We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks.
The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.