Skip to main content Accessibility help
×
  • Cited by 12
Publisher:
Cambridge University Press
Online publication date:
March 2022
Print publication year:
2022
Online ISBN:
9781108981804
Subjects:
Logic, Philosophy

Book description

This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined.

Bibliography

Aczel, P. (1978). The type-theoretic interpretation of constructive set theory. In ManIntyre, A., Pacholski, L., and Paris, J., eds., Logic Colloquium 77, pp. 5566. North-Holland.
Aczel, P. (1982). The type-theoretic interpretation of constructive set theory: Choice principles. In Troelstra, A. S. and van Dalen, D., eds., The L.E.J. Brouwer Centenary Symposium, pp. 140. North- Holland.
Aczel, P. (1986). The type-theoretic interpretation of constructive set theory: Inductive definitions. In Barcan Marcus, R., Dorn, G. J. W., and Weinegartner, P., eds., Logic, Methodology and Philosophy of Science VII, pp. 1749. North-Holland.
Aczel, P. and Gambino, N. (2002). Collection principles in dependent type theory. In Callaghan, P., Luo, Z., McKinna, J., and Pollack, R., eds., Types for Proofs and Programs, Volume 2277 of Lecture Notes on Computer Science, pp. 123. Springer.
Aczel, P. and Gambino, N. (2005). The generalized type-theoretic interpretation of constructive set theory. Manuscript available on first author’s webpage www.cs.man.ac.uk/~petera/papers
Aczel, P. and Gambino, N. and Rathjen, M. (2001). Notes on Constructive Set Theory. Technical Report 40, Mittag-Leffler Institute, The Swedish Royal Academy of Sciences. Available on first author’s webpage www.cs.man.ac.uk/~petera/papers
Awodey, S. (2017). Structuralism, invariance, and univalence. In Landry (2017), pp. 5868.
Awodey, S. and Warren, M. A. (2009). Homotopy theoretic models of identity types. Math. Proc. Cambridge Philos. Soc. 146(1), 4555.
Barendregt, H. (1984). The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, Volume 103. North-Holland.
Barendregt, H. (1992). Lambda Calculi with Types. Handbook of Logic in Computer Science, Volume 2. Oxford University Press, pp. 117309.
Bell, J. L. (1988). Toposes and Local Set Theories: An Introduction. Oxford Logic Guides, Volume 14. Clarendon Press. Reprinted by Dover (2008).
Bell, J. L. (2006). Absolute and variable sets in category theory. In G. Sica, ed., What Is Category Theory?, pp. 9-17. Polimetrica. https://publish.uwo.ca/~jbell/catset.pdf
Bell, J. L. (2012). Types, sets and categories. In Kanamori, A., Gabbay, D., and Woods, J., eds., Sets and Extensions in the 20th Century. Handbook of the History of Logic, Volume 6, pp. 633–88. Elsevier.
Bell, J. L. and Machover, M. (1977). A Course in Mathematic al Logic. Elsevier.
Benzmüller, C., and Andrews, P. B. (2019). Church’s type theory. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/type-theory-church/
Bishop, E. (1967). Foundations of Constructive Analysis. McGraw-Hill.
Boileau, A. (1975). Types vs. Topos. Thesis, Univesité de Montreal.
Boileau, A. and Joyal, A. (1981). La logique de topos. J. Symbolic Logic 46, 616.
Boolos, G. (1997). Constructing Cantorian counterexamples. J. Phil. Logic 26, 237–39.
Carnap, R. (1929). Abriss der Logistik. Springer.
Church, A. (1940). A formulation of the simple theory of types. J. Symbolic Logic 1, 5668.
Church, A. (1976). Comparison of Russell’s resolution of the semantical antinomies with that of Tarski. J. Symbolic Logic 41, 747–60.
Chwistek, L. (1925). Theory of constructive types. Annales de la soc. Pol. De Math. 3, 92141.
Coquand, T. (2018). Type theory. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/type-theory/
Coquand, T. and Huet, G. (1988). The calculus of constructions. Inf. and Comp. 76(2/3), 95120.
Crole, R. (1993). Categories for Types. Cambridge University Press.
Curry, H. B., and Feys, R. (1958). Combinatory Logic. North-Holland.
Diaconescu, R. (1975). Axiom of choice and complementation. Proc. Amer. Math. Soc. 51, 176–78.
Eilenberg, S., and Mac Lane, S. (1945). General theory of natural equivalences. Trans. Amer. Math. Soc. 58, 231–94.
Eilenberg, S., and Mac Lane, S. (1986). Eilenberg-Mac Lane: Collected Works. Academic Press.
Escardo, M. (2018). A self-contained, brief and complete formulation of Voevodsky’s Univalence Axiom. 1803.02294.pdf (arxiv.org) https://arxiv.org/abs/1803.02294
Escardo, M. (2019). Equality of mathematical structures. pdf(arxiv.org). www.cs.bham.ac.uk/~mhe/.talks/xii-pcc.pdf#page1
Farmer, W. (2006). The seven virtues of simple type theory. imps.mcmaster.ca/doc/seven-virtues.pdf
Fourman, M. P. (1974). Connections between Category Theory and Logic. D. Phil. Thesis, Oxford University.
Fourman, M. P. (1977). The logic of topoi. In Barwise, J., ed., Handbook of Mathematical Logic, pp. 1053–90. North-Holland.
Fourman, M. P. Mulvey, C. J., and Scott, D. S., eds. (1979). Applications of Sheaves. Proceedings. L.M.S. Durham Symposium 1977. Springer Lecture Notes in Mathematics, Volume 753.
Frege, G. (1879) Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle a. S.: Louis Nebert (translated as Concept Script, a formal language of pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg). In van Heijenoort, J., ed., From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, 1967.
Gandy, R. O. (1977). The simple theory of types. In Gandy, R. and Hyland, M., eds., Logic Colloquium 76, pp. 173–81. North-Holland.
Girard, J.-Y. (1972). Interprétation fonctionelle élimination des coupures dans l’arithmétique d’ordre supérieure. Ph.D. Thesis, Université Paris VII.
Gödel, K. (1931). Über formal untenscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math. Phys. 38, 349–60. Reprinted in English translation by S. Feferman et al., eds. as Godel, Collected Works, Volume 1, Oxford University Press, 1986.
Goodman, N., and Myhill, J. (1978). Choice implies excluded middle. Z. Math Logik Grundlag. Math. 24(5), 461.
Henkin, L. (1950). Completeness in the theory of types. J. Symbolic Logic 15, 8191.
Henkin, L. (1963). A theory of propositional types. Fund. Math. 52, 323–44.
Homotopy. (2013). Homotopy Type Theory: Univalent Foundations of Mathematics. The Univalent Foundations Program, Institute for Advanced Study.
Howard, W. A. (1980). The formulae-as-types notion of construction. In Hindley, J. R. and Seldin, J. P., eds., To H. B. Curry: Essays on Combinatorial Logic. Lambda Calculus and Formalism, pp. 479–90. Academic Press.
Jacobs, B. (1999). Categorical Logic and Type Theory. Elsevier.
Johnstone, P. T. (1977). Topos Theory. Academic Press.
Johnstone, P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium, Volumes 1 and 2. Oxford Logic Guides Volumes 43 and 44. Clarendon Press.
Kapulkin, K., and Lumsdaine, P. (2018). The simplicial model of univalent foundations (after Voevodsky). https://arxiv.org/pdf/1211.2851.pdf
Lambek, J., and Scott, P. J. (1986). Introduction to Higher-Order Categorical Logic. Cambridge University Press.
Landry, E., ed. (2017). Categories for the Working Philosopher. Oxford University Press.
Lawvere, F. W. (1971). Quantifiers and sheaves. In Actes du Congrés Intern. Des Math. Nice 1970, tome I. pp. 329–34. Paris: Gauthier-Villars.
Lawvere, F. W. (1972). Introduction to Toposes, Algebraic Geometry and Logic. Springer Lecture Notes in Mathematics, Volume 274, pp. 112.
Lewis, C. I. (1918). A Survey of Symbolic Logic, 2nd ed. University of California Press. Reprinted by Dover (1960).
Maietti, M. E. (2005). Modular correspondence between dependent type theories and categories including pretopoi and topoi. Math. Struct. Comp. Sci. 15(6), 1089–145.
Maietti, M. E. and Valentini, S. (1999). Can you add power-sets to Martin-Löf’s intuitionistic set theory? Math. Logic Quarterly 45, 521–32.
Martin-Löf, P. (1975). An intuitionistic theory of types; predicative part. In Rose, H. E. and Shepherdson, J. C., eds., Logic Colloquium 73, pp. 73118. North-Holland.
Martin-Löf, P. (1982). Constructive mathematics and computer programming. In Cohen, L. C., Los, J., Pfeiffer, H., and Podewski, K. P., eds., Logic, Methodology and Philosophy of Science VI, pp. 153–79. North-Holland.
Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis.
Miquel, A. (2001). A strongly normalising Curry-Howard correspondence for IZF set theory. In Computer Science Logic, Lecture Notes in Computer Science, Volume 2803, pp. 441–54. Springer.
Nordström, B., Petersson, K., and Smith, J. M. (1990). Programming in Martin-Löf’s Type Theory. Oxford University Press.
Ramsey, F. P. (1926). The foundations of mathematics. Proc. Lond. Math. Soc. 25, 338–84.
Russell, B. (1903). The Principles of Mathematics. Cambridge University Press.
Russell, B. (1908). Mathematical logic as based on the theory of types. Am. J. Math. 30, 222–62. Reprinted as pp.150–82 in van Heijenoort, ed. (1967).
Russell, B. and Whitehead, A. N. (1910–1913). Principia Mathematica, 3 Volumes. Cambridge University Press.
Shulman, M. (2017). Homotopy Type Theory: A Synthetic Approach to Higher Equalities. In Landry, E. (2017), pp. 3657. Oxford University Press.
Tait, W. W. (1994). The law of excluded middle and the axiom of choice. In George, A., ed., Mathematics and Mind, pp. 4570. Oxford University Press.
Tarski, A. (1931). Sur les ensembles definissable de nombres réels I. Fund. Math. 17, 210–29.
Van Dalen, D. (1994). Logic and Structure. Springer-Verlag.
van Heijenoort, J., ed. (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press.
Voevodsky, V. (2010). The equivalence axiom and univalent models of type theory. arXiv. 1402.5556, Bibcode:2014arXiv1402.5556 V
Voevodsky, V. (2014). The origins and motivations of univalent foundations: A personal mission to develop computer proof verification to avoid mathematical mistakes. www.ias.edu/ideas/2014/voevodsky-origins
Voevodsky, V. (2015). An experimental library of formalized mathematics based on univalent foundations. In Mathematical Structures in Computer Science, 25: 12781294, Cambridge University Press. http://doi.org/10.1017/S0960129514000577
Weyl, H. (1918). Das Kontinuum. Veit. English translation by S. Pollard and T. Bole as The Continuum: A Critical Examination of the Foundation of Analysis, Kirksville, Missouri, Thomas Jefferson University Press, 1987.
Weyl, H. (1946). Mathematics and logic. A brief survey serving as a preface to a review of ‘The Philosophy of Bertrand Russell’. Am. Math. Monthly 53, 213.
Zangwill, J. (1977). Local Set Theory and Topoi. M.Sc. Thesis, Bristol University.
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Matematische Annalen 59, 261–81. Reprinted as pp. 199–215 of van Heijenoort, ed. (1967).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.