Skip to main content Accessibility help
  • Cited by 122
Cambridge University Press
Online publication date:
August 2009
Print publication year:
Online ISBN:

Book description

This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere. Various models for Möbius geometry are presented: the classical projective model, the quaternionic approach, and an approach that uses the Clifford algebra of the space of homogeneous coordinates of the classical model; the use of 2-by-2 matrices in this context is elaborated. For each model in turn applications are discussed. Topics comprise conformally flat hypersurfaces, isothermic surfaces and their transformation theory, Willmore surfaces, orthogonal systems and the Ribaucour transformation, as well as analogous discrete theories for isothermic surfaces and orthogonal systems. Certain relations with curved flats, a particular type of integrable system, are revealed. Thus this book will serve both as an introduction to newcomers (with background in Riemannian geometry and elementary differential geometry) and as a reference work for researchers.


'One of the most attractive features of the book is the detailed discussion of discrete analogues of isothermic surfaces and orthogonal systems which were intensively studied in the last decade … The reviewed monograph will be of great interest for researchers specializing in differential geometry, geometric theory of integrable systems and other related fields.'

Source: Zentralblatt MATH

'The book is a well-written survey of classical results from a new point of view and a nice textbook for a study of the subject.'

Source: EMS Newsletter

'This book is a work of scholarship, communicating the author's enthusiasm for Möbius geometry very clearly. The book will serve as an introduction to Möbius geometry to newcomers, and as a very useful reference for research workers in the field.'

Tom Willmore - University of Durham

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.