References
[1]Barabási, A.-L., Network Science. Cambridge University Press, 2016.
[2]Dorogovtsev, S. N. and Mendes, J. F., Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, 2003.
[3]Barrat, A., Barthelemy, M. and Vespignani, A., Dynamical Processes on Complex Networks. Cambridge University Press, 2008.
[4]Menczer, F., Fortunato, S. and Davis, C. A., A First Course in Network Science. Cambridge University Press, 2020.
[5]Dorogovtsev, S. N., Goltsev, A. V. and Mendes, J. F., “Critical phenomena in complex networks,” Reviews of Modern Physics, vol. 80, no. 4, p. 1275, 2008.
[6]Bianconi, G., Multilayer Networks: Structure and Function. Oxford University Press, 2018.
[7]Battiston, F., Cencetti, G., Iacopini, I., et al., “Networks beyond pairwise interactions: structure and dynamics,” Physics Reports, vol. 874, pp. 1–92, 2020.
[8]Giusti, C., Ghrist, R. and Bassett, D. S., “Two’s company, three (or more) is a simplex,” Journal of Computational Neuroscience, vol. 41, no. 1, pp. 1–14, 2016.
[9]Bianconi, G., “Interdisciplinary and physics challenges of network theory,” EPL (Europhysics Letters), vol. 111, no. 5, p. 56001, 2015.
[10]Torres, L., Blevins, A. S., Bassett, D. S. and Eliassi-Rad, T., “The why, how, and when of representations for complex systems,” arXiv preprint arXiv:2006.02870, 2020.
[11]Salnikov, V., Cassese, D. and Lambiotte, R., “Simplicial complexes and complex systems,” European Journal of Physics, vol. 40, no. 1, p. 014001, 2018.
[12]Courtney, O. T. and Bianconi, G., “Generalized network structures: the configuration model and the canonical ensemble of simplicial complexes,” Physical Review E, vol. 93, no. 6, p. 062311, 2016.
[13]Skardal, P. and Arenas, A., “Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes,” Physical Review Letters, vol. 122, no. 24, p. 248301, 2019.
[14]Iacopini, I., Petri, G., Barrat, A. and Latora, V., “Simplicial models of social contagion,” Nature Communications, vol. 10, no. 1, pp. 1–9, 2019.
[15]Ghrist, R. W., Elementary Applied Topology. Createspace Seattle, 2014, vol. 1.
[16]Ghrist, R., “Barcodes: the persistent topology of data,” Bulletin of the American Mathematical Society, vol. 45, no. 1, pp. 61–75, 2008.
[17]Kahle, M., “Topology of random simplicial complexes: a survey,” AMS Contemporary Mathematics, vol. 620, pp. 201–222, 2014.
[18]Otter, N., Porter, M. A., Tillmann, U., Grindrod, P. and Harrington, H. A., “A roadmap for the computation of persistent homology,” EPJ Data Science, vol. 6, no. 1, p. 17, 2017.
[19]Edelsbrunner, H., A Short Course in Computational Geometry and Topology. Springer, 2014.
[20]Petri, G., Expert, P., Turkheimer, F., et al., “Homological scaffolds of brain functional networks,” Journal of The Royal Society Interface, vol. 11, no. 101, p. 20140873, 2014.
[21]Petri, G., Scolamiero, M., Donato, I. and Vaccarino, F., “Topological strata of weighted complex networks,” PloS One, vol. 8, no. 6, p. e66506, 2013.
[22]Saggar, M., Sporns, O., Gonzalez-Castillo, J., et al. “Towards a new approach to reveal dynamical organization of the brain using topological data analysis,” Nature Communications, vol. 9, no. 1, pp. 1–14, 2018.
[23]Reimann, M. W., Nolte, M., Scolamiero, M., et al., “Cliques of neurons bound into cavities provide a missing link between structure and function,” Frontiers in Computational Neuroscience, vol. 11, p. 48, 2017.
[24]Kartun-Giles, A. P. and Bianconi, G., “Beyond the clustering coefficient: a topological analysis of node neighbourhoods in complex networks,” Chaos, Solitons and Fractals: X, vol. 1, p. 100004, 2019.
[25]Benson, A. R., Gleich, D. F. and J. Leskovec, “Higher-order organization of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.
[26]Palla, G., Derényi, I., Farkas, I. and Vicsek, T., “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005.
[27]Millán, A. P., Torres, J. J. and Bianconi, G., “Explosive higher-order Kuramoto dynamics on simplicial complexes,” Physical Review Letters, vol. 124, no. 21, p. 218301, 2020.
[28]Barbarossa, S. and Sardellitti, S., “Topological signal processing over simplicial complexes,” IEEE Transactions on Signal Processing, vol. 68, pp. 2992–3007, 2020.
[29]Bianconi, G. and Rahmede, C., “Network geometry with flavor: from complexity to quantum geometry,” Physical Review E, vol. 93, no. 3, p. 032315, 2016.
[30]Bianconi, G. and Rahmede, C., “Emergent hyperbolic geometry,” Scientific Reports, vol. 7, p. 41974, 2017.
[31]Wu, Z., Menichetti, G., Rahmede, C. and Bianconi, G., “Emergent complex network geometry,” Scientific Reports, vol. 5, p. 10073, 2015.
[32]Mulder, D. and Bianconi, G., “Network geometry and complexity,” Journal of Statistical Physics, vol. 173, no. 3–4, pp. 783–805, 2018.
[33]Torres, J. J. and Bianconi, G., “Simplicial complexes: higher-order spectral dimension and dynamics,” Journal of Physics: Complexity, vol. 1, no. 1, p. 015002, 2020.
[34]Burioni, R. and Cassi, D., “Random walks on graphs: ideas, techniques and results,” Journal of Physics A: Mathematical and General, vol. 38, no. 8, p. R45, 2005.
[35]Millán, A. P., Torres, J. J. and Bianconi, G., “Complex network geometry and frustrated synchronization,” Scientific Reports, vol. 8, no. 1, pp. 1–10, 2018.
[36]Millán, A. P., Torres, J. J. and Bianconi, G., “Synchronization in network geometries with finite spectral dimension,” Physical Review E, vol. 99, no. 2, p. 022307, 2019.
[37]Bianconi, G. and Ziff, R. M., “Topological percolation on hyperbolic simplicial complexes,” Physical Review E, vol. 98, no. 5, p. 052308, 2018.
[38]Cinardi, N., Rapisarda, A. and Bianconi, G., “Quantum statistics in network geometry with fractional flavor,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2019, no. 10, p. 103403, 2019.
[39]Bianconi, G. and Rahmede, C., “Complex quantum network manifolds in dimension d>2 are scale-free,” Scientific Reports, vol. 5, no. 1, pp. 1–10, 2015.
[40]Patania, A., Petri, G. and Vaccarino, F., “The shape of collaborations,” EPJ Data Science, vol. 6, no. 1, p. 18, 2017.
[41]Bollobás, B. and Béla, B., Random Graphs. Cambridge University Press, 2001, no. 73.
[42]Bianconi, G. and Marsili, M., “Emergence of large cliques in random scale-free networks,” EPL (Europhysics Letters), vol. 74, no. 4, p. 740, 2006.
[43]MacKay, D. J. C, Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.
[44]Cover, T. M., Elements of Information Theory. John Wiley & Sons, 1999.
[45]Anand, K. and Bianconi, G., “Entropy measures for networks: toward an information theory of complex topologies,” Physical Review E, vol. 80, no. 4, p. 045102, 2009.
[46]Kardar, M., Statistical Physics of Particles. Cambridge University Press, 2007.
[47]Anand, K. and Bianconi, G., “Gibbs entropy of network ensembles by cavity methods,” Physical Review E, vol. 82, no. 1, p. 011116, 2010.
[48]Costa, A. and Farber, M., “Random simplicial complexes,” in Configuration Spaces, Callegaro, F., Cohen, F., De Concini, C., M. Feichtner, E., Gaiffi, G., Salvetti, M. (Eds.). Springer, 2016, pp. 129–153.
[49]Zuev, K., Eisenberg, O. and Krioukov, D., “Exponential random simplicial complexes,” Journal of Physics A: Mathematical and Theoretical, vol. 48, no. 46, p. 465002, 2015.
[51]Bender, E. A. and Canfield, E. R., “The asymptotic number of labeled graphs with given degree sequences,” Journal of Combinatorial Theory, Series A, vol. 24, no. 3, pp. 296–307, 1978.
[52]Ghoshal, G., Zlatić, V., Caldarelli, G. and Newman, M. E., “Random hypergraphs and their applications,” Physical Review E, vol. 79, no. 6, p. 066118, 2009.
[53]Wegner, A. E. and Olhede, S., “Atomic subgraphs and the statistical mechanics of networks,” Physical Review E, vol. 103, no. 04, p. 042311, 2021.
[54]Klimm, F., Deane, C. M. and Reinert, G., “Hypergraphs for predicting essential genes using multiprotein complex data,” bioRxiv, 2020.
[55]Sun, H. and Bianconi, G., “Higher-order percolation processes on multiplex hypergraphs,” arXiv preprint arXiv:2104.05457, 2021.
[56]Zhao, K., Stehlé, J., Bianconi, G. and Barrat, A., “Social network dynamics of face-to-face interactions,” Physical Review E, vol. 83, no. 5, p. 056109, 2011.
[57]Zhao, K., Karsai, M. and Bianconi, G., “Entropy of dynamical social networks,” PloS One, vol. 6, no. 12, p. e28116, 2011.
[58]Petri, G. and Barrat, A., “Simplicial activity driven model,” Physical Review Letters, vol. 121, no. 22, p. 228301, 2018.
[59]Holme, P. and Saramäki, J., “Temporal networks,” Physics Reports, vol. 519, no. 3, pp. 97–125, 2012.
[60]Karsai, M., Kaski, K., Barabási, A.-L. and Kertész, J., “Universal features of correlated bursty behaviour,” Scientific Reports, vol. 2, p. 397, 2012.
[61]Karsai, M., Jo, H.-H., Kaski, K., et al., Bursty Human Dynamics. Springer, 2018.
[62]Cattuto, C., Van den Broeck, W., Barrat, A., et al., “Dynamics of person-to-person interactions from distributed rfid sensor networks,” PloS One, vol. 5, no. 7, p. e11596, 2010.
[63]Stehlé, J., Barrat, A. and Bianconi, G., “Dynamical and bursty interactions in social networks,” Physical Review E, vol. 81, no. 3, p. 035101, 2010.
[64]Cencetti, G., Battiston, F., Lepri, B. and Karsai, M., “Temporal properties of higher-order interactions in social networks,” arXiv preprint arXiv:2010.03404, 2020.
[66]Jost, J., Mathematical Concepts. Springer, 2015.
[67]Lee, S. H., Fricker, M. D. and Porter, M. A., “Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits,” Journal of Complex Networks, Apr 2016. [Online]. Available:
[69]Watts, D. J. and Strogatz, S. H., “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
[70]Patania, A., Vaccarino, F. and Petri, G., “Topological analysis of data,” EPJ Data Science, vol. 6, no. 1, pp. 1–6, 2017.
[71]Bianconi, G., Darst, R. K., Iacovacci, J. and Fortunato, S., “Triadic closure as a basic generating mechanism of communities in complex networks,” Physical Review E, vol. 90, no. 4, p. 042806, 2014.
[72]Ollivier, Y., “Ricci curvature of metric spaces,” Comptes Rendus Mathematique, vol. 345, no. 11, pp. 643–646, 2007.
[73]Bauer, F., Jost, J. and Liu, S., “Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator,” arXiv preprint arXiv:1105.3803, 2011.
[74]Jost, J. and Liu, S., “Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on graphs,” Discrete and Computational Geometry, vol. 51, no. 2, pp. 300–322, 2014.
[75]Sreejith, R., Mohanraj, K., Jost, J., Saucan, E. and Samal, A., “Forman curvature for complex networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 6, p. 063206, 2016.
[76]Regge, T., “General relativity without coordinates,” Il Nuovo Cimento (1955–1965), vol. 19, no. 3, pp. 558–571, 1961.
[77]Dittrich, B., Freidel, L. and Speziale, S., “Linearized dynamics from the 4-simplex Regge action,” Physical Review D, vol. 76, no. 10, p. 104020, 2007.
[78]Ambjørn, J., Jurkiewicz, J. and Loll, R., “Emergence of a 4d world from causal quantum gravity,” Physical Review Letters, vol. 93, no. 13, p. 131301, 2004.
[79]Gromov, M., “Hyperbolic groups,” in Essays in Group Theory, Gersten, S. M. (Ed.). Springer, 1987, pp. 75–263.
[80]Jonckheere, E., Lohsoonthorn, P. and Bonahon, F., “Scaled Gromov hyperbolic graphs,” Journal of Graph Theory, vol. 57, no. 2, pp. 157–180, 2008.
[81]Albert, R., DasGupta, B. and Mobasheri, N., “Topological implications of negative curvature for biological and social networks,” Physical Review E, vol. 89, no. 3, p. 032811, 2014.
[82]Kennedy, W. S., Narayan, O. and Saniee, I., “On the hyperbolicity of large-scale networks,” arXiv preprint arXiv:1307.0031, 2013.
[83]Calcagni, G., Eichhorn, A. and Saueressig, F., “Probing the quantum nature of spacetime by diffusion,” Physical Review D, vol. 87, no. 12, p. 124028, 2013.
[84]Benedetti, D. and Henson, J., “Spectral geometry as a probe of quantum spacetime,” Physical Review D, vol. 80, no. 12, p. 124036, 2009.
[85]Jonsson, T. and Wheater, J. F., “The spectral dimension of the branched polymer phase of two-dimensional quantum gravity,” Nuclear Physics B, vol. 515, no. 3, pp. 549–574, 1998.
[86]Durhuus, B., Jonsson, T. and Wheater, J. F., “The spectral dimension of generic trees,” Journal of Statistical Physics, vol. 128, no. 5, pp. 1237–1260, 2007.
[87]Burioni, R. and Cassi, D., “Universal properties of spectral dimension,” Physical Review Letters, vol. 76, no. 7, p. 1091–1093, 1996.
[88]Reitz, M. and Bianconi, G., “The higher-order spectrum of simplicial complexes: a renormalization group approach,” Journal of Physics A: Mathematical and Theoretical, vol. 53, p. 295001, 2020.
[89]Wedeen, V. J., Rosene, D. L., Wang, R., et al., “The geometric structure of the brain fiber pathways,” Science, vol. 335, no. 6076, pp. 1628–1634, 2012.
[90]Katifori, E., Szöllősi, G. J. and Magnasco, M. O., “Damage and fluctuations induce loops in optimal transport networks,” Physical Review Letters, vol. 104, no. 4, p. 048704, 2010.
[91]Rocks, J. W., Liu, A. J. and Katifori, E., “Hidden topological structure of flow network functionality,” Physical Review Letters, vol. 126, no. 2, p. 028102, 2021.
[92]Á. Serrano, M., Boguná, M. and Sagués, F., “Uncovering the hidden geometry behind metabolic networks,” Molecular Biosystems, vol. 8, no. 3, pp. 843–850, 2012.
[93]Radicchi, F., Krioukov, D., Hartle, H. and Bianconi, G., “Classical information theory of networks,” Journal of Physics: Complexity, vol. 1, no. 2, p. 025001, 2020.
[94]Penrose, R., “On the nature of quantum geometry,” Magic Without Magic, Klauder, J. R. (Ed.). W. H. Freeman & Co. Ltd. pp. 333–354, 1972.
[95]Smolin, L., The Life of the Cosmos. Oxford University Press, 1999.
[96]Bianconi, G. and Barabási, A.-L., “Bose–Einstein condensation in complex networks,” Physical Review Letters, vol. 86, no. 24, p. 5632, 2001.
[97]Fountoulakis, N., Iyer, T., Mailler, C. and Sulzbach, H., “Dynamical models for random simplicial complexes,” arXiv preprint arXiv:1910.12715, 2019.
[98]Barabási, A.-L. and Albert, R., “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.
[99]Dorogovtsev, S. N., Mendes, J. F. and Samukhin, A. N., “Size-dependent degree distribution of a scale-free growing network,” Physical Review E, vol. 63, no. 6, p. 062101, 2001.
[100]Nokkala, J., Piilo, J. and Bianconi, G., “Probing the spectral dimension of quantum network geometries,” Journal of Physics: Complexity, vol. 2, no. 1, p. 015001, 2020.
[101]da Silva, D. C., Bianconi, G., da Costa, R. A., Dorogovtsev, S. N. and Mendes, J. F., “Complex network view of evolving manifolds,” Physical Review E, vol. 97, no. 3, p. 032316, 2018.
[102]Šuvakov, M., Andjelković, M. and Tadić, B., “Hidden geometries in networks arising from cooperative self-assembly,” Scientific Reports, vol. 8, no. 1, pp. 1–10, 2018.
[103]Dankulov, M. M., Tadić, B. and Melnik, R., “Spectral properties of hyperbolic nanonetworks with tunable aggregation of simplexes,” Physical Review E, vol. 100, no. 1, p. 012309, 2019.
[104]Millán, A. P., Ghorbanchian, R., Defenu, N., Battiston, F., and Bianconi, G., “Local topological moves determine global diffusion properties of hyperbolic higher-order networks,” arXiv preprint arXiv:2102.12885, 2021.
[105]Girvan, M. and Newman, M. E., “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–7826, 2002.
[106]Courtney, O. T. and Bianconi, G., “Weighted growing simplicial complexes,” Physical Review E, vol. 95, no. 6, p. 062301, 2017.
[107]Kovalenko, K., Sendiña-Nadal, I., Khalil, N., et al., “rowing scale-free simplices,” arXiv preprint arXiv:2006.12899, 2020.
[108]Bianconi, G. and Barabási, A.-L., “Competition and multiscaling in evolving networks,” EPL (Europhysics Letters), vol. 54, no. 4, p. 436, 2001.
[109]Bianconi, G., Rahmede, C. and Wu, Z., “Complex quantum network geometries: evolution and phase transitions,” Physical Review E, vol. 92, no. 2, p. 022815, 2015.
[110]Strogatz, S., Sync: The Emerging Science of Spontaneous Order. Penguin UK, 2004.
[111]Kuramoto, Y., “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Araki, H. (Ed.). Springer, 1975, pp. 420–422.
[112]Strogatz, S. H., “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,” Physica D: Nonlinear Phenomena, vol. 143, no. 1–4, pp. 1–20, 2000.
[113]Pikovsky, A., Rosenblum, M. and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, 2003, no. 12.
[114]Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. and Zhou, C., “Synchronization in complex networks,” Physics Reports, vol. 469, no. 3, pp. 93–153, 2008.
[115]Boccaletti, S., Pisarchik, A. N., Del Genio, C. I. and Amann, A., Synchronization: from Coupled Systems to Complex Networks. Cambridge University Press, 2018.
[116]Restrepo, J. G., Ott, E. and Hunt, B. R., “Onset of synchronization in large networks of coupled oscillators,” Physical Review E, vol. 71, no. 3, p. 036151, 2005.
[117]Millán, A. P., Restrepo, J. G., Torres, J. J. and Bianconi, G., “Geometry, topology and simplicial synchronization,” arXiv preprint arXiv:2105.00943, 2021.
[118]Kuehn, C. and Bick, C., “A universal route to explosive phenomena,” Science Advances, vol. 7, no. 16, p. eabe3824, 2021.
[119]Severino, F. P. U., Ban, J., Song, Q., et al., “The role of dimensionality in neuronal network dynamics,” Scientific Reports, vol. 6, p. 29640, 2016.
[120]Gambuzza, L., Di Patti, F., Gallo, L., et al., “The master stability function for synchronization in simplicial complexes,” arXiv preprint arXiv:2004.03913, 2020.
[121]Mulas, R., Kuehn, C. and Jost, J., “Coupled dynamics on hypergraphs: master stability of steady states and synchronization,” Physical Review E, vol. 101, no. 6, p. 062313, 2020.
[122]Zhang, Y., Latora, V. and Motter, A. E., “Unified treatment of dynamical processes on generalized networks: higher-order, multilayer, and temporal interactions,” arXiv preprint arXiv:2010.00613, 2020.
[123]Salova, A. and D’Souza, R. M., “Cluster synchronization on hypergraphs,” arXiv preprint arXiv:2101.05464, 2021.
[124]Ghorbanchian, R., Restrepo, J. G., Torres, J. J. and Bianconi, G., “Higher-order simplicial synchronization of coupled topological signals,” Communications Physics, vol. 4, p. 120, 2021.
[125]Skardal, P. S. and Arenas, A., “Memory selection and information switching in oscillator networks with higher-order interactions,” Journal of Physics: Complexity, vol. 2, no. 1, p. 015003, 2020.
[126]Skardal, P. and Arenas, A., “Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching,” Communications Physics, vol. 3, no. 1, pp. 1–6, 2020.
[127]Dai, X., Kovalenko, K., Molodyk, M., et al., “D-dimensional oscillators in simplicial structures: odd and even dimensions display different synchronization scenarios,” arXiv preprint arXiv:2010.14976, 2020.
[128]Lucas, M., Cencetti, G. and Battiston, F., “Multiorder Laplacian for synchronization in higher-order networks,” Physical Review Research, vol. 2, no. 3, p. 033410, 2020.
[129]Zhang, X., Boccaletti, S., Guan, S. and Liu, Z., “Explosive synchronization in adaptive and multilayer networks,” Physical Review Letters, vol. 114, no. 3, p. 038701, 2015.
[130]DeVille, L., “Consensus on simplicial complexes, or: The nonlinear simplicial Laplacian,” arXiv preprint arXiv:2010.07421, 2020.
[131]Benjamini, I. and Schramm, O., “Percolation in the hyperbolic plane,” Journal of the American Mathematical Society, vol. 14, no. 2, pp. 487–507, 2001.
[132]Boettcher, S., Singh, V. and Ziff, R. M., “Ordinary percolation with discontinuous transitions,” Nature Communications, vol. 3, no. 1, pp. 1–5, 2012.
[133]Kryven, I., Ziff, R. M. and Bianconi, G., “Renormalization group for link percolation on planar hyperbolic manifolds,” Physical Review E, vol. 100, no. 2, p. 022306, 2019.
[134]Bianconi, G., Kryven, I. and Ziff, R. M., “Percolation on branching simplicial and cell complexes and its relation to interdependent percolation,” Physical Review E, vol. 100, no. 6, p. 062311, 2019.
[135]Sun, H., Ziff, R. M. and Bianconi, G., “Renormalization group theory of percolation on pseudo-fractal simplicial and cell complexes,” Physical Review E, vol. 102, p. 012308, 2020.
[136]Bobrowski, O. and Skraba, P., “Homological percolation and the Euler characteristic,” Physical Review E, vol. 101, no. 3, p. 032304, 2020.
[137]Lee, Y., Lee, J., Oh, S. M., Lee, D. and Kahng, B., “Homological percolation transitions in evolving coauthorship complexes,” arXiv preprint arXiv:2010.12224, 2020.
[138]Coutinho, B. C., Wu, A.-K., Zhou, H.-J. and Liu, Y.-Y., “Covering problems and core percolations on hypergraphs,” Physical Review Letters, vol. 124, no. 24, p. 248301, 2020.
[139]Amburg, I., Kleinberg, J. and Benson, A., “Planted hitting set recovery in hypergraphs,” Journal of Physics: Complexity, vol. 2, p. 035004, 2021.
[140]Auto, D. M., Moreira, A. A., Herrmann, H. J. and Andrade Jr, J. S., “Finite-size effects for percolation on Apollonian networks,” Physical Review E, vol. 78, no. 6, p. 066112, 2008.
[141]Watts, D. J., “A simple model of global cascades on random networks,” Proceedings of the National Academy of Science, vol. 99, no. 9, p. 5766, 2002.
[142]Granovetter, M., “Threshold models of collective behavior,” American Journal of Sociology, vol. 83, no. 6, p. 1420, 1978.
[143]Landry, N. W. and Restrepo, J. G., “The effect of heterogeneity on hypergraph contagion models,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 10, p. 103117, 2020.
[144]St-Onge, G., Sun, H., Allard, A., Hébert-Dufresne, L. and Bianconi, G., “Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks.” arXiv preprint arXiv:2101.07229, 2021.
[145]St-Onge, G., Allard, A. and Hébert-Dufresne, L., “Localization, bistability and optimal seeding of contagions on higher-order networks,” in Artificial Life Conference Proceedings. MIT Press, 2020, pp. 567–569.
[146]St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J. and Hébert-Dufresne, L., “Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks,” arXiv preprint arXiv:2004.10203, 2020.
[147]de Arruda, G. F., Petri, G. and Moreno, Y., “Social contagion models on hypergraphs,” Physical Review Research, vol. 2, no. 2, p. 023032, 2020.
[148]Jhun, B., Jo, M. and Kahng, B., “Simplicial SIS model in scale-free uniform hypergraph,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2019, no. 12, p. 123207, 2019.
[149]de Arruda, G. F., Tizzani, M. and Moreno, Y., “Phase transitions and stability of dynamical processes on hypergraphs,” arXiv preprint arXiv:2005.10891, 2020.
[150]Taylor, D., Klimm, F., A. Harrington, H., et al., “Topological data analysis of contagion maps for examining spreading processes on networks,” Nature Communications, vol. 6, p. 7723, 2015.
[151]Massara, G. P., Di Matteo, T. and Aste, T., “Network filtering for big data: Triangulated maximally filtered graph,” Journal of Complex Networks, vol. 5, no. 2, pp. 161–178, 2016.
[152]Andrade, J. S. Jr, Herrmann, H. J., Andrade, R. F. and Da Silva, L. R., “Apollonian networks: simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs,” Physical Review Letters, vol. 94, no. 1, p. 018702, 2005.
[153]Dorogovtsev, S. N., Goltsev, A. V. and Mendes, J. F. F., “Pseudofractal scale-free web,” Physical Review E, vol. 65, no. 6, p. 066122, 2002.
[154]Zhang, Z., Comellas, F., G. Fertin and Rong, L., “High-dimensional Apollonian networks,” Journal of Physics A: Mathematical and General, vol. 39, no. 8, pp. 1811–1818, 2006.
[155]Bianconi, G. and Dorogovstev, S. N., “The spectral dimension of simplicial complexes: a renormalization group theory,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2020, no. 1, p. 014005, 2020.
[156]Söderberg, B., “Apollonian tiling, the Lorentz group, and regular trees,” Physical Review A, vol. 46, no. 4, pp. 1859–1866, 1992.
[157]Graham, R. L., Lagarias, J. C., Mallows, C. L., Wilks, A. R. and Yan, C. H., “Apollonian circle packings: geometry and group theory. I. The Apollonian group,” Discrete and Computational Geometry, vol. 34, no. 4, pp. 547–585, 2005.