References
Aberdein, A., Rittberg, C. J., and Tanswell, F. S. [2021]. ‘Virtue theory of mathematical practices: an introduction’. Synthese, 199(3–4): pp. 10167–10180.
Antonelli, A. [2001]. ‘Introduction’. Topoi, 20: pp. 1–3.
Arana, A. [2008]. ‘Logical and semantic purity’. ProtoSociology, 25: pp. 36–48.
Arana, A. [2009]. ‘On formally measuring and eliminating extraneous notions in proofs.’ Philosophia Mathematica, 17(2): pp. 189–207.
Arana, A. [2022]. ‘Idéaux de preuve: explication et pureté’. In Arana, A. and Panza, M. (eds.), Précis de philosophie de la logique et des mathématiques, volume 2, chapter 9. Éditions de la Sorbonne, pp 387–419.
Atiyah, M. [1978]. ‘The unity of mathematics’. The Bulletin of the London Mathematical Society, 10(1): pp. 69–76.
Avigad, J. [2021]. ‘Reliability of mathematical inference’. Synthese, 198: pp. 7377–7399.
Avigad, J. and Mumma, J. [2009]. ‘A formal system for Euclid’s Elements’. Review of Symbolic Logic, 2: pp. 700–768.
Awodey, S. [2004]. ‘An answer to Hellman’s question: “Does category theory provide a framework for mathematical structuralism?” ’ Philosophia Mathematica, 12(1): pp. 54–64.
Barwise, J, and Etchemendy, J. [1996]. ‘Visual information and valid reasoning’. In Allwein, G. and Barwise, J. (eds.), Logical Reasoning with Diagrams, Oxford University Press, pp. 3–26.
Benacerraf, P. [1965]. ‘What numbers could not be’. The Philosophical Review, 74: pp. 47–73.
Benacerraf, P. [1973]. ‘Mathematical truth’. The Journal of Philosophy, 70(19): pp. 661–679.
Benci, V., Bottazzi, E., and Di Nasso, M., [2015]. ‘Some applications of numerosities in measure theory’. Rendiconti Lincei-Matematica e Applicazioni, 26: pp. 37–47.
Benis-Sinaceur, H. [2018]. ‘Scientific Philosophy and Philosophical Science’. In Tahiri, H. (ed.), The Philosophers and Mathematics, Springer International Publishing, pp. 25–66.
Bertin, J. [2011]. Semiology of Graphics: diagrams, networks, maps. Translated by Berg, W. J., Esri Press.
Borel, A. [1998]. ‘Twenty-Five Years with Nicolas Bourbaki, (1949–1973)’. Notices of the American Mathematical Society, 45 (3): pp. 373–380.
Bourbaki, N. [1950]. ‘The architecture of modern mathematics’. The American Mathematical Monthly, 57: pp. 221–232.
Bourbaki, N. [1960]. Éléments de mathématique – Livre I: Théorie des ensembles. Hermann.
Cantù, P. [2020]. ‘Grassmann’s concept structuralism’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism, Oxford University Press, pp. 21–58.
Cantù, P. [2023]. ‘What is axiomatics?’ Annals of Mathematics and Philosophy, 1: pp. 1–24.
Cartan, H. [1980]. ‘Nicholas Bourbaki and contemporary mathematics’. The Mathematical Intelligencer, 2: pp. 175–180.
Carter, J. [2008]. ‘Structuralism as a philosophy of mathematical practice’. Synthese, 163(2): pp. 119–131.
Carter, J. [2010]. ‘Diagrams and proofs in analysis’. International Studies in the Philosophy of Science, 24: pp. 1–14.
Carter, J. [2014]. ‘Mathematics dealing with “hypothetical states of things”’. Philosophia Mathematica, 22(2): pp. 209–230.
Carter, J. [2018]. ‘Graph-algebras – faithful representations and mediating objects in mathematics’. Endeavour, 42: pp. 180–188.
Carter, J. [2019]. ‘The philosophy of mathematical practice – motivations, themes and prospects’. Philosophia Mathematica, 27: pp. 1–32.
Carter, J. [2020]. ‘Logic of relations and diagrammatic reasoning: Structuralist elements in the work of Charles Sanders Peirce’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism, Oxford University Press, pp. 241–272.
Carter, J. [2021]. ‘“Free rides” in mathematics’. Synthese, 199(3–4): pp. 10475–10498.
Carter, J. [forthcoming]. ‘Variations of mathematical understanding’. Manuscript.
Catton, P. and Montelle, C. [2012]. ‘To diagram, to demonstrate: To do, to see, and to judge in Greek geometry’. Philosophia Mathematica, 20(1): pp. 25–57.
Cellucci, C. [2022]. The Making of Mathematics. Heuristic Philosophy of Mathematics, Synthese Library 448.
Corry, L. [2004]. Modern Algebra and the Rise of Mathematical Structures. Second revised edition, Birkhäuser.
Corry, L. [2006]. ‘Axiomatics, empiricism, and Anschauung in Hilbert’s conception of geometry: Between arithmetic and general relativity’. In Ferreirós, J. and Gray, J. (eds.), The Architecture of Modern Mathematics, pp. 133–156.
De Toffoli, S. [2021]. ‘Groundwork for a fallibilist account of mathematics’. The Philosophical Quarterly, 71(4): pp. 823–844.
De Toffoli, S. and Giardino, V. [2014]. ‘Forms and roles of diagrams in knot theory’. Erkenntnis, 79: pp. 829–842.
Easwaran, K., Hayek, H., Mancosu, P. and Oppy, G. [2023]. ‘Infinity’, The Stanford Encyclopedia of Philosophy (Winter Edition), Edward, N. Zalta and Nodelman, Uri (eds.), https://plato.stanford.edu/archives/win2023/entries/infinity/. Epple, M. [2004]. ‘Knot invariants in Vienna and Princeton during the 1920s: Epistemic configurations of mathematical research’. Science in Context, 17: pp. 131–164.
Euler, L. [2000]. Foundations of differential calculus. Translated by , R. Blanton, Springer.
Feferman, S. [1999]. ‘Does mathematics need new axioms?’ The American Mathematical Monthly, 106(2): pp. 99–111.
Ferreirós, J. [2007]. Labyrinth of Thought. A History of Set Theory and Its Role in Modern Mathematics (2nd ed.). Birkhäuser.
Ferreirós, J. [2016]. Mathematical Knowledge and the Interplay of Practices. Princeton University Press.
Ferreirós, J. [2024]. ‘What are mathematical practices? The web-of-practices approach’. In Sriraman, B. (ed.), Handbook in the History and Philosophy of Mathematical Practice. Springer, pp. 2793–2819.
Ferreirós, J. and Gray, J. [2006]. The Architecture of Modern Mathematics. Essays in History and Philosophy. Oxford University Press.
Ferreirós, J. and Reck, E. [2020]. ‘Dedekind’s mathematical structuralism: From Galois theory to numbers, sets, and functions’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism, Oxford University Press, pp. 59–87.
Friedman, M. [2012]. ‘Scientific Philosophy from Helmholtz to Carnap and Quine’. In Creath, R. (ed.), Rudolf Carnap and the Legacy of Logical Empiricism, Springer Netherlands, pp. 1–11.
Giaquinto, M. [2005]. ‘Mathematical activity’. In Mancosu, P., Jørgensen, K. and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics, Synthese Library, vol 327, Springer, pp. 75–87.
Giaquinto, M. [2007]. Visual Thinking in Mathematics. Oxford University Press.
Giardino, V. [2017]. ‘The practical turn in philosophy of mathematics: A portrait of a young discipline’. Phenomenology and Mind, 12: pp. 18–28.
Giardino, V. [2023]. ‘The practice of mathematics: Cognitive resources and conceptual content’. Topoi, 42(1): pp. 259–270.
Goodman, N. [1976]. Languages of Art. An Approach to a Theory of Symbols. 2nd ed., second printing. Hackett Publishing.
Hafner, J. and Mancosu, P. [2005]. ‘The varieties of mathematical explanation’. In Mancosu, P., Jørgensen, K. F., and Pedersen, S. A. (eds.), Visualization, explanation and reasoning styles in mathematics. Springer, pp. 215–250.
Hafner, J. and Mancosu, P. [2008]. ‘Beyond unification’. In , Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press, pp. 151–178.
Hahn, H. [1980]. ‘The crisis in intuition’. In McGuiness, B. (ed.), Empiricism, Logic and Mathematics. Vienna Circle Collection, vol 13, Springer, pp. 73–102.
Hellman, G. and Shapiro, S. [2018]. Mathematical Structuralism. Cambridge University Press.
Hilbert, D. [1900]. ‘Über den Zahlbegriff’. Jahresbericht der Deutschen Mathematiker-Vereinigung, 8: pp. 180–183.
Hilbert, D. [1918]. ‘Axiomatic thought’. In Ewald, W. B. [2005]. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Volume 2. Clarendon Press, pp. 1107–1115.
Hilbert, D. [1950]. The Foundations of Geometry. Translated by Townsend, E. J.. The Open Court Publishing Company.
Johansen, M. W. and Pallivicini, J. L. [2022]. ‘Entering the valley of formalism: Trends and changes in mathematicians’ publication practice – 1885 to 2015’. Synthese, 200: p. 239.
Jones, V. [1998]. ‘A credo of sorts’. In Dales, H. G. and Oliveri, G. (eds.), Truth in Mathematics. Clarendon Press, pp. 203–214.
Keränen, J. [2001]. ‘The identity problem for realist structuralism’. Philosophia Mathematica, 9(3): pp. 308–330.
Kitcher, P. [1984]. The nature of mathematical knowledge. Oxford University Press.
Knobloch, E. [2000]. ‘Analogy and the growth of mathematical knowledge’. In Grosholz, E. and Breger, H. (eds.), The Growth of Mathematical Knowledge. Synthese Library, vol. 289, Springer, pp. 295–314.
Korbmacher, J. and Schiemer, G. [2018]. ‘What are structural properties?’ Philosophia Mathematica, 26(3): pp. 295–323.
Krömer, R. [2007]. Tool and Object. A History and Philosophy of Category Theory. Birkhäuser.
Lakatos, I. [1976]. Proofs and Refutations. Edited by Worrall, J. & Zahar, E.. Cambridge University Press.
Landry, E. and Marquis, J.-P. [2005]. ‘Categories in context: Historical, foundational, and philosophical’. Philosophia Mathematica, 13(1): pp. 1–43.
Lange, M. [2018]. ‘Mathematical explanations that are not proofs’. Erkenntnis, 83: pp. 1285–1302.
Mac Lane, S. [1986]. Mathematics, Form and Function. Springer.
Mancosu, P. [2005]. ‘Visualisation in logic and in mathematics’. In Mancosu, P., Jørgensen, K. F. and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer, pp. 13–30.
Mancosu, P. (ed.) [2008]. The Philosophy of Mathematical Practice. Oxford University Press.
Mancosu, P. [2008a]. ‘Introduction’. In , Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press, pp. 1–21.
Mancosu, P. [2008b]. ‘ Mathematical explanation: Why it matters’. In , Mancosu (ed.) 2008, ibid., pp. 134–150.
Mancosu, P. [forthcoming]. The Wilderness of Infinity. Robert Grosseteste, William of Auvergne and Mathematical Infinity in the Thirteenth Century, forthcoming.
Manders, K. [2008a]. ‘Diagram-based geometric practice’. In , Mancosu (ed.). The Philosophy of Mathematical Practice. Oxford University Press, pp. 65–79.
Manders, K. [2008b]. ‘The Euclidean Diagram (1995)’. In , Mancosu (ed.). The Philosophy of Mathematical Practice. Oxford University Press, pp. 80–133.
McLarty, C. [2006]. ‘Emmy Noether’s “set theoretic” topology: From Dedekind to the rise of functors’. In Ferreirós, J. and Gray, J. (eds.), The Architecture of Modern Mathematics, Oxford University Press, pp. 187–208.
McLarty, C. [2017]. ‘The two mathematical careers of Emmy Noether’. In Women in Mathematics. Springer International Publishing, pp. 231–252.
McLarty, C. [2020]. ‘Saunders Mac Lane: From Principia Mathematica through Göttingen to the working theory of structures’. In , Reck and , Schiemer (eds.), The Prehistory of Mathematical Structuralism. Oxford University Press, pp. 215–257.
Mumford, D. [1991]. ‘A foreword for non-mathematicians’. In Parikh, C.A.N.E. (ed.), The Unreal Life of Oscar Zariski. Academic Press, pp. xv–xxvii.
Mumma, J. [2012]. ‘Constructive geometrical reasoning and diagrams’. Synthese, 186 (1): pp. 103–119.
Netz, R. [1999]. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge University Press.
Noether, E. [1921]. ‘Idealtheorie in Ringbereichen’. Mathematische Annalen, 83 (1–2): pp. 24–66.
Noether, E. [1927]. ‘Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern’. Mathematische Annalen, 96 (1): pp. 26–61.
Pambuccian, V. [2009]. ‘A Reverse analysis of the Sylvester-Gallai theorem’. Notre Dame Journal of Formal Logic, 50(3): pp. 245–260.
Panza, M. [2012]. ‘The twofold role of diagrams in Euclid’s plane geometry’. Synthese, 186 (1): pp. 55–102.
Panza, M. [2024]. ‘Platonism, de re, and (philosophy of) mathematical practice’. In , Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Springer Nature, pp. 2307–2335.
Pasch, M. [1882/1926]. Vorlesungen über neuere Geometrie. Teubner.
Peirce, C. S. [1965–1967]. Collected Papers of Charles Sanders Peirce. Volume I–IV. (Third printing 1965–1967.) Edited by Charles Hartshorne and Paul Weiss, Belknap Press of Harvard University Press.
Preston, A., [2023]. ‘Analytic philosophy’. The Internet Encyclopedia of Philosophy. ISSN 2161-0002, https://iep.utm.edu/, accessed Feb. 13, 2024. Raeburn, I. and Szymanski, W. [2004]. ‘Cuntz-Krieger algebras of infinite graphs and matrices’. Transactions of the American Mathematical Society, 356(1): pp. 39–59.
Reck, E. and Schiemer, G. (eds.) [2020]. The Prehistory of Mathematical Structuralism. Oxford University Press.
Richardson, A. [1997]. ‘Toward a history of scientific philosophy’. Perspectives on Science, 5(3): pp. 418–451.
Riemann, B. [1851]. ‘ Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse’. Reprinted in Weber, H. [1892]. Bernhard Riemann’s Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Teubner.
Russell, B. [1901]. ‘Recent work on the principles of mathematics’. International Monthly, 4: pp. 83–101.
Russell, B. [1914/1918]. ‘On scientific method in philosophy’. Herbert Spencer lecture delivered at Oxford Nov 18, 1914. published at Clarendon Press. Reprinted in Mysticism and Logic and Other Essays (1918). Longmans, Green and Co, pp. 33–25.
Russell, B. [1919]. Introduction to Mathematical Philosophy. George Allen & Unwin.
Schlimm, D. [2013]. ‘Axioms in mathematical practice’. Philosophia Mathematica, 21: pp. 37–92.
Schlimm, D. [forthcoming]. Philosophy of Mathematical Notations. Cambridge University Press.
Shimojima, A. [2001]. ‘The graphic—linguistic distinction exploring alternatives’. Artificial Intelligence Review, 15: pp. 5–27.
Shin, S.-J. [2002]. The Iconic Logic of Peirce’s Graphs. Masachusetts Institute of Technology Press.
Sieg, W. [2020]. ‘The ways of Hilbert’s axiomatics: Structural and formal’. In Reck, E. and Schiemer, G. (eds.), The Prehistory of Mathematical Structuralism. Oxford University Press, pp. 142–165.
Simpson, S. [2009]. Subsystems of Second-Order Arithmetic. Cambridge University Press.
Sriraman, B. (ed.) [2024]. Handbook of the History and Philosophy of Mathematical Practice. Springer Nature.
Starikova, I. [2010]. ‘Why do mathematicians need different ways of presenting mathematical objects: The case of Cayley graphs’. Topoi, 29: pp. 41–51.
Stein, H. [1988]. ‘Logos, logic, and logistiké: Some philosophical remarks on nineteenth-century transformation of mathematics’. In Aspray, W. and Kitcher, P. (eds.), History and Philosophy of Modern Mathematics. University of Minnesota Press, pp. 238–259.
Steiner, M. [1978]. ‘Mathematical explanation’. Philosophical Studies, 34(2): pp. 135–151.
Stenning, K. [2000]. ‘Distinctions with differences: Comparing criteria for distinguishing diagrammatic from sentential systems’. In Anderson, M. P., Cheng, P. and Haarslev, V. (eds.), Diagrams 2000. Springer, pp. 132–148.
Stjernfelt, F. [2007]. Diagrammatology: An Investigation on the Borderlines of Phenomenology, Ontology, and Semiotics Vol. 336. Springer Netherlands.
Tappenden, J. [2005]. ‘Proof style and understanding in mathematics I: Visualization, unification and axiom choice’. In Mancosu, P., Jørgensen, K. F. and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer, pp. 147–213.
Tappenden, J. [2006]. ‘The Riemannian background to Frege’s philosophy’. In , Ferreirós and , Gray (eds.), The Architecture of Modern Mathematics. Essays in History and Philosophy. Oxford University Press, pp. 97–132.
Van Bendegem, J. P. [2014]. ‘The impact of the philosophy of mathematical practice on the philosophy of mathematics’. In Soler, L., Zwart, S., Lynch, M. and Israel-Jost, V. (eds.), Science after the Practice Turn in the Philosophy, History, and Social Studies of Science. Routledge, pp. 215–226.
Van der Waerden, B. [1935]. ‘Nachruf auf Emmy Noether’. Mathematische Annalen, 111(1): pp. 469–476.
Waszek, D. and Schlimm, D. [2021]. ‘Calculus as method or calculus as rules? Boole and Frege on the aims of a logical calculus’. Synthese, 199(5–6): pp. 11913–11943.
Weber, Z. [2013]. ‘Figures, formulae, and functors’. In Moktefi, A. and Shin, S-J. (eds.), Visual Reasoning with Diagrams. Studies in Universal Logic. Springer, pp. 153–170.
Weyl, H. [1995]. ‘Topology and abstract algebra as two roads of mathematical comprehension’. Translated by Shenitzer, Abe. American Mathematical Monthly, pp. 453–460 and 646–651.