877–883.
Hofbauer, J., & Sigmund, K. (1988). The Theory of Evolution and Dynamical Systems. Cambridge: Cambridge University Press.
Holley, R. A., & Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Prob., 3, 643–663.
Holme, P. (2015). Modern temporal network theory: A colloquium. Eur. Phys. J. B, 88, 234.
Holme, P. (2021). Fast and principled simulations of the SIR model on temporal networks. PLoS ONE, 16, e0246961.
Holme, P., & Saramäki, J. (2012). Temporal networks. Phys. Rep., 519, 97–125.
Holme, P., & Saramäki, J. (2013). Temporal Networks. Berlin: Springer.
Holme, P., & Saramäki, J. (2019). Temporal Network Theory. Cham: Springer.
Huberman, B. A., & Glance, N. S. (1993). Evolutionary games and computer-simulations. Proc. Natl. Acad. Sci. U.S.A., 90, 7716–7718.
Hufnagel, L., Brockmann, D., & Geisel, T. (2004). Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. U.S.A., 101, 15124–15129.
Isella, L., Romano, M., Barrat, A. et al. (2011). Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS ONE, 6, e17144.
Jagers, P (1975). Branching Processes with Biological Applications. London: John Wiley & Sons.
Jiang, Z.-Q., Xie, W.-J., Li, M.-X., Zhou, W.-X., & Sornette, D. (2016). Two- state Markov-chain Poisson nature of individual cellphone call statistics. J. Stat. Mech., 2016, 073210.
Karsai, M., Kivelä, M., Pan, R. K. et al. (2011). Small but slow world: How network topology and burstiness slow down spreading. Phys. Rev. E, 83, 025102(R).
Kendall, D. G. (1950). An artificial realization of a simple “birth-and-death” process. J. R. Statist. Soc. B, 12, 116–119.
Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115, 700–721.
Kierzek, A. M. (2002). STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm. Bioinformatics, 18, 470–481.
Kiss, I. Z., Berthouze, L., Taylor, T. J., & Simon, P. L. (2012). Modelling approaches for simple dynamic networks and applications to disease transmission models. Proc. R. Soc. A, 468, 1332–1355.
Kiss, I. Z., Miller, J. C., & Simon, P. L. (2017a). Mathematics of Epidemics on Networks. Cham: Springer.
Kivelä, M., Pan, R. K., Kaski, K. et al. (2012). Multiscale analysis of spreading in a large communication network. J. Stat. Mech., 2012, P03005.
Knuth, D. E. (1976). Big omicron and big omega and big theta. ACM SIGACT News, 8, 18–24.
Krapivsky, P. L., Redner, S., & Ben-Naim, E. (2010). A Kinetic View of Statistical Physics. Cambridge: Cambridge University Press.
L’Ecuyer, P., & Simard, R. (2007). TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Software, 33, 1–40.
Legault, G., & Melbourne, B. A. (2019). Accounting for environmental change in continuous-time stochastic population models. Theor. Ecol, 12, 31–48.
Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. New York: Springer.
Liggett, T. M. (2010). Continuous Time Markov Processes: An Introduction. Providence, RI: American Mathematical Society.
Lu, T., Volfson, D., Tsimring, L., & Hasty, J. (2004). Cellular growth and division in the Gillespie algorithm. Syst. Biol., 1, 121–128.
Mantegna, R. N., & Stanley, H. E. (2000). An Introduction to Econophysics. Cambridge: Cambridge University Press.
Marchetti, L., Priami, C., & Thanh, V. H. (2017). Simulation Algorithms for Computational Systems Biology. Cham: Springer.
Masuda, N., & Holme, P. (2013). Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Reports, 5, 6.
Masuda, N., & Holme, P. (2020). Small inter-event times govern epidemic spreading on networks. Phys. Rev. Research, 2, 023163.
Masuda, N., & Lambiotte, R. (2020). A Guide to Temporal Networks (2nd ed.). Singapore: World Scientific.
Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Phys. Rep., 716–717, 1–58.
Masuda, N., & Rocha, L. E. C. (2018). A Gillespie algorithm for non-Markovian stochastic processes. SIAM Rev., 60, 95–115.
Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623- dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8, 3–30.
McGill, B. J., Etienne, R. S., Gray, J. S. et al. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10, 995–1015.
Miritello, G., Moro, E., & Lara, R. (2011). Dynamical strength of social ties in information spreading. Phys. Rev. E, 83, 045102(R).
Mollison, D., Isham, V., & Grenfell, B. (1994). Epidemics: Models and data. J. R. Statist. Soc. A, 157, 115–149.
Murray, J. D. (2002). Mathematical Biology I. An Introduction (3rd ed.). New York: Springer.
Ogura, M., & Preciado, V. M. (2016). Stability of spreading processes over time-varying large-scale networks. IEEE Trans. Netw. Sci. Eng., 3, 44–57.
Okada, M., Yamanishi, K., & Masuda, N. (2020). Long-tailed distributions of inter-event times as mixtures of exponential distributions. R. Soc. Open. Sci., 7, 191643.
Okubo, A., & Levin, S. A. (2001). Diffusion and Ecological Problems: Modern Perspectives (2nd ed.). New York: Springer.
Parker, M., & Kamenev, A. (2009). Extinction in the Lotka-Volterra model. Phys. Rev.E, 80, 021129.
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Rev. Mod. Phys., 87, 925–979.
Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86, 3200–3203.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge: Cambridge University Press.
Schulze, T. P. (2002). Kinetic Monte Carlo simulations with minimal searching. Phys. Rev. E, 65, 036704.
Schulze, T. P. (2008). Efficient kinetic Monte Carlo simulation. J. Comput. Phys., 227, 2455–2462.
Shelton, C. R., & Ciardo, G. (2014). Tutorial on structured continuous-time Markov processes. J. Artif. Intel. Research, 51, 725–778.
Singer, B., & Spilerman, S. (1976). The representation of social processes by Markov models. Am. J. Sociol., 82, 1–54.
Slepoy, A., Thompson, A. P., & Plimpton, S. J. (2008). A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys., 128, 205101.
St-Onge, G., Young, J.-G., Hébert-Dufresne, L., & Dubé, L. J. (2019). Efficient sampling of spreading processes on complex networks using a composition and rejection algorithm. Comput. Phys. Comm., 240, 30–37.
Tuckwell, H. C. (1988). Introduction to Theoretical Neurobiology: Volume 2, Nonlinear and Stochastic Theories. Cambridge: Cambridge University Press.
Van Mieghem, P. (2014). Performance Analysis of Complex Networks and Systems. Cambridge: Cambridge University Press.
Vestergaard, C. L., & Génois, M. (2015). Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol., 11, e1004579.
Volz, E., & Meyers, L. A. (2007). Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B, 274, 2925–2933.
von Neumann, J. (1951). Various techniques used in connection with random digits. Appl. Math. Ser., 12, 36–38.
Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L., & Bauch, C. T. (2015). Coupled disease–behavior dynamics on complex networks: A review. Phys. Life Rev., 15, 1–29.
Wong, C. K., & Easton, M. C. (1980). An efficient method for weighted sampling without replacement. SIAM J. Comput., 9, 111–113.
Yannaros, N. (1994). Weibull renewal processes. Ann. Inst. Stat. Math., 46, 641–648.
Yates, C. A., & Klingbeil, G. (2013). Recycling random numbers in the stochastic simulation algorithm. J. Chem. Phys., 138, 094103.
Young, W. M., & Elcock, E. W. (1966). Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc. Phys. Soc., 89, 735–746.
Zhang, X., Moore, C., & Newman, M. E. J. (2017). Random graph models for dynamic networks. Eur. Phys. J. B, 90, 200.