Skip to main content Accessibility help
×
    • You have access
    • Open access
  • Cited by 3
Publisher:
Cambridge University Press
Online publication date:
November 2022
Print publication year:
2022
Online ISBN:
9781009278270
Creative Commons:
Creative Common License - CC Creative Common License - BY Creative Common License - NC
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC 4.0 https://creativecommons.org/creativelicenses

Book description

KCNQ2 and KCNQ3 encode subunits (KV7.2, KV7.3) that combine to form a voltage-gated potassium ion (K+) channel responsible for generating an ionic current (M-current) important for controlling activity in the nervous system. Pathogenic variants in both genes are associated with a spectrum of genetic neurological disorders that feature epilepsy of variable severity and can be accompanied by debilitating impaired neurodevelopment. These two genes were among the first discovered causes of monogenic epilepsy, and are frequently identified in persons with early-life epilepsy. This Element provides a comprehensive review of the clinical features, genetic basis, pathophysiology, pharmacology and treatment of these prototypical neurological disorders accompanied by perspectives shared by affected families and scientists who have made seminal contributions to the field. This title is also available as Open Access on Cambridge Core.

References

1.Poduri, A. H., George, A. L. Jr., Heinzen, E. L., Lowenstein, D., James, S., How we got to where we’re going, Poduri, A. H., ed. (Cambridge: Cambridge University Press, 2021).
2.Singh, N. A., Charlier, C., Stauffer, D. et al., A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns, Nat Genet, 18 (1998), 25–9. DOI: https://doi.org/10.1038/ng0198-25.
3.Charlier, C., Singh, N. A., Ryan, S. G. et al., A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family, Nat Genet, 18 (1998), 53–5. DOI: https://doi.org/10.1038/ng0198-53.
4.Lindy, A. S., Stosser, M. B., Butler, E. et al., Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders, Epilepsia, 59 (2018), 1062–71. DOI: https://doi.org/10.1111/epi.14074.
5.Berg, A. T., Gaebler-Spira, D., Wilkening, G. et al., Nonseizure consequences of Dravet syndrome, KCNQ2-DEE, KCNB1-DEE, Lennox-Gastaut syndrome, ESES: a functional framework, Epilepsy Behav, 111 (2020), 107287. DOI: https://doi.org/10.1016/j.yebeh.2020.107287.
6.Berg, A. T., Mahida, S., Poduri, A., KCNQ2-DEE: developmental or epileptic encephalopathy? Ann Clin Transl Neurol, 8 (2021), 666–76. DOI: https://doi.org/10.1002/acn3.51316.
7.Beck, V. C., Isom, L. L., Berg, A. T., Gastrointestinal symptoms and channelopathy-associated epilepsy, J Pediatr, 237 (2021), 41–9.e1. DOI: https://doi.org/10.1016/j.jpeds.2021.06.034.
8.Brown, D. A., Neurons, receptors, and channels, Annu Rev Pharmacol Toxicol, 60 (2020), 930. DOI: https://doi.org/10.1146/annurev-pharmtox-010919-023755.
9.Brown, D. A., Constanti, A., Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones, Br J Pharmacol, 70 (1980), 593608. DOI: https://doi.org/10.1111/j.1476-5381.1980.tb09778.x.
10.Brown, D. A., Adams, P. R., Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone, Nature, 283 (1980), 673–6. DOI: https://doi.org/10.1038/283673a0.
11.Storm, J. F., Potassium currents in hippocampal pyramidal cells, Prog Brain Res, 83 (1990), 161–87. DOI: https://doi.org/10.1016/s0079-6123(08)61248-0.
12.Barrese, V., Stott, J. B., Greenwood, I. A., KCNQ-encoded potassium channels as therapeutic targets, Annu Rev Pharmacol Toxicol, 58 (2018), 625–48. DOI: https://doi.org/10.1146/annurev-pharmtox-010617-052912.
13.Scheffer, I. E., Berkovic, S., Capovilla, G. et al., ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology, Epilepsia, 58 (2017), 512–21. DOI: https://doi.org/10.1111/epi.13709.
14.Teubel, R., Rett, A., Neugeborenen Krampfe im Rahmen einer epileptisch belasten Familie, Wien Klin Wochenschr, 76 (1964), 609–13.
15.Leppert, M., Anderson, V. E., Quattlebaum, T. et al., Benign familial neonatal convulsions linked to genetic markers on chromosome 20, Nature, 337 (1989), 647–8. DOI: https://doi.org/10.1038/337647a0.
16.Lewis, T. B., Leach, R. J., Ward, K., O’Connell, P., Ryan, S. G., Genetic heterogeneity in benign familial neonatal convulsions: identification of a new locus on chromosome 8q, Am J Hum Genet, 53 (1993), 670–5.
17.Biervert, C., Schroeder, B. C., Kubisch, C. et al., A potassium channel mutation in neonatal human epilepsy, Science, 279 (1998), 403–6. DOI: https://doi.org/10.1126/science.279.5349.403.
18.Schwartz, P. J., Crotti, L., Insolia, R., Long-QT syndrome: from genetics to management, Circ Arrhythm Electrophysiol, 5 (2012), 868–77. DOI: https://doi.org/10.1161/circep.111.962019.
19.Kubisch, C., Schroeder, B. C., Friedrich, T. et al., KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness, Cell, 96 (1999), 437–46. DOI: https://doi.org/10.1016/s0092-8674(00)80556-5.
20.Soldovieri, M. V., Miceli, F., Taglialatela, M., Driving with no brakes: molecular pathophysiology of Kv7 potassium channels, Physiology (Bethesda), 26 (2011), 365–76. DOI: https://doi.org/10.1152/physiol.00009.2011.
21.Lehman, A., Thouta, S., Mancini, G. M. S. et al., Loss-of-function and gain-of-function mutations in KCNQ5 cause intellectual disability or epileptic encephalopathy, Am J Hum Genet, 101 (2017), 6574. DOI: https://doi.org/10.1016/j.ajhg.2017.05.016.
22.Wang, H. S., Pan, Z., Shi, W. et al., KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel, Science, 282 (1998), 1890–3. DOI: https://doi.org/10.1126/science.282.5395.1890.
23.Yang, W. P., Levesque, P. C., Little, W. A. et al., Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy, J Biol Chem, 273 (1998), 19419–23. DOI: https://doi.org/10.1074/jbc.273.31.19419.
24.Springer, K., Varghese, N., Tzingounis, A. V., Flexible Stoichiometry: implications for KCNQ2- and KCNQ3-associated neurodevelopmental disorders, Dev Neurosci, 43 (2021), 191200. DOI: https://doi.org/10.1159/000515495.
25.Dirkx, N., Miceli, F., Taglialatela, M., Weckhuysen, S., The role of Kv7.2 in neurodevelopment: insights and gaps in our understanding, Front Physiol, 11 (2020), 570588. DOI: https://doi.org/10.3389/fphys.2020.570588.
26.Martire, M., Castaldo, P., D’Amico, M., Preziosi, P., Annunziato, L., Taglialatela, M., M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals, J Neurosci, 24 (2004), 592–7. DOI: https://doi.org/10.1523/JNEUROSCI.3143-03.2004.
27.Martire, M., D’Amico, M., Panza, E. et al., Involvement of KCNQ2 subunits in [3H]dopamine release triggered by depolarization and pre-synaptic muscarinic receptor activation from rat striatal synaptosomes, J Neurochem, 102 (2007), 179–93. DOI: https://doi.org/10.1111/j.1471-4159.2007.04562.x.
28.Friedman, A. K., Juarez, B., Ku, S. M. et al., KCNQ channel openers reverse depressive symptoms via an active resilience mechanism, Nat Commun, 7 (2016), 11671. DOI: https://doi.org/10.1038/ncomms11671.
29.Aiken, S. P., Lampe, B. J., Murphy, P. A., Brown, B. S., Reduction of spike frequency adaptation and blockade of M-current in rat CA1 pyramidal neurones by linopirdine (DuP 996), a neurotransmitter release enhancer, Br J Pharmacol, 115 (1995), 1163–8. DOI: https://doi.org/10.1111/j.1476-5381.1995.tb15019.x.
30.Rockwood, K., Beattie, B. L., Eastwood, M. R. et al., A randomized, controlled trial of linopirdine in the treatment of Alzheimer’s disease, Can J Neurol Sci, 24 (1997), 140–5. DOI: https://doi.org/10.1017/s031716710002148x.
31.Miceli, F., Soldovieri, M. V., Ambrosino, P., Manocchio, L., Mosca, I., Taglialatela, M., Pharmacological targeting of neuronal Kv7.2/3 channels: a focus on chemotypes and receptor sites, Curr Med Chem, 25 (2018), 2637–60. DOI: https://doi.org/10.2174/0929867324666171012122852.
32.Szelenyi, I., Flupirtine, a re-discovered drug, revisited, Inflamm Res, 62 (2013), 251–8. DOI: https://doi.org/10.1007/s00011-013-0592-5.
33.Jakovlev, V., Achterrath-Tuckermann, U., von Schlichtegroll, A., Stroman, F., Thiemer, K., [General pharmacologic studies on the analgesic flupirtine], Arzneimittelforschung, 35 (1985), 4455.
34.Rostock, A., Tober, C., Rundfeldt, C. et al., D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures, Epilepsy Res, 23 (1996), 211–23. DOI: https://doi.org/10.1016/0920-1211(95)00101-8.
35.Rundfeldt, C., The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells, Eur J Pharmacol, 336 (1997), 243–9. DOI: https://doi.org/10.1016/s0014-2999(97)01249-1.
36.Garin Shkolnik, T., Feuerman, H., Didkovsky, E. et al., Blue-gray mucocutaneous discoloration: a new adverse effect of ezogabine, JAMA Dermatol, 150 (2014), 984–9. DOI: https://doi.org/10.1001/jamadermatol.2013.8895.
37.Clark, S., Antell, A., Kaufman, K., New antiepileptic medication linked to blue discoloration of the skin and eyes, Ther Adv Drug Saf, 6 (2015), 15–9. DOI: https://doi.org/10.1177/2042098614560736.
38.Ostacolo, C., Miceli, F., Di Sarno, V. et al., Synthesis and pharmacological characterization of conformationally restricted retigabine analogues as novel neuronal kv7 channel activators, J Med Chem, 63 (2020), 163–85. DOI: https://doi.org/10.1021/acs.jmedchem.9b00796.
39.Bock, C., Link, A., How to replace the lost keys? Strategies toward safer KV7 channel openers, Future Med Chem, 11.4 (2019). DOI: https://doi.org/10.4155/fmc-2018-0350.
40.Delmas, P., Brown, D. A., Pathways modulating neural KCNQ/M (Kv7) potassium channels, Nat Rev Neurosci, 6 (2005), 850–62. DOI: https://doi.org/10.1038/nrn1785.
41.Zhang, J., Kim, E. C., Chen, C. et al., Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy, Sci Rep, 10 (2020), 4756. DOI: https://doi.org/10.1038/s41598-020-61697-6.
42.Sun, J., MacKinnon, R., Structural basis of human KCNQ1 modulation and gating, Cell, 180 (2020), 340–7 e9. DOI: https://doi.org/10.1016/j.cell.2019.12.003.
43.Greene, D. L., Hoshi, N., Modulation of Kv7 channels and excitability in the brain, Cell Mol Life Sci, 74 (2017), 495508. DOI: https://doi.org/10.1007/s00018-016-2359-y.
44.Hoshi, N., M-current suppression, seizures and lipid metabolism: a potential link between neuronal kv7 channel regulation and dietary therapies for epilepsy, Front Physiol, 11 (2020), 513. DOI: https://doi.org/10.3389/fphys.2020.00513.
45.Schroeder, B. C., Kubisch, C., Stein, V., Jentsch, T. J., Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy, Nature, 396 (1998), 687–90. DOI: https://doi.org/10.1038/25367.
46.Kim, H. J., Jeong, M. H., Kim, K. R. et al., Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression, Elife, 5 (2016). DOI: https://doi.org/10.7554/eLife.17159.
47.Gamper, N., Zaika, O., Li, Y. et al., Oxidative modification of M-type K(+) channels as a mechanism of cytoprotective neuronal silencing, EMBO J, 25 (2006), 49965004. DOI: https://doi.org/10.1038/sj.emboj.7601374.
48.Saganich, M. J., Machado, E., Rudy, B., Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain, J Neurosci, 21 (2001), 4609–24. DOI: https://doi.org/10.1523/JNEUROSCI.21-13-04609.2001.
49.Cooper, E. C., Harrington, E., Jan, Y. N., Jan, L. Y., M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain, J Neurosci, 21 (2001), 9529–40. DOI: https://doi.org/10.1523/JNEUROSCI.21-24-09529.2001.
50.Galvin, V. C., Yang, S. T., Paspalas, C. D. et al., Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex, Neuron, 106 (2020), 649–61. DOI: https://doi.org/10.1016/j.neuron.2020.02.030.
51.Battefeld, A., Tran, B. T., Gavrilis, J., Cooper, E. C., Kole, M. H., Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons, J Neurosci, 34 (2014), 3719–32. DOI: https://doi.org/10.1523/JNEUROSCI.4206-13.2014.
52.Yue, C., Yaari, Y., KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons, J Neurosci, 24 (2004), 4614–24. DOI: https://doi.org/10.1523/JNEUROSCI.0765-04.2004.
53.Gu, N., Vervaeke, K., Hu, H., Storm, J. F., Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells, J Physiol, 566 (2005), 689715. DOI: https://doi.org/10.1113/jphysiol.2005.086835.
54.Peters, H. C., Hu, H., Pongs, O., Storm, J. F., Isbrandt, D., Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior, Nat Neurosci, 8 (2005), 5160. DOI: https://doi.org/10.1038/nn1375.
55.Soh, H., Pant, R., LoTurco, J. J., Tzingounis, A. V., Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability, J Neurosci, 34 (2014), 5311–21. DOI: https://doi.org/10.1523/JNEUROSCI.3919-13.2014.
56.Hu, W., Bean, B. P., Differential control of axonal and somatic resting potential by voltage-dependent conductances in cortical layer 5 pyramidal neurons, Neuron, 99 (2018), 1315–26. DOI: https://doi.org/10.1016/j.neuron.2018.08.042.
57.Verneuil, J., Brocard, C., Trouplin, V., Villard, L., Peyronnet-Roux, J., Brocard, F., The M-current works in tandem with the persistent sodium current to set the speed of locomotion, PLoS Biol, 18 (2020), e3000738. DOI: https://doi.org/10.1371/journal.pbio.3000738.
58.Niday, Z., Hawkins, V. E., Soh, H., Mulkey, D. K., Tzingounis, A. V., Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of layer 2/3 pyramidal neurons, J Neurosci, 37 (2017), 576–86. DOI: https://doi.org/10.1523/JNEUROSCI.1425-16.2016.
59.Lawrence, J. J., Saraga, F., Churchill, J. F. et al., Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons, J Neurosci, 26 (2006), 12325–38. DOI: https://doi.org/10.1523/JNEUROSCI.3521-06.2006.
60.Goff, K. M., Goldberg, E. M., Vasoactive intestinal peptide-expressing interneurons are impaired in a mouse model of Dravet syndrome, Elife, 8 (2019). DOI: https://doi.org/10.7554/eLife.46846.
61.Soh, H., Park, S., Ryan, K., Springer, K., Maheshwari, A., Tzingounis, A. V., Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission, Elife, 7 (2018). DOI: https://doi.org/10.7554/eLife.38617.
62.Milh, M., Roubertoux, P., Biba, N. et al., A knock-in mouse model for KCNQ2-related epileptic encephalopathy displays spontaneous generalized seizures and cognitive impairment, Epilepsia, 61 (2020), 868–78. DOI: https://doi.org/10.1111/epi.16494.
63.Otto, J. F., Yang, Y., Frankel, W. N., White, H. S., Wilcox, K. S., A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons, J Neurosci, 26 (2006), 2053–9. DOI: https://doi.org/10.1523/JNEUROSCI.1575-05.2006.
64.Singh, N. A., Otto, J. F., Dahle, E. J. et al., Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization, J Physiol, 586 (2008), 3405–23. DOI: https://doi.org/10.1113/jphysiol.2008.154971.
65.Bi, Y., Chen, H., Su, J., Cao, X., Bian, X., Wang, K., Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice, Mol Pain, 7 (2011), 84. DOI: https://doi.org/10.1186/1744-8069-7-84.
66.Simkin, D., Marshall, K. A., Vanoye, C. G. et al., Dyshomeostatic modulation of Ca(2+)-activated K(+) channels in a human neuronal model of KCNQ2 encephalopathy, Elife, 10 (2021). DOI: https://doi.org/10.7554/eLife.64434.
67.Gautron, L., Elmquist, J. K., Williams, K. W., Neural control of energy balance: translating circuits to therapies, Cell, 161 (2015), 133–45. DOI: https://doi.org/10.1016/j.cell.2015.02.023.
68.Dietrich, M. O., Zimmer, M. R., Bober, J., Horvath, T. L., Hypothalamic AgRP neurons drive stereotypic behaviors beyond feeding, Cell, 160 (2015), 1222–32. DOI: https://doi.org/10.1016/j.cell.2015.02.024.
69.Roepke, T. A., Qiu, J., Smith, A. W., Ronnekleiv, O. K., Kelly, M. J., Fasting and 17beta-estradiol differentially modulate the M-current in neuropeptide Y neurons, J Neurosci, 31 (2011), 11825–35. DOI: https://doi.org/10.1523/JNEUROSCI.1395-11.2011.
70.Stincic, T. L., Bosch, M. A., Hunker, A. C. et al., CRISPR knockdown of Kcnq3 attenuates the M-current and increases excitability of NPY/AgRP neurons to alter energy balance, Mol Metab, 49 (2021), 101218. DOI: https://doi.org/10.1016/j.molmet.2021.101218.
71.Zhou, J. J., Gao, Y., Kosten, T. A., Zhao, Z., Li, D. P., Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis, Neuropharmacology, 114 (2017), 6776. DOI: https://doi.org/10.1016/j.neuropharm.2016.11.024.
72.Nappi, P., Miceli, F., Soldovieri, M. V., Ambrosino, P., Barrese, V., Taglialatela, M., Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction, Pflugers Arch, 472 (2020), 881–98. DOI: https://doi.org/10.1007/s00424-020-02404-2.
73.Mulkey, S. B., Ben-Zeev, B., Nicolai, J. et al., Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H, Epilepsia, 58 (2017), 436–45. DOI: https://doi.org/10.1111/epi.13676.
74.Guyenet, P. G., Bayliss, D. A., Neural Control of Breathing and CO2 Homeostasis, Neuron, 87 (2015), 946–61. DOI: https://doi.org/10.1016/j.neuron.2015.08.001.
75.Li, K., Abbott, S. B. G., Shi, Y., Eggan, P., Gonye, E. C., Bayliss, D. A., TRPM4 mediates a subthreshold membrane potential oscillation in respiratory chemoreceptor neurons that drives pacemaker firing and breathing, Cell Rep, 34 (2021), 108714. DOI: https://doi.org/10.1016/j.celrep.2021.108714.
76.Symonds, J. D., Zuberi, S. M., Stewart, K. et al., Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort, Brain, 142 (2019), 2303–18. DOI: https://doi.org/10.1093/brain/awz195.
77.Vanoye, C. G., Desai, R. R., Ji, Z. et al., High-throughput evaluation of epilepsy-associated KCNQ2 variants reveals functional and pharmacological heterogeneity, JCI Insight, in press (2022). DOI: https://doi.org/10.1172/jci.insight.156314
78.Miceli, F., Soldovieri, M. V., Ambrosino, P. et al., Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits, Proc Natl Acad Sci U S A, 110 (2013), 4386–91. DOI: https://doi.org/10.1073/pnas.1216867110.
79.Orhan, G., Bock, M., Schepers, D. et al., Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy, Ann Neurol, 75 (2014), 382–94. DOI: https://doi.org/10.1002/ana.24080.
80.Millichap, J. J., Park, K. L., Tsuchida, T. et al., KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients, Neurol Genet, 2 (2016), e96. DOI: https://doi.org/10.1212/NXG.0000000000000096.
81.Goto, A., Ishii, A., Shibata, M., Ihara, Y., Cooper, E. C., Hirose, S., Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy, Epilepsia, 60 (2019), 1870–80. DOI: https://doi.org/10.1111/epi.16314.
82.Millichap, J. J., Miceli, F., De Maria, M. et al., Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant, Epilepsia, 58 (2017), e10–e5. DOI: https://doi.org/10.1111/epi.13601.
83.Miceli, F., Soldovieri, M. V., Ambrosino, P. et al., Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits, J Neurosci, 35 (2015), 3782–93. DOI: https://doi.org/10.1523/JNEUROSCI.4423-14.2015.
84.Niday, Z., Tzingounis, A. V., Potassium Channel Gain of Function in Epilepsy: An Unresolved Paradox, Neuroscientist, 24 (2018), 368–80. DOI: https://doi.org/10.1177/1073858418763752.
85.Numis, A. L., Angriman, M., Sullivan, J. E. et al., KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response, Neurology, 82 (2014), 368–70. DOI: https://doi.org/10.1212/WNL.0000000000000060.
86.Cornet, M. C., Morabito, V., Lederer, D. et al., Neonatal presentation of genetic epilepsies: early differentiation from acute provoked seizures, Epilepsia, (2021). DOI: https://doi.org/10.1111/epi.16957.
87.Sands, T. T., Balestri, M., Bellini, G. et al., Rapid and safe response to low-dose carbamazepine in neonatal epilepsy, Epilepsia, 57 (2016), 2019–30. DOI: https://doi.org/10.1111/epi.13596.
88.Vilan, A., Mendes Ribeiro, J., Striano, P. et al., A distinctive ictal amplitude-integrated electroencephalography pattern in newborns with neonatal epilepsy associated with KCNQ2 mutations, Neonatology, 112 (2017), 387–93. DOI: https://doi.org/10.1159/000478651.
89.Pisano, T., Numis, A. L., Heavin, S. B. et al., Early and effective treatment of KCNQ2 encephalopathy, Epilepsia, 56 (2015), 685–91. DOI: https://doi.org/10.1111/epi.12984.
90.Miceli, F., Carotenuto, L., Barrese, V. et al., A Novel Kv7.3 Variant in the voltage-sensing S4 segment in a family with benign neonatal epilepsy: functional characterization and in vitro rescue by β-Hydroxybutyrate, Front Physiol, 11 (2020). DOI: https://doi.org/10.3389/fphys.2020.01040.
91.Grinton, B. E., Heron, S. E., Pelekanos, J. T. et al., Familial neonatal seizures in 36 families: clinical and genetic features correlate with outcome, Epilepsia, 56 (2015), 1071–80. DOI: https://doi.org/10.1111/epi.13020.
92.Ronen, G. M., Rosales, T. O., Connolly, M., Anderson, V. E., Leppert, M., Seizure characteristics in chromosome 20 benign familial neonatal convulsions, Neurology, 43 (1993), 1355–60. DOI: https://doi.org/10.1212/wnl.43.7.1355.
93.Shellhaas, R. A., Wusthoff, C. J., Tsuchida, T. N. et al., Profile of neonatal epilepsies: characteristics of a prospective US cohort, Neurology, 89 (2017), 893–9. DOI: https://doi.org/10.1212/WNL.0000000000004284.
94.Zara, F., Specchio, N., Striano, P. et al., Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance, Epilepsia, 54 (2013), 425–36. DOI: https://doi.org/10.1111/epi.12089.
95.Miceli, F., Striano, P., Soldovieri, M. V. et al., A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability, Epilepsia, 56 (2015), e15e20. DOI: https://doi.org/10.1111/epi.12887.
96.Dedek, K., Kunath, B., Kananura, C., Reuner, U., Jentsch, T. J., Steinlein, O. K., Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel, Proc Natl Acad Sci U S A, 98 (2001), 12272–7. DOI: https://doi.org/10.1073/pnas.211431298.
97.Blumkin, L., Suls, A., Deconinck, T. et al., Neonatal seizures associated with a severe neonatal myoclonus like dyskinesia due to a familial KCNQ2 gene mutation, Eur J Paediatr Neurol, 16 (2012), 356–60. DOI: https://doi.org/10.1016/j.ejpn.2011.11.004.
98.Soldovieri, M. V., Boutry-Kryza, N., Milh, M. et al., Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A, Hum Mutat, 35 (2014), 356–67. DOI: https://doi.org/10.1002/humu.22500.
99.Milh, M., Lacoste, C., Cacciagli, P. et al., Variable clinical expression in patients with mosaicism for KCNQ2 mutations, Am J Med Genet A, 167A (2015), 2314–8. DOI: https://doi.org/10.1002/ajmg.a.37152.
100.Sadewa, A. H., Sasongko, T. H., M.J. Lee et al., Germ-line mutation of KCNQ2, p.R213W, in a Japanese family with benign familial neonatal convulsion, Pediatr Int, 50 (2008), 167–71. DOI: https://doi.org/10.1111/j.1442-200X.2008.02539.x.
101.Weckhuysen, S., Mandelstam, S., Suls, A. et al., KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy, Ann Neurol, 71 (2012), 1525. DOI: https://doi.org/10.1002/ana.22644.
102.Weckhuysen, S., Ivanovic, V., Hendrickx, R. et al., Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients, Neurology, 81 (2013), 1697–703. DOI: https://doi.org/10.1212/01.wnl.0000435296.72400.a1.
103.Olson, H. E., Kelly, M., LaCoursiere, C. M. et al., Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression, Ann Neurol, 81 (2017), 419–29. DOI: https://doi.org/10.1002/ana.24883.
104.Saitsu, H., Kato, M., Koide, A. et al., Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome, Ann Neurol, 72 (2012), 298300. DOI: https://doi.org/10.1002/ana.23620.
105.Kato, M., Yamagata, T., Kubota, M. et al., Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation, Epilepsia, 54 (2013), 1282–7. DOI: https://doi.org/10.1111/epi.12200.
106.Malerba, F., Alberini, G., Balagura, G. et al., Genotype-phenotype correlations in patients with de novo KCNQ2 pathogenic variants, Neurol Genet, 6 (2020), e528. DOI: https://doi.org/10.1212/NXG.0000000000000528.
107.Boets, S., Johannesen, K. M., Destree, A. et al., Adult phenotype of KCNQ2 encephalopathy, J Med Genet, (2021). DOI: https://doi.org/10.1136/jmedgenet-2020-107449.
108.Lauritano, A., Moutton, S., Longobardi, E. et al., A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy, Epilepsia Open, 4 (2019), 464–75. DOI: https://doi.org/10.1002/epi4.12353.
109.Kothur, K., Holman, K., Farnsworth, E. et al., Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy, Seizure, 59 (2018), 132–40. DOI: https://doi.org/10.1016/j.seizure.2018.05.005.
110.Ambrosino, P., Freri, E., Castellotti, B. et al., Kv7.3 compound heterozygous variants in early onset encephalopathy reveal additive contribution of c-terminal residues to PIP2-dependent K(+) channel gating, Mol Neurobiol, 55 (2018), 7009–24. DOI: https://doi.org/10.1007/s12035-018-0883-5.
111.Sands, T. T., Miceli, F., Lesca, G. et al., Autism and developmental disability caused by KCNQ3 gain-of-function variants, Ann Neurol, 86 (2019), 181–92. DOI: https://doi.org/10.1002/ana.25522.
112.Devaux, J., Abidi, A., Roubertie, A. et al., A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity, Epilepsia, 57 (2016), e87e93. DOI: https://doi.org/10.1111/epi.13366.
113.Epi4K Consortium, E. P. G. Project, A. S. Allen et al., De novo mutations in epileptic encephalopathies, Nature, 501 (2013), 217–21. DOI: https://doi.org/10.1038/nature12439.
114.Deciphering Developmental Disorders Study, Prevalence and architecture of de novo mutations in developmental disorders, Nature, 542 (2017), 433–8. DOI: https://doi.org/10.1038/nature21062.
115.Mary, L., Nourisson, E., Feger, C. et al., Pathogenic variants in KCNQ2 cause intellectual deficiency without epilepsy: broadening the phenotypic spectrum of a potassium channelopathy, Am J Med Genet A, 185 (2021), 1803–15. DOI: https://doi.org/10.1002/ajmg.a.62181.
116.Bartha, A. I., Shen, J., Katz, K. H. et al., Neonatal seizures: multicenter variability in current treatment practices, Pediatr Neurol, 37 (2007), 8590. DOI: https://doi.org/10.1016/j.pediatrneurol.2007.04.003.
117.Glass, H. C., Shellhaas, R. A., Wusthoff, C. J. et al., Contemporary profile of seizures in neonates: a prospective cohort study, J Pediatr, 174 (2016), 98–103.e1. DOI: https://doi.org/10.1016/j.jpeds.2016.03.035.
118.Vento, M., de Vries, L. S., Alberola, A. et al., Approach to seizures in the neonatal period: a European perspective, Acta Paediatr, 99 (2010), 497501. DOI: https://doi.org/10.1111/j.1651-2227.2009.01659.x.
119.Sharpe, C., Reiner, G. E., Davis, S. L. et al., Levetiracetam versus phenobarbital for neonatal seizures: a randomized controlled trial, Pediatrics, 145 (2020). DOI: https://doi.org/10.1542/peds.2019-3182.
120.Maeda, T., Shimizu, M., Sekiguchi, K. et al., Exacerbation of benign familial neonatal epilepsy induced by massive doses of phenobarbital and midazolam, Pediatr Neurol, 51 (2014), 259–61. DOI: https://doi.org/10.1016/j.pediatrneurol.2014.04.004.
121.Howell, K. B., McMahon, J. M., Carvill, G. L. et al., SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures, Neurology, 85 (2015), 958–66. DOI: https://10.1212/WNL.0000000000001926.
122.Bittigau, P., Sifringer, M., Ikonomidou, C., Antiepileptic drugs and apoptosis in the developing brain, Ann N Y Acad Sci, 993 (2003), 103–14; discussion 23–4. DOI: https://doi.org/10.1111/j.1749-6632.2003.tb07517.x.
123.Kaindl, A. M., Asimiadou, S., Manthey, D., Hagen, M. V., Turski, L., Ikonomidou, C., Antiepileptic drugs and the developing brain, Cell Mol Life Sci, 63 (2006), 399413. DOI: https://doi.org/10.1007/s00018-005-5348-0.
124.Kim, J. S., Kondratyev, A., Tomita, Y., Gale, K., Neurodevelopmental impact of antiepileptic drugs and seizures in the immature brain, Epilepsia, 48 Suppl 5 (2007), 1926. DOI: https://doi.org/10.1111/j.1528-1167.2007.01285.x.
125.Yanai, J., Fares, F., Gavish, M. et al., Neural and behavioral alterations after early exposure to phenobarbital, Neurotoxicology, 10 (1989), 543–54.
126.Shellhaas, R. A., Neonatal seizures reach the mainstream: The ILAE classification of seizures in the neonate, Epilepsia, 62 (2021), 629–31. DOI: https://doi.org/10.1111/epi.16857.
127.Haines, S. T., Casto, D. T., Treatment of infantile spasms, Ann Pharmacother, 28 (1994), 779–91. DOI: https://doi.org/10.1177/106002809402800616.
128.Hussain, S. A., Heesch, J., Weng, J., Rajaraman, R. R., Numis, A. L., Sankar, R., Potential induction of epileptic spasms by nonselective voltage-gated sodium channel blockade: Interaction with etiology, Epilepsy Behav, 115 (2021), 107624. DOI: https://doi.org/10.1016/j.yebeh.2020.107624.
129.Reif, P. S., Tsai, M. H., Helbig, I., Rosenow, F., Klein, K. M., Precision medicine in genetic epilepsies: break of dawn?, Expert Rev Neurother, 17 (2017), 381–92. DOI: https://doi.org/10.1080/14737175.2017.1253476.
130.Pressler, R. M., Lagae, L., Why we urgently need improved seizure and epilepsy therapies for children and neonates, Neuropharmacology, 170 (2020), 107854. DOI: https://doi.org/10.1016/j.neuropharm.2019.107854.
131.Kuersten, M., Tacke, M., Gerstl, L., Hoelz, H., Stülpnagel, C. V., Borggraefe, I., Antiepileptic therapy approaches in KCNQ2 related epilepsy: A systematic review, Eur J Med Genet, 63 (2020), 103628. DOI: https://doi.org/10.1016/j.ejmg.2019.02.001.
132.Brodie, M. J., Sodium channel blockers in the treatment of epilepsy, CNS Drugs, 31 (2017), 527–34. DOI: https://doi.org/10.1007/s40263-017-0441-0.
133.Pan, Z., Kao, T., Horvath, Z. et al., A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon, J Neurosci, 26 (2006), 2599–613. DOI: https://doi.org/10.1523/jneurosci.4314-05.2006.
134.Bialer, M., Johannessen, S. I., Koepp, M. J. et al., Progress report on new antiepileptic drugs: a summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). I. Drugs in preclinical and early clinical development, Epilepsia, 61 (2020), 2340–64. DOI: https://doi.org/10.1111/epi.16725.
135.Premoli, I., Rossini, P. G., Goldberg, P. Y. et al., TMS as a pharmacodynamic indicator of cortical activity of a novel anti-epileptic drug, XEN1101, Ann Clin Transl Neurol, 6 (2019), 2164–74. DOI: https://doi.org/10.1002/acn3.50896.
136.Chen, D. Y., Chowdhury, S., Farnaes, L. et al., Rapid diagnosis of KCNQ2-associated early infantile epileptic encephalopathy improved outcome, Pediatr Neurol, 86 (2018), 6970. DOI: https://doi.org/10.1016/j.pediatrneurol.2018.06.002.
137.Han, Z., Chen, C., Christiansen, A. et al., Antisense oligonucleotides increase SCN1A expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome, Sci Transl Med, 12 (2020). DOI: https://doi.org/10.1126/scitranslmed.aaz6100.
138.Lenk, G. M., Jafar-Nejad, P., Hill, S. F. et al., SCN8A antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet Syndrome, Ann Neurol, 87 (2020), 339–46. DOI: https://doi.org/10.1002/ana.25676.
139.Carvill, G. L., Matheny, T., Hesselberth, J., Demarest, S., Haploinsufficiency, dominant negative, and gain-of-function mechanisms in epilepsy: matching therapeutic approach to the pathophysiology, Neurotherapeutics, 18 (2021), 1500–14. DOI: https://doi.org/10.1007/s13311-021-01137-z.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.