Skip to main content Accessibility help
×
  • Cited by 24
Publisher:
Cambridge University Press
Online publication date:
June 2016
Print publication year:
2016
Online ISBN:
9781316341063

Book description

This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects.

Reviews

'The author gives a comprehensive treatment of invariant potential theory. The exposition is clear and elementary. This book is recommended to graduate students and researchers interested in this field. It is a very good addition to the mathematical literature.'

Hiroaki Aikawa Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] M., Abramowitz and I., Stegun. Handbook of Mathematical Functions. Applied Math. Series 55. National Bureau of Standards, 1964.
[2] P., Ahern, J., Bruna, and C., Cascante. Hp-theory for generalized M-harmonic functions on the unit ball. Indiana Univ. Math. J., 45(1):103–135, 1996.
[3] P., Ahern, M., Flores, and W., Rudin. An invariant volume mean value property. J. Funct. Analysis, 111:380–397, 1993.
[4] L., Ahlfors. Möbius Transformations in Several Dimensions. University of Minnesota, School of Mathematics, 1981.
[5] L. V., Ahlfors. Hyperbolic motions. Nagoya Math. J., 29:163–166, 1967.
[6] H., Aikawa. Tangential behavior of Green potentials and contractive properties of Lp-potentials. Tokyo J. Math., 9:223–245, 1986.
[7] J., Arazy and S., Fisher. The uniqueness of the Dirichlet space among Möbius invariant function spaces. Illinois J. Math., 29:449–462, 1985.
[8] D. H., Armitage. On the global integrability of superharmonic functions. J. London Math. Soc., 4:365–373, 1971.
[9] M., Arsove and A., Huber. On the existence of non-tangential limits of subharmonic functions. J. London Math. Soc., 42:125–132, 1967.
[10] S., Axler, P., Bourdon, and W., Ramey. Harmonic Function Theory. Springer- Verlag, New York, NY, 1992.
[11] A. F., Beardon. The Geometry of Discrete Groups. Springer-Verlag, New York, NY, 1983.
[12] A. P., Calderón. Commutators of singular integral operators. Proc. Nat. Acad. Sci. U. S. A., 53:1092–1099, 1965.
[13] I., Chavel. Eigenvalues in Riemannian Geometry. Academic Press, Orlando, FL, 1984.
[14] P., Cifuentis. Hp classes on rank one symmetric spaces of noncompact type. II. Nontangential maximal function and area integral. Bull. Sci. Math., 108:355–371, 1984.
[15] P., Cifuentis. A characterization of H2 classes on rank one symmetric spaces of noncompact type. Proc. Amer. Math. Soc., 106:519–525, 1989.
[16] J. A., Cima and C. S., Stanton. Admissible limits of M-subharmonic functions. Michigan Math. J., 32:211–220, 1985.
[17] O., Djordjević and M., Pavlović. On a Littlewood–Paley type inequality. Proc. Amer. Math. Soc., 135:3607–3611, 2007.
[18] N., Dunford and J. T., Schwartz. Linear Operators Part I. Interscience Publishers, Inc., New York, NY, 1957.
[19] P., Duren. Theory of Hp Spaces. Academic Press, New York, NY, 1970.
[20] A., Erdélyi, editor. Higher Transcendental Functions, Bateman Manuscript Project, volume I. McGraw-Hill, New York, NY, 1953.
[21] C., Fefferman and E., Stein. Hp spaces of several variables. Acta Math, 129: 137–193, 1972.
[22] T. M., Flett. On some theorems of Littlewood and Paley. J. London Math. Soc., 31:336–344, 1956.
[23] T. M., Flett. On the rate of growth of mean values of holomorphic functions. Proc. London Math. Soc., 20:749–768, 1970.
[24] H., Furstenberg. A Poisson formula for semisimple Lie groups. Ann. Math., 77:335–386, 1963.
[25] S. J., Gardiner. Growth properties of potentials in the unit ball. Proc. Amer. Math. Soc., 103:861–869, 1988.
[26] L., Garding and L., Hörmander. Strongly subharmonic functions. Math. Scand., 15:93–96, 1964.
[27] J. B., Garnett. Bounded Analytic Functions. Pure and Applied Mathematics. Academic Press, New York, NY, 1981.
[28] F.W., Gehring. On the radial order of subharmonic functions. J. Math. Soc. Japan, 9:77–79, 1957.
[29] I., Graham. The radial derviative, fractional integrals, and the comparitive growth of means of holomorphic functions on the unit ball in Cn. Annals Math. Studies, 100:171–178, 1981.
[30] M. D., Greenberg. Ordinary Differential Equations. Wiley, Hoboken, NJ, 2014.
[31] S., Grellier and P., Jaming. Harmonic functions on the real hyperbolic ball II. Hardy–Sobolev and Lipschitz spaces. Math. Nachr., 268:50–73, 2004.
[32] K. T., Hahn and D., Singman. Boundary behavior of invariant Green's potentials on the unit ball of Cn. Trans. Amer. Math. Soc., 309:339–354, 1988.
[33] D. J., Hallenbeck. Radial growth of subharmonic functions. Pitman Research Notes, 262:113–121, 1992.
[34] G. H., Hardy and J. E., Littlewood. Some properties of fractional integrals, II. Math. Z., 34:403–439, 1932.
[35] J. H., Hardy and J. E., Littlewood. The strong summability of Fourier series. Fund. Math., 25:162–189, 1935.
[36] H., Hedenmalm, B., Korenblum, and K., Zhu. Theory of Bergman Spaces, volume 199 of Graduate Texts in Mathematics. Springer, New York, NY, 2000.
[37] M., Heins. The minimum modulus of a bounded analytic function. Duke Math. J., 14:179–215, 1947.
[38] S., Helgason. Groups and Geometric Analysis. American Mathematical Society, Providence, RI, 2000.
[39] E., Hewitt and K., Stromberg. Real and Abstract Analysis. Springer-Verlag, New York, NY, 1965.
[40] L., Hörmander. Linear Partial Differential Operators. Springer-Verlag, New York, NY, 1963.
[41] P., Jaming. Trois problémes d'analyse harmonique. PhD thesis, Université d'Orléans, 1998.
[42] P., Jaming. Harmonic functions on the real hyperbolic ball I. Boundary values and atomic decomposition of Hardy spaces. Colloq. Math., 80:63–82, 1999.
[43] P., Jaming. Harmonic functions on classical rank one balls. Boll. Unione Mat. Italia, 8:685–702, 2001.
[44] M., Jevtić. Tangential characterizations of Hardy and mixed-norm spaces of harmonic functions on the real hyperbolic ball. Acta Math. Hungar., 113: 119–131, 2006.
[45] A. W., Knapp. Fatou's theorem for symmetric spaces, I. Ann. Math, 88(2): 106–127, 1968.
[46] A., Koranyi. Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc., 135:507–516, 1969.
[47] A., Koranyi. Harmonic functions on symmetric spaces. In W. M., Boothby and G. L., Weiss, editors, Symmetric Spaces, Marcel Dekker, Inc., New York, NY, 1972.
[48] A., Koranyi and R. P., Putz. Local Fatou theorem and area theorem for symmetric spaces of rank one. Trans. Amer. Math. Soc., 224:157–168, 1976.
[49] Ü., Kuran. Subharmonic behavior of |h|p (p > 0, h harmonic). J. London Math. Soc., 8:529–538, 1974.
[50] N. N., Lebedev. Special Functions and their Applications. Dover Publications, New York, NY, 1972.
[51] J. E., Littlewood and R. E. A. C., Paley. Theorems on Fourier series and power series. Proc. London Math. Soc., 42:52–89, 1936.
[52] D. H., Luecking. Boundary behavior of Green potentials. Proc. Amer. Math. Soc., 96:481–488, 1986.
[53] D. H., Luecking. A new proof of an inequality of Littlewood and Paley. Proc. Amer. Math. Soc., 103(3):887–893, 1988.
[54] N., Lusin. Sur une propriété des fonctions à carré sommable. Bull. Calcutta Math. Soc., 20:139–154, 1930.
[55] B. D., MacCluer. Compact composition operators of Hp(Bn). Michigan Math. J., 32:237–248, 1985.
[56] J., Marcinkiewicz and A., Zygmund. A theorem of Lusin. Duke Math. J., 4: 473–485, 1938.
[57] K., Minemura. Harmonic functions on real hyperbolic spaces. Hiroshima Math. J., 3:121–151, 1973.
[58] K., Minemura. Eigenfunctions of the Laplacian on a real hyperbolic space. J. Math. Soc. Japan, 27(1):82–105, 1975.
[59] Y., Mizuta. On the boundary limits of harmonic functions with gradient in Lp. Ann. Inst. Fourier, Grenoble, 34:99–109, 1984.
[60] Y., Mizuta. On the boundary limits of harmonic functions. Hiroshima Math. J., 18:207–217, 1988.
[61] A., Nagel, W., Rudin, and J. H., Shapiro. Tangential boundary behavior of functions in Dirichlet-type spaces. Ann. Math., 116:331–360, 1982.
[62] M., Pavlović. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag. Mathem., N. S., 2:89–98, 1991.
[63] M., Pavlović. On subharmonic behavior and oscillation of functions in balls in Rn. Publ. Inst. Math. (N.S.), 69:18–22, 1994.
[64] M., Pavlović. A Littlewood–Paley theorem for subharmonic functions. Publ. Inst. Math. (Beograd), 68(82):77–82, 2000.
[65] M., Pavlović. A short proof of an inequality of Littlewood and Paley. Proc. Amer. Math. Soc, 134:3625–3627, 2006.
[66] M., Pavlović and J., Riihentaus. Classes of quasi-nearly subharmonic functions. Potential Analysis, 29:89–104, 2008.
[67] Marco M., Peloso. Möbius invariant spaces on the unit ball. Michigan Math. J, 39:509–536, 1992.
[68] I., Privalov. Sur une généralization du théorème de Fatou. Rec. Math. (Mat. Sbornik), 31:232–235, 1923.
[69] T., Ransford. Potential Theory in the Complex Plane. London Math. Soc. Student Texts 28, Cambridge University Press, 1995.
[70] J., Riihentaus. On a theorem of Avanissian–Arsove. Exposition. Math., 7:69–72, 1989.
[71] H. L., Royden. Real Analysis. Macmillan Publishing Co., New York, NY, third edition, 1988.
[72] W., Rudin. Function Theory in the Unit Ball of Cn. Springer-Verlag, New York, NY, 1980.
[73] H., Samii. Les transformations de Poisson dans le boule hyperbolic. PhD thesis, Université Nancy 1, 1982.
[74] I., Sokolnikoff. Tensor Analysis. Wiley, New York, NY, 1964.
[75] E. M., Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ, 1970.
[76] E. M., Stein and G., Weiss. Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ, 1971.
[77] S., Stević. A Littlewood–Paley type inequality. Bull. Braz. Math. Soc., 34:1–7, 2003.
[78] M., Stoll. Hardy-type spaces of harmonic functions on symmetric spaces of noncompact type. J. Reine Angew. Math., 271:63–76, 1974.
[79] M., Stoll. Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains. J. Reine Angew. Math., 290:191–198, 1977.
[80] M., Stoll. Boundary limits of Green potentials in the unit disc. Arch. Math., 44:451–455, 1985.
[81] M., Stoll. Rate of growth of pth means of invariant potentials in the unit ball of Cn. J. Math. Analysis & Appl., 143:480–499, 1989.
[82] M., Stoll. Rate of growth of pth means of invariant potentials in the unit ball of Cn, II. J. Math. Analysis & Appl., 165:374–398, 1992.
[83] M., Stoll. Tangential boundary limits of invariant potentials in the unit ball of Cn. J. Math. Anal. Appl., 177(2):553–571, 1993.
[84] M., Stoll. Invariant potential theory in the unit ball of Cn, volume 199 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
[85] M., Stoll. Boundary limits and non-integrability ofM-subharmonic functions in the unit ball of Cn (n ≥ 1). Trans. Amer. Math. Soc., 349(9):3773–3785, 1997.
[86] M., Stoll. Weighted tangential boundary limits of subharmonic functions on domains in RnM (n ≥ 1). Math. Scand., 83(2):300–308, 1998.
[87] M., Stoll. On generalizations of the Littlewood–Paley inequalities to domains in Rn (n ≥ 2). Unpublished manuscript, 2004. www.researchgate.net/profile/Manfred Stoll/publications.
[88] M., Stoll. The Littlewood–Paley inequalities for Hardy–Orlicz spaces of harmonic function on domains in Rn. Advanced Studies in Pure Mathematics, 44:363–376, 2006.
[89] M., Stoll. Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball. Complex Var. and Elliptic Equ., 57(1):63–89, 2012.
[90] M., Stoll. On the Littlewood–Paley inequalities for subharmonic functions on domains in Rn. In Recent Advances in Harmonic Analysis and Applications, pages 357–383. Springer–Verlag, New York, NY, 2013.
[91] M., Stoll. Littlewood–Paley theory for subharmonic functions on the unit ball in Rn. J. Math. Analysis & Appl., 420:483–514, 2014.
[92] N., Suzuki. Nonintegrability of harmonic functions in a domain. Japan J. Math., 16:269–278, 1990.
[93] D., Ullrich. Möbius-invariant potential theory in the unit ball of Cn. PhD thesis, University of Wisconsin, 1981.
[94] D., Ullrich. Radial limits ofM-subharmonic functions. Trans. Amer. Math. Soc., 292:501–518, 1985.
[95] J.-M. G., Wu. Lp densities and boundary behavior of Green potentials. Indiana Univ. Math. J., 28:895–911, 1979.
[96] S., Zhao. On the weighted Lp-integrability of nonnegative M-superharmonic functions. Proc. Amer. Math. Soc, 113:677–685, 1992.
[97] K., Zhu. Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of Cn. Trans. Amer. Math. Soc., 323:823–842, 1991.
[98] L., Ziomek. On the boundary behavior in the metric Lp of subharmonic functions. Studia Math., 29:97–105, 1967.
[99] A., Zygmund. Trigonometric Series. Cambridge University Press, London, 1968.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.