References
Asenjo, A. B., Rim, J., and Oprian, D. D. (1994). Molecular determinants of human red/green color discrimination. Neuron, 12(5), 1131–1138.
Atilano, S., Jameson, K. A., and Kenney, M. C. (2017). Procedures for characterizing the genetic sequences underlying human visual phenotypes: Genotyping methods and a case-study demonstration. Technical Report Series # MBS 17–05. Institute for Mathematical Behavioral Sciences, University of California at Irvine. Available at www.imbs.uci.edu/research/MBS%2017–05.pdf Shari, R. Atilano, M. Cristina, Kenney, Adriana, D. Briscoe, and Kimberly, A. Jameson. (2020). “A two-step method for identifying photopigment opsin and rhodopsin gene sequences underlying human color vision phenotypes.” Molecular Vision; 26:158–172 <http://www.molvis.org/molvis/v26/158> Balding, S. D., Sjoberg, S. A., Neitz, J., and Neitz, M. (1998). Pigment gene expression in protan color vision defects. Vision Research, 38(21), 3359–3364.
Berns, R. S. (2004). Rejuvenating Seurat’s palette using color and imaging science: A simulation. In R. L. Herbert (ed.), Seurat and the making of La Grande Jatte, 214–227. The Art Institute of Chicago and University of California Press.
Bimler, D., and Kirkland, J. (2009). Colour-space distortion in women who are heterozygous for colour deficiency. Vision Research, 49(5), 536–543.
Bimler, D. L., Kirkland, J., and Jameson, K. A. (2004). Quantifying variations in personal color spaces: Are there sex differences in color vision? COLOR Research and Application, 29(2), 128–134.
Birch, J. (2001). Diagnosis of defective colour vision, 24–29. Oxford: Butterworth-Heinemann.
Bochko, V. A., and Jameson, K. A. (2018). Investigating potential human tetrachromacy in individuals with tetrachromat genotypes using multispectral techniques. Electronic Imaging, 2018(14), 1–12.
Bochko, V. A., Jameson, K. A., Nakaguchi, T., Miyake, Y., and Alander, J. T. (2017). Non-negative matrix factorization for spectral colors using genetic algorithms: Substantially Updated Version. IMBS Technical Report Series #MBS 17–03. Institute for Mathematical Behavioral Sciences University of California at Irvine, Irvine, CA. Available at www.imbs.uci.edu/research/MBS%2017–03.pdf Bongard, M. M., Smirnov, M. S., and Friedrich, L. I. (1958). The four-dimensional colour space of the extra-foveal retinal area of the human eye. In Visual problems of colour I, 325–330. London: HMSO.
Bosten, J. M., Robinson, J. D., Jordan, G., and Mollon, J. D. (2005). Multidimensional scaling reveals a color dimension unique to ‘color-deficient’ observers. Current Biology, 15(23), R950–R952.
Bowmaker, J. K., Astell, S., Hunt, D. M., and Mollon, J. D. (1991). Photosensitive and photostable pigments in the retinae of Old World monkeys. Journal of Experimental Biology, 156(1), 1–19.
Bowmaker, J. K., and Dartnall, H. (1980). Visual pigments of rods and cones in a human retina. The Journal of Physiology, 298(1), 501–511.
Bowmaker, J. K., Dartnall, H. J., Lythgoe, J. N., and Mollon, J. D. (1978). The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta. Journal of Physiology, 274(1), 329–348.
Brill, M. H. (1990). Mesopic color matching: Some theoretical issues. Journal of the Optical Society of America A, 7(10), 2048–2051.
Carroll, J., Gray, D. C., Roorda, A., and Williams, D. R. (2005). Recent advances in retinal imaging with Percher optics. Optics and Photonics News, 16(1), 36–42.
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2(2), 217–221.
Crognale, M. A., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1998). Severity of color vision defects: Electroretinographic (ERG), molecular and behavioral studies. Vision Research, 38(21), 3377–3385.
Dalton, J. (1798). Extraordinary facts relating to the vision of colours: With observations. London: Cadell and Davies.
Dartnall, H. J., Bowmaker, J. K., and Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society of London B: Biological Sciences, 220(1218), 115–130.
Deeb, S. S. (2004). Molecular genetics of color-vision deficiencies. Visual Neuroscience, 21(3), 191–196.
Deeb, S. S. (2005). The molecular basis of variation in human color vision. Clinical Genetics, 67(5), 369–377.
Dees, E. W., and Baraas, R. C. (2014). Performance of normal females and carriers of color-vision deficiencies on standard color-vision tests. Journal of the Optical Society of America A, 31(4), A401–A409.
Dees, E. W., Gilson, S. J., Neitz, M., and Baraas, R. C. (2015). The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20–71 year olds. Vision Research, 116, 13–24.
Dominy, N. J., and Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410(6826), 363.
Farnsworth, D. (1949, revised 1957). The Farnsworth-Munsell 100-Hue test for the examination of color vision. Baltimore, MD: Munsell Color Company.
Feil, R., Aubourg, P., Heilig, R., and Mandel, J. L. (1990). A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics, 6(2), 367–373.
Fernandez, A. A., and Morris, M. R. (2007). Sexual selection and trichromatic color vision in primates: Statistical support for the preexisting-bias hypothesis. American Naturalist, 170(1), 10–20.
Gardner, J. C., Liew, G., Quan, Y. H., et al. (2014). Three different cone opsin gene array mutational mechanisms with genotype–phenotype correlation and functional investigation of cone opsin variants. Human Mutation, 35(11), 1354–1362. DOI:10.1002/humu.22679.
Gegenfurtner, K. R., and Sharpe, L. T. (eds.). (1999). Color vision: From genes to perception. Cambridge: Cambridge University Press.
Gordon, J., and Abramov, I. (2008). Color appearance: Maxwellian vs. Newtonian views. Vision Research, 48(18), 1879–1883.
Hagstrom, S. A., Neitz, J., and Neitz, M. (1998). Variations in cone populations for red–green color vision examined by analysis of mRNA. NeuroReport, 9(9), 1963–1967.
Hayashi, T., Motulsky, A. G., and Deeb, S. S. (1999). Position of a ‘green-red ‘hybrid gene in the visual pigment array determines colour-vision phenotype. Nature Genetics, 22(1), 90.
He, J. C., and Shevell, S. K. (1995). Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments. Vision Research, 35(18), 2579–2588.
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–9679.
Hood, S. M., Mollon, J. D., Purves, L., and Jordan, G. (2006). Color discrimination in carriers of color deficiency. Vision Research, 46(18), 2894-2900.
Ishihara, S. (1989). Ishihara’s tests for colour blindness: Concise 14 plate edition. Tokyo: Kanehara.
Jacobs, G. H. (1998). Photopigments and seeing: Lessons from natural experiments: The Proctor lecture. Investigative Ophthalmology and Visual Science, 39(12), 2204.
Jacobs, G. H. (2008). Primate color vision: A comparative perspective. Visual Neuroscience, 25(5–6), 619–633.
Jacobs, G. H. (2018). Photopigments and the dimensionality of animal color vision. Neuroscience and Biobehavioral Reviews, 86, 108–130.
Jacobs, G. H., and Nathans, J. (2009). The evolution of primate color vision. Scientific American, 300(4), 56–63.
Jameson, K. A. (2009). Tetrachromatic color vision. In The Oxford companion to consciousness, 155–158. Oxford: Oxford University Press.
Jameson, K. A., Bimler, D., and Wasserman, L. M. (2006). Re–assessing perceptual diagnostics for observers with diverse retinal photopigment genotypes. In Pitchford, N. J. and Biggam, C. P., eds.), Progress in colour studies, Vol. 2: Cognition, 13–33. Amsterdam: John Benjamins.
Jameson, K. A., Bochko, V. A., Joe, K. C., Satalich, T. A., and Atilano, S. R. (2018). Color processing in artists and non-artist participants in relation to individually determined photopigment opsin genotypes. In Munsell Centennial Color Symposium: Bridging science, art, & industry, June 10–15, 2018, Massachusetts College of Art and Design, Boston.
Jameson, K. A., Highnote, S. M., and Wasserman, L. M. (2001). Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin & Review, 8(2), 244–261.
Jameson, K. A., Wasserman, L., and Highnote, S. (1998a). Photopigment opsin genes and color perception. Poster presented at the Annual Meeting of the Optical Society of America, October 1–4, 1998, Baltimore, MD.
Jameson, K. A., Wasserman, L., and Highnote, S. (1998b). Understanding color appearance: Can variation in photopigment opsin genes give rise to individuals with perceptual tetrachromacy? Poster presented at the 21st European Conference of Visual Perception, August 24–28, 1998, Oxford.
Jameson, K. A., Winkler, A. D., and Goldfarb, K. (2016). Art, interpersonal comparisons of color experience, and potential tetrachromacy. Electronic Imaging, 2016(16), 1–12.
Jameson, K. A., Winkler, A. D., Herrera, C., and Goldfarb, K. (2014). The veridicality of color: A case study of potential human tetrachromacy. Technical Report Series# MBS 14-02. Institute for Mathematical Behavioral Sciences University of California at Irvine. Irvine, CA. www.imbs.uci.edu/files/imbs/docs/technical/2014/mbs14-02.pdf Jameson, K. A. (2009). Tetrachromatic color vision. In The Oxford companion to consciousness (pp. 155–158). Oxford Press Oxford.
Jordan, G., Deeb, S. S., Bosten, J. M., and Mollon, J. D. (2010). The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 10(8), 1–19 DOI:10.1167/10.8.12.
Jordan, G., and Mollon, J. D. (1993). A study of women heterozygous for colour deficiencies. Vision Research, 33(11), 1495–1508.
Jordan, G., and Mollon, J. (2019). Tetrachromacy: The mysterious case of extra-ordinary color vision. Current Opinion in Behavioral Sciences, 30, 130–134.
Konstantakopoulou, E., Rodriguez-Carmona, M., and Barbur, J. L. (2012). Processing of color signals in female carriers of color vision deficiency. Journal of Vision, 12(2), 1–11. DOI:10.1167/12.2.11.
Liebman, P. A. (1972). Microspectrophotometry of photoreceptors. In Photochemistry of vision, 481–528. Berlin, Heidelberg: Springer-Verlag.
Lucas, P. W., Dominy, N. J., Riba‐Hernandez, P., et al. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57(11), 2636–2643.
Luo, M. R., Cui, G., and Rigg, B. (2001). The development of the CIE 2000 colour‐difference formula: CIEDE2000. COLOR Research and Application, 26(5), 340–350.
Macbeth (2014). ColorChecker Classic. X-Rite Pantone, Grand Rapids, MI.
MacLeod, D. I. A. (1985). Receptoral constraints on colour appearance. In Central and peripheral mechanisms of colour vision, 103–116. London: Palgrave Macmillan.
MacLeod, D. I. A., and von der Twer, T. (2003). The pleistochrome: Optimal opponent codes for natural colours. Colour Perception: Mind and the Physical World, 155–184.
Mausfeld, R., and Niederée, R. (1993). An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli. Perception, 22(4), 427–462.
Merbs, S. L., and Nathans, J. (1992a). Absorption spectra of human cone pigments. Nature, 356(6368), 433.
Merbs, S. L., and Nathans, J. (1992b). Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 258(5081), 464–466.
Merbs, S. L., and Nathans, J. (1993). Role of hydroxyl‐bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochemistry and Photobiology, 58(5), 706–710.
Mollon, J. (1992). Worlds of difference. Nature, 356, 2.
Mollon, J. D. (1989). “Tho’she kneel’d in that place where they grew … ” The uses and origins of primate colour vision. Journal of Experimental Biology, 146(1), 21–38.
Moore, C., Romney, A. K., and Hsia, T. L. (2002). Cultural, gender, and individual differences in perceptual and semantic structures of basic colors in Chinese and English. Journal of Cognition and Culture, 2(1), 1–28.
Munsell (1976). Munsell book of color: Matte finish collection. Munsell Color, Inc., Baltimore, MD.
Nagy, A. L., MacLeod, D. I., Heyneman, N. E., and Eisner, A. (1981). Four cone pigments in women heterozygous for color deficiency. Journal of the Optical Society of America, 71(6), 719–722.
Nathans, J., Merbs, S. L., Sung, C. H., Weitz, C. J., and Wang, Y. (1992). Molecular genetics of human visual pigments. Annual Review of Genetics, 26(1), 403–424.
Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, D. S. (1986a). Molecular genetics of inherited variation in human color vision. Science, 232(4747), 203–210.
Nathans, J., Thomas, D., and Hogness, D. S. (1986b). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science, 232(4747), 193–202.
Neitz, J., and Jacobs, G. H. (1986). Polymorphism of the long-wavelength cone in normal human colour vision. Nature, 323(6089), 623–625.
Neitz, J., and Jacobs, G. H. (1990). Polymorphism in normal human color vision and its mechanism. Vision Research, 30(4), 621–636.
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51(7), 633–651. DOI:10.1016/j.visres.2010.12.002. Epub 2010 Dec 15. Review.
Neitz, M., and Neitz, J. (1998). Molecular genetics and the biological basis of color vision. Color Vision: Perspectives from Different Disciplines, 101, 119.
Neitz, M., Neitz, J., and Grishok, A. (1995). Polymorphism in the number of genes encoding long-wavelength sensitive cone pigments among males with normal colour vision. Vision Research, 35, 2395–2407.
Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision. Science, 252(5008), 971–974.
Neitz, J., Neitz, M., and Jacobs, G. H. (1993). More than three different cone pigments among people with normal color vision. Vision Research, 33(1), 117–122.
Neitz, M., Neitz, J., and Jacobs, G. H. (1995). Genetic basis of photopigment variations in human dichromats. Vision Research, 35(15), 2095–2103.
Osorio, D., and Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London B: Biological Sciences, 263(1370), 593–599.
Pircher, M., and Zawadzki, R. (2017). Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging. Biomedical Optics Express, 8, 2536–2562.
Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles–Dominique, P., and Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 356(1407), 229–283.
Sanocki, E., Lindsey, D. T., Winderickx, J., Teller, D. Y., Deeb, S. S., and Motulsky, A. G. (1993). Serine/alanine amino acid polymorphism of the L and M cone pigments: Effects on Rayleigh matches among deuteranopes, protanopes and color normal observers. Vision Research, 33(15), 2139–2152.
Sanocki, E., Shevell, S. K., and Winderickx, J. (1994). Serine/alanine amino acid polymorphism of the L-cone photopigment assessed by dual Rayleigh-type color matches. Vision Research, 34(3), 377–382.
Satalich, T. (2015). Modeling color appearance. Paper presented at IMBS Conference, November 5–6, 2015, University of California, Irvine.
Sayim, B., Jameson, K. A., Alvarado, N., and Szeszel, M. (2005). Semantic and perceptual representations of color: Evidence of a shared color-naming function. Journal of Cognition and Culture, 5(3–4), 427–486.
Schanda, J. (2007). CIE colorimetry. In Colorimetry: Understanding the CIE system, 37–46. Hoboken, NJ: John Wiley & Sons.
Schnapf, J. L., Kraft, T. W., and Baylor, D. A. (1987). Spectral sensitivity of human cone photoreceptors. Nature, 325(6103), 439.
Schnapf, J. L., Kraft, T. W., Nunn, B. J., and Baylor, D. A. (1988). Spectral sensitivity of primate photoreceptors. Visual Neuroscience, 1(3), 255–261.
Schneck, M. E., Haegerstrom-Portnoy, G., Lott, L. A., and Brabyn, J. A. (2014). Comparison of panel D-15 tests in a large Older Population. Optometry and Vision Science, 91(3): 284–290. DOI:10.1097/OPX.0000000000000152.
Shaaban, S. A., and Deeb, S. S. (1998). Functional analysis of the promoters of the human red and green visual pigment genes. Investigative Ophthalmology & Visual Science, 39(6), 885–896.
Sharpe, L. T., Stockman, A., Jägle, H., Knau, H., Klausen, G., Reitner, A., and Nathans, J. (1998). Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. Journal of Neuroscience, 18(23), 10053–10069.
Shepard, R. N., and Cooper, L. A. (1992). Representation of colors in the blind, color-blind, and normally sighted. Psychological Science, 3(2), 97–104.
Shevell, S. K., and He, J. C. (1997). The visual photopigments of simple deuteranomalous trichromats inferred from color matching. Vision Research, 37(9), 1115–1127.
Shevell, S. K., He, J. C., Kainz, P., Neitz, J., and Neitz, M. (1998). Relating color discrimination to photopigment genes in deutan observers. Vision Research, 38(21), 3371–3376.
Shinomori, K., Schefrin, B. E., and Werner, J. S. (2001). Age-related changes in wavelength discrimination. Journal of the Optical Society of America A, 18(2), 310–318.
Shyue, S. K., Boissinot, S., Schneider, H., et al. (1998). Molecular genetics of spectral tuning in New World monkey color vision. Journal of Molecular Evolution, 46(6), 697–702.
Sjoberg, S. A., Neitz, M., Balding, S. D., and Neitz, J. (1998). L-cone pigment genes expressed in normal colour vision. Vision Research, 38(21), 3213–3219.
Smith, T., and Guild, J. (1931). The CIE colorimetric standards and their use. Transactions of the Optical Society, 33(3), 73.
Smith, V.C. and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research; 15(2): 161–171. DOI:10.1016/0042–6989(75)90203–5
Sparkes, R. S., Klisak, I., Kaufman, D., Mohandas, T., Tobin, A. J., and McGinnis, J. F. (1986). Assignment of the rhodopsin gene to human chromosome three, region 3q21–3q24 by in situ hybridization studies. Current Eye Research, 5(10), 797–798.
Stockman, A. and Sharpe, L.T. (2000). The spectral sensitivities of the middle- and long-wavelength- sensitive cones derived from measurements in observers of known genotype. Vision Research; 40(13): 1711–1737. DOI:10.1016/S0042–6989(00)00021–3
Sumner, P., and Mollon, J. D. (2003). Colors of primate pelage and skin: Objective assessment of conspicuousness. American Journal of Primatology, 59(2), 67–91.
Sun, Y., and Shevell, S. K. (2008). Rayleigh matches in carriers of inherited color vision defects: The contribution from the third L/M photopigment. Visual Neuroscience, 25(3), 455–462.
Thomas, P. B. M., Formankiewicz, M. A., and Mollon, J. D. (2011). The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Research, 51(20), 2224–2233.
Trezona, P. W. (1973). The tetrachromatic colour match as a colorimetric technique. Vision Research, 13(1), 9–25.
Vollrath, D., Nathans, J., and Davis, R. W. (1988). Tandem array of human visual pigment genes at Xq28. Science, 240(4859), 1669–1672.
Wachtler, T., Doi, E., Lee, T.-W., and Sejnowski, T. J. (2007). Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. Journal of Vision, 7(8), 6,1–14. Available at www.journalofvision.org/content/7/8/6, DOI:10.1167/7.8.6. Wang, Y., Smallwood, P. M., Cowan, M., Blesh, D., Lawler, A., and Nathans, J. (1999). Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. Proceedings of the National Academy of Sciences of the USA, 96(9), 5251–5256.
Wasserman, L. M., Szeszel, M. K., and Jameson, K. A. (2009). Long-range polymerase chain reaction analysis for specifying photopigment opsin gene polymorphisms. Technical Report Series# MBS 09–07. Institute for Mathematical Behavioral Sciences University of California at Irvine, Irvine, CA. Available at www.imbs.uci.edu/files/docs/technical/2009/mbs_09–07.pdf Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992). A Ser/Ala polymorphism in red photopigment underlies variation in colour matching. Nature, 356(6368), 431.
Yamaguchi, T., Motulsky, A. G., and Deeb, S. S. (1997). Visual pigment gene structure and expression in human retinae. Human Molecular Genetics, 6(7), 981–990.
Yokoyama, S., and Radlwimmer, F. B. (1999). The molecular genetics of red and green color vision in mammals. Genetics, 153(2), 919–932.
Zhao, Z., Hewett-Emmett, D., and Li, W. H. (1998). Frequent gene conversion between human red and green opsin genes. Journal of Molecular Evolution, 46(4), 494–496.
Zhaoping, L., and Carroll, J. (2016). An analytical model of the influence of cone sensitivity and numerosity on the Rayleigh match. Journal of the Optical Society of America A, 33(3), A228–A237.
Zhou, Y. H., Hewett-Emmett, D., Ward, J. P., and Li, W. H. (1997). Unexpected conservation of the X-linked color vision gene in nocturnal prosimians: Evidence from two bush babies. Journal of Molecular Evolution, 45(6), 610–618.