Skip to main content Accessibility help
×
  • Cited by 24
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      June 2012
      February 2009
      ISBN:
      9780511808258
      9780521719780
      Dimensions:
      Weight & Pages:
      Dimensions:
      (246 x 189 mm)
      Weight & Pages:
      0.56kg, 274 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

    Reviews

    "In this book, Houston has created a primer on the fundamental abstract ideas of mathematics; the primary emphasis is on demonstrating the many principles and tactics used in proofs. The material is explained in ways that are comprehensible, which will be a great help for people who seem to hit the wall regarding what to do when confronted with the creation of a proof... In this book, Houston takes a systematic and gentle approach to explaining the ideas of mathematics and how tactics of reasoning can be combined with those ideas to generate what would be considered a convincing proof."
    Charles Ashbacher, Journal of Recreational Mathematics

    "The author provides concise, crisp explanations, including definitions, examples, tips, remarks, warnings, and idea-reinforcing questions. Houston expresses thoughts clearly and concisely, and includes succinct remarks to make points, clarify arguments, and reveal subleties."
    W.R. Lee, Choice Magazine

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents


    Page 1 of 2



    Page 1 of 2


    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.