Skip to main content Accessibility help
×
×
Home
Introduction to Model Spaces and their Operators
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Łanucha, Bartosz 2018. Asymmetric Truncated Toeplitz Operators of Rank One. Computational Methods and Function Theory, Vol. 18, Issue. 2, p. 259.

    Ferguson, Timothy and Ross, William T. 2018. The range and valence of a real Smirnov function. Analysis and Mathematical Physics,

    Golinskii, L. 2018. On a Local Darlington Synthesis Problem. Complex Analysis and Operator Theory, Vol. 12, Issue. 4, p. 869.

    Gu, Caixing and Kang, Dong-O 2018. A Commutator Approach to Truncated Singular Integral Operators. Integral Equations and Operator Theory, Vol. 90, Issue. 2,

    Garcia, Stephan Ramon Mashreghi, Javad and Ross, William T. 2018. Finite Blaschke Products and Their Connections. p. 261.

    Cheng, Raymond Mashreghi, Javad and Ross, William T. 2017. Birkhoff–James Orthogonality and the Zeros of an Analytic Function. Computational Methods and Function Theory, Vol. 17, Issue. 3, p. 499.

    Fricain, Emmanuel and Lefèvre, Pascal 2017. $$L^2$$ L 2 -Müntz Spaces as Model Spaces. Complex Analysis and Operator Theory,

    ×

Book description

The study of model spaces, the closed invariant subspaces of the backward shift operator, is a vast area of research with connections to complex analysis, operator theory and functional analysis. This self-contained text is the ideal introduction for newcomers to the field. It sets out the basic ideas and quickly takes the reader through the history of the subject before ending up at the frontier of mathematical analysis. Open questions point to potential areas of future research, offering plenty of inspiration to graduate students wishing to advance further.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
[1] Abakumov, E.V. 1995. Cyclicity and approximation by lacunary power series. Michigan Math. J., 42(2), 277–299.
[2] Agler, J. and McCarthy, J. E. 2002. Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, vol. 44. Providence, RI: American Mathematical Society.
[3] Ahern, P. R. and Clark, D. N. 1970a. On functions orthogonal to invariant subspaces. Acta Math., 124, 191–204.
[4] Ahern, P. R. and Clark, D. N. 1970b. Radial limits and invariant subspaces. Amer. J. Math., 92, 332–342.
[5] Ahern, P.R. and Clark, D. N. 1971. Radial nth derivatives of Blaschke products. Math. Scand., 28, 189–201.
[6] Akhiezer, N. I. and Glazman, I. M. 1993. Theory of Linear Operators in Hilbert Space. New York: Dover Publications. Translated from the Russian and with a preface by Merlynd Nestell, reprint of the 1961 and 1963 translations, two volumes bound as one.
[7] Aleksandrov, A. B. 1987. Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Armyan. SSR Ser. Mat., 22(5), 490–503, 515.
[8] Aleksandrov, A. B. 1989. Inner functions and related spaces of pseudocontinuable functions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 170(17), 7–33, 321.
[9] Aleksandrov, A. B. 1995. On the existence of angular boundary values of pseudocontinuable functions. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 222(23), 5–17, 307.
[10] Aleksandrov, A. B. 1996. Isometric embeddings of co-invariant subspaces of the shift operator. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 232(24), 5–15, 213.
[11] Aleksandrov, A. B. 1997. Gap series and pseudocontinuations: an arithmetic approach. Algebra i Analiz, 9(1), 3–31.
[12] Aleksandrov, A. B. 1999. Embedding theorems for coinvariant subspaces of the shift operator. II. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262(27), 5–48, 231.
[13] Aleman, A. and Richter, S. 1996. Simply invariant subspaces of H2 of some multiply connected regions. Integral Equations Operator Theory, 24(2), 127–155.
[14] Aleman, A. and Ross, W. T. 1996. The backward shift on weighted Bergman spaces. Michigan Math. J., 43(2), 291–319.
[15] Aleman, A., Richter, S. and Ross, W. T. 1998. Pseudocontinuations and the backward shift. Indiana Univ. Math. J., 47(1), 223–276.
[16] Aleman, A., Feldman, N. S., and Ross, W. T. 2009. The Hardy Space of a Slit Domain. Frontiers in Mathematics. Basel: Birkhäuser Verlag.
[17] Arias de Reyna, J. 2002. Pointwise Convergence of Fourier Series. Lecture Notes in Mathematics, vol. 1785. Berlin: Springer-Verlag.
[18] Aronszajn, N. 1950. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337–404.
[19] Arov, D. Z. 1971. Darlington's method in the study of dissipative systems. Dokl. Akad. Nauk SSSR, 201(3), 559–562.
[20] Arveson, W. 2002. A Short Course on Spectral Theory. Graduate Texts in Mathematics, vol. 209. New York: Springer-Verlag.
[21] Bagemihl, F. and Seidel, W. 1954. Some boundary properties of analytic functions. Math. Z., 61, 186–199.
[22] Ball, J. 1973. Unitary perturbations of contractions. Ph.D. thesis, University of Virginia.
[23] Ball, J. A. and Lubin, A. 1976. On a class of contractive perturbations of restricted shifts. Pacific J. Math., 63(2), 309–323.
[24] Baranov, A. I., Chalendar, E., Fricain, E., Mashreghi, J., and Timotin, D. 2010. Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators. J. Funct. Anal., 259(10), 2673–2701.
[25] Baranov, A., Bessonov, R. and Kapustin, V. 2011. Symbols of truncated Toeplitz operators. J. Funct. Anal., 261(12), 3437–3456.
[26] Bari, N. K. 1951. Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. U?cenye Zapiski Matematika, 148(4), 69–107.
[27] Bercovici, H. 1988. Operator Theory and Arithmetic in H8. Mathematical Surveys and Monographs, vol. 26. Providence, RI: American Mathematical Society.
[28] Berman, R. D. and Cohn, W. S. 1987. Tangential limits of Blaschke products and functions of bounded mean oscillation. Illinois J. Math., 31(2), 218–239.
[29] Bessonov, R. V. 2014. Truncated Toeplitz operators of finite rank. Proc. Amer. Math. Soc., 142(4), 1301–1313.
[30] Beurling, A. 1948. On two problems concerning linear transformations in Hilbert space. Acta Math., 81, 17.
[31] Blandignéres, A., Fricain, E., Gaunard, F., Hartmann, A. and Ross, W. 2013. Reverse Carleson embeddings for model spaces. J. Lond. Math. Soc. (2), 88(2), 437–464.
[32] Boas, Jr., R. P. 1941. A general moment problem. Amer. J. Math., 63, 361–370.
[33] Böttcher, A. and Silbermann, B. 2006. Analysis of Toeplitz Operators, 2nd edn. SpringerMonographs in Mathematics. Berlin: Springer-Verlag. Prepared jointly with Alexei Karlovich.
[34] Brown, A. and Halmos, P. R. 1963/1964. Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 213, 89–102.
[35] Brown, L., and Shields,, A. L. 1984. Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc., 285(1), 269–303.
[36] Cargo, G. T. 1962. Angular and tangential limits of Blaschke products and their successive derivatives. Canad. J. Math., 14, 334–348.
[37] Chalendar, I. and Timotin, D. Commutation relations for truncated Toeplitz operators. arXiv:1305.6739.
[38] Chalendar, I., Fricain, E., and Timotin, D. 2009. On an extremal problem of Garcia and Ross. Oper. Matrices, 3(4), 541–546.
[39] Chevrot, N., Fricain, E., and Timotin, D. 2007. The characteristic function of a complex symmetric contraction. Proc. Amer. Math. Soc., 135(9), 2877–2886 (electronic).
[40] Christensen, O. 2003. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston Inc.
[41] Cima, J.A. and Ross, W. T. 2000. The Backward Shift on the Hardy Space. Mathematical Surveys and Monographs, vol. 79. Providence, RI: American Mathematical Society.
[42] Cima, J.A., Matheson, A. L., and Ross, W. T. 2006. The Cauchy Transform. Mathematical Surveys and Monographs, vol. 125. Providence, RI: American Mathematical Society.
[43] Cima, J.A., Ross, W. T., and Wogen, W. R. 2008. Truncated Toeplitz operators on finite dimensional spaces. Oper. Matrices, 2(3), 357–369.
[44] Cima, J.A. and Matheson, A. L. 1997. Essential norms of composition operators and Aleksandrov measures. Pacific J. Math., 179(1), 59–64.
[45] Cima, J.A., Garcia, S. R., Ross, W. T., and Wogen, W. R. 2010. Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity. Indiana Univ. Math. J., 59(2), 595–620.
[46] Clark, D. N. 1972. One dimensional perturbations of restricted shifts. J. Analyse Math., 25, 169–191.
[47] Coburn|L. A. 1967. The C*-algebra generated by an isometry. Bull. Amer. Math. Soc., 73, 722–726.
[48] Coburn, L.A. 1969. The C*-algebra generated by an isometry. II. Trans. Amer. Math. Soc., 137, 211–217.
[49] Cohn, B. 1982. Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math., 103(2), 347–364.
[50] Collingwood, E. F. and Lohwater, A. J. 1966. The Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, No. 56. Cambridge: Cambridge University Press.
[51] Conway, J. B. 1990. A Course in Functional Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96. New York: Springer-Verlag.
[52] Conway, J. B. 2000. A Course in Operator Theory. Graduate Studies in Mathematics, vol. 21. Providence, RI: American Mathematical Society.
[53] Cowen, C. and MacCluer, B. D. 1995. Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.
[54] Crofoot, R.B. 1994. Multipliers between invariant subspaces of the backward shift. Pacific J. Math., 166(2), 225–246.
[55] Danciger, J., Garcia, S. R., and Putinar, M. 2008. Variational principles for symmetric bilinear forms. Math. Nachr., 281(6), 786–802.
[56] Davidson, K. R. 1996. C*-algebras by example. Fields Institute Monographs, vol. 6. Providence, RI: American Mathematical Society.
[57] de Branges, L. 1968. Hilbert Spaces of Entire Functions. Englewood Cliffs, NJ: Prentice-Hall.
[58] de Branges, L. and Rovnyak, J. 1966. Square Summable Power Series. London: Holt, Rinehart and Winston.
[59] Douglas, R.G. 1998. Banach Algebra Techniques in Operator Theory, 2nd edn. Graduate Texts in Mathematics, vol. 179. New York: Springer-Verlag.
[60] Douglas, R.G., and Helton, J.W. 1973. Inner dilations of analytic matrix functions and Darlington synthesis. Acta Sci. Math. (Szeged), 34, 61–67.
[61] Douglas, R. G., Shapiro, H. S., and Shields, A. L. 1970. Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble), 20(1), 37–76.
[62] Douglas, R. G. 1972. Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, vol. 49. New York: Academic Press.
[63] Duren, P. L. 1970. Theory of Hp Spaces. New York: Academic Press.
[64] Duren, P. and Schuster, A. 2004. Bergman Spaces. Mathematical Surveys and Monographs, vol. 100. Providence, RI: American Mathematical Society.
[65] Dyakonov, K. and Khavinson, D. 2006. Smooth functions in star-invariant subspaces. In Recent Advances in Operator-Related Function Theory. Contemporary Mathematics, vol. 393. Providence, RI: American Mathematical Society, pp. 59–66.
[66] Dyakonov, K. M. 2000. Kernels of Toeplitz operators via Bourgain's factorization theorem. J. Funct. Anal., 170(1), 93–106.
[67] Dyakonov, K. M. 2012. Zeros of analytic functions, with or without multiplicities. Math. Ann., 352(3), 625–641.
[68] Dyakonov, K. M. 2014. Two problems on coinvariant subspaces of the shift operator. Integral Equations Operator Theory, 78(2), 151–154.
[69] Ebbinghaus, H.-D., Hermes, H., Hirzebruch, F., Koecher, M., Mainzer, K., Neukirch, J., Prestel, A., and Remmert, R. 1991. Numbers. Graduate Texts in Mathematics, vol. 123. New York: Springer-Verlag. Translated from the second 1988 German edition by H. L. S., Orde.
[70] El-Fallah, O., Kellay, K., Mashreghi, J., and Ransford, T. 2014. A Primer on the Dirichlet Space. Cambridge Tracts in Mathematics, vol. 203. Cambridge: Cambridge University Press.
[71] Erdélyi, I. 1966. On partial isometries in finite-dimensional Euclidean spaces. SIAM J. Appl. Math., 14, 453–467.
[72] Fabry, E.1898–1899. Sur les séries de Taylor qui ont une infinité de points singuliers. Acta Math., 22, 65–88.
[73] Fricain, E., and Mashreghi, J. 2014. The Theory of H(b) spaces, Volume 1. New Mathematical Monographs, vol. 20. Cambridge: Cambridge University Press.
[74] Fricain, E., and Mashreghi, J. 2015. The Theory of H(b) Spaces, Volume 2. New Mathematical Monographs, vol. 21. Cambridge: Cambridge University Press.
[75] Frostman, O. 1942. Sur les produits de Blaschke. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund], 12(15), 169–182.
[76] Fuhrmann, P. A. 1968. On the corona theorem and its application to spectral problems in Hilbert space. Trans. Amer. Math. Soc., 132, 55–66.
[77] Fuhrmann, P. A. 1976. Exact controllability and observability and realization theory in Hilbert space. J. Math. Anal. Appl., 53(2), 377–392.
[78] Garcia, S. R. 2006. Conjugation and Clark operators. In Recent Advances in Operator-related Function Theory. Contemporary Mathematics, vol. 393. Providence, RI: American Mathematical Society, pp. 67–111.
[79] Garcia, S. R. 2008a. Aluthge transforms of complex symmetric operators. Integral Equations Operator Theory, 60(3), 357–367.
[80] Garcia, S. R. and Putinar, M. 2006. Complex symmetric operators and applications. Trans. Amer. Math. Soc., 358(3), 1285–1315 (electronic).
[81] Garcia, S. R. and Putinar, M. 2007. Complex symmetric operators and applications. II. Trans. Amer. Math. Soc., 359(8), 3913–3931 (electronic).
[82] Garcia, S. R. and Wogen, W. R. 2009. Complex symmetric partial isometries. J. Funct. Anal., 257(4), 1251–1260.
[83] Garcia, S. R. and Wogen, W. R. 2010. Some new classes of complex symmetric operators. Trans. Amer. Math. Soc., 362(11), 6065–6077.
[84] Garcia, S. R. and Putinar, M. 2008. Interpolation and complex symmetry. Tohoku Math. J. (2), 60(3), 423–440.
[85] Garcia, S. R. 2005a. A *-closed subalgebra of the Smirnov class. Proc. Amer. Math. Soc., 133(7), 2051–2059 (electronic).
[86] Garcia, S. R. 2005b. Conjugation, the backward shift, and Toeplitz kernels. J. Operator Theory, 54(2), 239–250.
[87] Garcia, S. R. 2005c. Inner matrices and Darlington synthesis. Methods Funct. Anal. Topology, 11(1), 37–47.
[88] Garcia, S. R. 2008b. The eigenstructure of complex symmetric operators. Pages 169–183 of: Recent advances in matrix and operator theory. Oper. TheoryAdv. Appl., vol. 179. Basel: Birkhäuser.
[89] Garcia, S. R. and Poore, D. E. 2013a. On the closure of the complex symmetric operators: compact operators and weighted shifts. J. Funct. Anal., 264(3), 691–712.
[90] Garcia, S. R. and Poore, D. E. 2013b. On the norm closure problem for complex symmetric operators. Proc. Amer. Math. Soc., 141(2), 549.
[91] Garcia, S. R. and Ross, W. T. 2009. A non-linear extremal problem on the Hardy space. Comput. Methods Funct. Theory, 9(2), 485–524.
[92] Garcia, S. R. and Ross, W. T. 2010. The norm of a truncated Toeplitz operator. In Hilbert Spaces of Analytic Functions. CRM Proc. Lecture Notes, vol. 51. Providence, RI: American Mathematical Society, pp. 59–64.
[93] Garcia, S. R. and Ross, W. T. 2013. Recent progress on truncated Toeplitz operators. In Blaschke Products and their Applications. Fields Institute Communications, vol. 65. New York: Springer, pp. 275–319.
[94] Garcia, S. R. and Sarason, D. 2003. Real outer functions. Indiana Univ. Math. J., 52(6), 1397–1412.
[95] Garcia, S.R., Ross, W. T., and Wogen, W. R. 2010a. Spatial isomorphisms of algebras of truncated Toeplitz operators. Indiana Univ. Math. J., 59(6), 1971– 2000.
[96] Garcia, S. R., Ross, W. T., and Wogen, W. R. 2010b. Spatial isomorphisms of algebras of truncated Toeplitz operators. Indiana Univ. Math. J., 59(6), 1971– 2000.
[97] Garnett, J. 2007. Bounded Analytic Functions. Graduate Texts in Mathematics, vol. 236. New York: Springer.
[98] Gilbreath, T. M. and Wogen, W. R. 2007. Remarks on the structure of complex symmetric operators. Integral Equations Operator Theory, 59(4), 585–590.
[99] Gohberg, I.C. and Krupnik, N. Ja. 1969. The algebra generated by the Toeplitz matrices. Funkcional. Anal. i Priložen., 3(2), 46–56.
[100] Gorbachuk, M. L. and Gorbachuk, V. I. 1997. M. G. Krein's Lectures on Entire Operators. Operator Theory: Advances and Applications, vol. 97. Basel: Birkhäuser Verlag.
[101] Hadamard, J. 1892. Essai sur l'étude des fonctions données par leur développement de Taylor. J. Math., 8, 101–186.
[102] Hartmann, A. and Ross, W. T. 2012a. Bad boundary behavior in star-invariant subspaces I. Arkiv for Matematik, 1–22.
[103] Hartmann, A. and Ross, W. T. 2012b. Bad boundary behavior in star invariant subspaces II. Ann. Acad. Sci. Fenn. Math., 37(2), 467–478.
[104] Hartmann, A. and Ross, W. T. 2013. Truncated Toeplitz operators and boundary values in nearly invariant subspaces. Complex Anal. Oper. Theory, 7(1), 261– 273.
[105] Havin, V. and Mashreghi, J. 2003a. Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function. Canad. J. Math., 55(6), 1231–1263.
[106] Havin, V. and Mashreghi, J. 2003b. Admissible majorants for model subspaces of H2. II. Fast winding of the generating inner function. Canad. J. Math., 55(6), 1264–1301.
[107] Hayashi, E. 1986. The kernel of a Toeplitz operator. Integral Equations Operator Theory, 9(4), 588–591.
[108] Hayashi, E. 1990. Classification of nearly invariant subspaces of the backward shift. Proc. Amer. Math. Soc., 110(2), 441–448.
[109] Hedenmalm, H., Korenblum, B., and Zhu, K. 2000. Theory of Bergman spaces. Graduate Texts in Mathematics, vol. 199. New York: Springer-Verlag.
[110] Helson, H. 1990. Large analytic functions. II. In Analysis and partial differential equations. Lecture Notes in Pure and AppliedMathematics, vol. 122. New York: Dekker, pp. 217–220.
[111] Hitt, D. 1988. Invariant subspaces of H2 of an annulus. Pacific J. Math., 134(1), 101–120.
[112] Hoffman, K. 1962. Banach Spaces of Analytic Functions. Prentice-Hall Series in Modern Analysis. Englewood Cliffs, NJ: Prentice-Hall Inc.
[113] Hrušcev, S.V., and Vinogradov, S.A. 1981. Inner functions and multipliers of Cauchy type integrals. Ark. Mat., 19(1), 23–42.
[114] Inoue, J. 1994. An example of a nonexposed extreme function in the unit ball of H1. Proc. Edinburgh Math. Soc. (2), 37(1), 47–51.
[115] Jung, S., Ko, E., and Lee, J. On scalar extensions and spectral decompositions of complex symmetric operators. J. Math. Anal. Appl. preprint.
[116] Jung, S., Ko, E., Lee, M., and Lee, J. 2011. On local spectral properties of complex symmetric operators. J. Math. Anal. Appl., 379, 325–333.
[117] Kelley, J. L. 1975. General topology. New York-Berlin: Springer-Verlag. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
[118] Koosis, P. 1998. Introduction to Hp Spaces, 2nd edn. Cambridge Tracts in Mathematics, vol. 115. Cambridge: Cambridge University Press.
[119] Kriete, III, T. L. 1970/71. On the Fourier coefficients of outer functions. Indiana Univ. Math. J., 20, 147–155.
[120] Kriete, III, T. L. 1971. A generalized Paley-Wiener theorem. J. Math. Anal. Appl., 36, 529–555.
[121] Lacey, M. T., Sawyer, E. T., Shen, C.-Y., Uriarte-Tuero, I., and Wick, B. D. Two weight inequalities for the Cauchy transform from R to C+. ArXiv:1310. 4820v2.
[122] Lanucha, B. 2014. Matrix representations of truncated Toeplitz operators. J. Math. Anal. Appl., 413(1), 430–437.
[123] Li, C.G., Zhu, S., and Zhou, T. Foguel operators with complex symmetry. preprint.
[124] Lim, L.-H., and Ye, K. Every matrix is a product of Toeplitz matrices. arXiv:1307.5132v2.
[125] Livsic, M. 1946. On a class of linear operators in Hilbert space. Mat. Sb., 19, 239–262.
[126] Livšic, M. S. 1960. Isometric operators with equal deficiency indices, quasiunitary operators. Amer. Math. Soc. Transl. (2), 13, 85–103.
[127] Lohwater, A. J. and Piranian, G. 1957. The boundary behavior of functions analytic in a disk. Ann. Acad. Sci. Fenn. Ser. A. I., 1957(239), 17.
[128] Lotto, B. A. and McCarthy, J. E. 1993. Composition preserves rigidity. Bull. London Math. Soc., 25(6), 573–576.
[129] Lusin, N. and Priwaloff, J. 1925. Sur l'unicité et la multiplicité des fonctions analytiques. Ann. Sci. école Norm. Sup. (3), 42, 143–191.
[130] Makarov, N. and Poltoratski, A. 2005. Meromorphic inner functions, Toeplitz kernels and the uncertainty principle. In Perspectives in Analysis. Mathematical Physics Studies, vol. 27. Berlin: Springer, pp. 185–252.
[131] Martin, R. T. W. 2010. Symmetric operators and reproducing kernel Hilbert spaces. Complex Anal. Oper. Theory, 4(4), 845–880.
[132] Martin, R. T. W. 2011. Representation of simple symmetric operators with deficiency indices (1, 1) in de Branges space. Complex Anal. Oper. Theory, 5(2), 545–577.
[133] Martin, R. T. W. 2013. Unitary perturbations of compressed n-dimensional shifts. Complex Anal. Oper. Theory, 7(4), 765–799.
[134] Martĺnez-Avendaño, R. A. and Rosenthal, P. 2007. An Introduction to Operators on the Hardy-Hilbert Space. Graduate Texts in Mathematics, vol. 237. New York: Springer.
[135] Mashreghi, J. and Shabankhah, M. 2014. Composition of inner functions. Canad. J. Math., 66(2), 387–399.
[136] Mashreghi, J. 2009. Representation Theorems in Hardy Spaces. London Mathematical Society Student Texts, vol. 74. Cambridge: Cambridge University Press.
[137] Mashreghi, J. 2013. Derivatives of Inner Functions. Fields Institute Monographs, vol. 31. New York: Springer.
[138] Mashreghi, J., and Shabankhah, M. 2013. Composition operators on finite rank model subspaces. Glasg. Math. J., 55(1), 69–83.
[139] Mason, R. C. 1984. Diophantine equations over function fields. London Mathematical Society Lecture Note Series, vol. 96. Cambridge: Cambridge University Press.
[140] Moeller, J. W. 1962. On the spectra of some translation invariant spaces. J. Math. Anal. Appl., 4, 276–296.
[141] Nikolski, N. 1986. Treatise on the Shift Operator. Berlin: Springer-Verlag.
[142] Nikolski, N. 2002a. Operators, Functions, and Systems: An Easy Reading. Vol. 1. Mathematical Surveys and Monographs, vol. 92. Providence, RI: American Mathematical Society. Translated from the French by Andreas Hartmann.
[143] Nikolski, N. 2002b. Operators, Functions, and Systems: An Easy Reading. Vol. 2. Mathematical Surveys and Monographs, vol. 93. Providence, RI: American Mathematical Society. Translated from the French by Andreas Hartmann and revised by the author.
[144] Paulsen, V. 2009. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. www.math.uh.edu/vern/rkhs.pdf.
[145] Peller, V. V. 1993. Invariant subspaces of Toeplitz operators with piecewise continuous symbols. Proc. Amer. Math. Soc., 119(1), 171–178.
[146] Poltoratski, A. and Sarason, D. 2006. Aleksandrov-Clark measures. In Recent Advances in Operator-related Function Theory. Contemporary Mathematics, vol. 393. Providence, RI: American Mathematical Society, pp. 1–14.
[147] Poltoratski, A. G. 2001. Properties of exposed points in the unit ball of H1. Indiana Univ. Math. J., 50(4), 1789–1806.
[148] Poltoratskii, A. G. 1993. Boundary behavior of pseudocontinuable functions. Algebra i Analiz, 5(2), 189–210.
[149] Privalov, I. I. 1956. Randeigenschaften Analytischer Funktionen. Berlin: VEB Deutscher Verlag der Wissenschaften.
[150] Radjavi, H. and Rosenthal, P. 1973. Invariant Subspaces. Heidelberg: Springer- Verlag.
[151] Richter, S. 1988. Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math., 386, 205–220.
[152] Riesz, F. and Sz.-Nagy, B. 1955. Functional Analysis. New York: Frederick Ungar. Translated by Leo F., Boron.
[153] Rosenblum, M. and Rovnyak, J. 1985. Hardy Classes and Operator Theory. Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press.
[154] Ross, W. T., and Shapiro, H. S. 2002. Generalized Analytic Continuation. University Lecture Series, vol. 25. Providence, RI: American Mathematical Society.
[155] Ross, W. T. 2008. Indestructible Blaschke products. In Banach Spaces of Analytic Functions. Contemporary Mathematics, vol. 454. Providence, RI: American Mathematical Society, pp. 119–134.
[156] Ross, W. T. and Shapiro, H. S. 2003. Prolongations and cyclic vectors. Comput. Methods Funct. Theory, 3(1-2), 453–483.
[157] Royden, H. L. 1988. Real Analysis, 3rd edn. New York: Macmillan.
[158] Rudin, W. 1987. Real and Complex Analysis, 3rd edn. New York: McGraw-Hill.
[159] Rudin, W. 1991. Functional Analysis, 2nd edn. New York: McGraw-Hill.
[160] Saksman, E. 2007. An elementary introduction to Clark measures. Topics in Complex Analysis and Operator Theory.Málaga: University of Málaga, pp. 85–136.
[161] Sarason, D. 1965a. A remark on the Volterra operator. J. Math. Anal. Appl., 12, 244–246.
[162] Sarason, D. 1967. Generalized interpolation in H∞. Trans. Amer. Math. Soc., 127, 179–203.
[163] Sarason, D. 1988. Nearly invariant subspaces of the backward shift. In Contributions to Operator Theory and its Applications (Mesa, AZ, 1987). Operations Theory and Advanced Applications, vol. 35. Basel: Birkhäuser, pp. 481–493.
[164] Sarason, D. 1994a. Kernels of Toeplitz operators. In Toeplitz Operators and Related Topics (Santa Cruz, CA, 1992). Operations Theory Advanced Applications, vol. 71. Basel: Birkhäuser, pp. 153–164.
[165] Sarason, D. 1994b. Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, 10. New York: John Wiley & Sons.
[166] Sarason, D. 2007. Algebraic properties of truncated Toeplitz operators. Oper. Matrices, 1(4), 491–526.
[167] Sarason, D. 1965b. On spectral sets having connected complement. Acta Sci. Math. (Szeged), 26, 289–299.
[168] Sarason, D. 1989. Exposed points in H1. I. In The Gohberg Anniversary Collection, Vol. II (Calgary, AB, 1988). Operations Theory Advanced Applications, vol. 41. Birkhäuser, Basel, pp. 485–496.
[169] Sedlock, N. 2010. Properties of truncated Toeplitz operators. Ph.D. thesis. ProQuest LLC, Ann Arbor, MI; Washington University in St. Louis.
[170] Sedlock, N. 2011. Algebras of truncated Toeplitz operators. Oper. Matrices, 5(2), 309–326.
[171] Shapiro, H. S. 1964. Weakly invertible elements in certain function spaces, and generators in l1. Michigan Math. J., 11, 161–165.
[172] Shapiro, H. S. 1968. Generalized analytic continuation. In Symposia on Theoretical Physics and Mathematics, Vol. 8 (Symposium, Madras, 1967).New York: Plenum, pp. 151–163.
[173] Shapiro, H. S. 1968/1969. Functions nowhere continuable in a generalized sense. Publ. Ramanujan Inst. No., 1, 179–182.
[174] Shapiro, J. H. 1993. Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. New York: Springer-Verlag.
[175] Shimorin, S. 2001. Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math., 531, 147–189.
[176] Shirokov, N.A. 1978. Ideals and factorization in algebras of analytic functions that are smooth up to the boundary. Trudy Mat. Inst. Steklov., 130, 196–223.
[177] Shirokov, N.A. 1981. Division and multiplication by inner functions in spaces of analytic functions smooth up to the boundary. In Complex Analysis and Spectral Theory (Leningrad, 1979/1980). Lecture Notes inMathematics, vol. 864. Berlin: Springer, pp. 413–439.
[178] Simon, B. 1995. Spectral analysis of rank one perturbations and applications. In Mathematical Quantum Theory. II. Schrödinger Operators (Vancouver, BC, 1993). CRM Proceedings Lecture Notes, vol. 8. Providence, RI: American Mathematical Society, pp. 109–149.
[179] Simon, B. 2005. Orthogonal Polynomials on the Unit Circle.Part 1. American Mathematical Society Colloquium Publications, vol. 54. Providence, RI: American Mathematical Society.
[180] Simon, B. and Wolff, T. 1986. Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math., 39(1), 75–90.
[181] Singer, I. 1970. Bases in Banach Spaces. I. New York: Springer-Verlag.
[182] Stegenga, D.A. 1980. Multipliers of the Dirichlet space. Illinois J. Math., 24(1), 113–139.
[183] Stothers, W.W. 1981. Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford Ser. (2), 32(127), 349–370.
[184] Sz.-Nagy, B. 1953. Sur les contractions de l'espace de Hilbert. Acta Sci. Math. Szeged, 15, 87–92.
[185] Sz.-Nagy, B. and Foiaş, C. 1968. Dilatation des commutants d'opérateurs. C. R. Acad. Sci. Paris Sér. A-B, 266, A493–A495.
[186] Sz.-Nagy, B., Foias, C., Bercovici, H., and Kérchy, L. 2010. Harmonic Analysis of Operators on Hilbert Space, 2nd edn. Universitext. New York: Springer.
[187] Takenaka, S. 1925. On the orthonormal functions and a new formula of interpolation. Jap. J. Math., 2, 129–145.
[188] Teschl, G. 2009. Mathematical methods in quantum mechanics. Graduate Studies in Mathematics, vol. 99. Providence, RI: American Mathematical Society.
[189] Vol'berg, A. L. 1981. Thin and thick families of rational fractions. In Complex Analysis and Spectral Theory (Leningrad, 1979/1980). Lecture Notes in Mathematics, vol. 864. Berlin: Springer, pp. 440–480.
[190] Vol'berg, A. L., and Treil', S.R. 1986. Embedding theorems for invariant subspaces of the inverse shift operator. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149(XV), 38–51, 186–187.
[191] Wang, X. and Gao, Z. 2009. A note on Aluthge transforms of complex symmetric operators and applications. Integral Equations Operator Theory, 65(4), 573–580.
[192] Wang, X. and Gao, Z. 2010. Some equivalence properties of complex symmetric operators. Math. Pract. Theory, 40(8), 233–236.
[193] Yabuta, K. 1971. Remarks on extremum problems in H1. Tôhoku Math. J. (2), 23, 129–137.
[194] Zagorodnyuk, S. M. 2010. On a J-polar decomposition of a bounded operator and matrix representations of J-symmetric, J-skew-symmetric operators. Banach J. Math. Anal., 4(2), 11–36.
[195] Zhu, S. and Li, C. G. 2013. Complex symmetric weighted shifts. Trans. Amer. Math. Soc., 365(1), 511–530.
[196] Zhu, S., Li, C. G., and Ji, Y.Q. 2012. The class of complex symmetric operators is not norm closed. Proc. Amer. Math. Soc., 140(5), 1705–1708.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed