Skip to main content
×
Home
Lectures on K3 Surfaces
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Lectures on K3 Surfaces
    • Online ISBN: 9781316594193
    • Book DOI: https://doi.org/10.1017/CBO9781316594193
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Reviews

‘K3 surfaces play something of a magical role in algebraic geometry and neighboring areas. They arise in astonishingly varied contexts, and the study of K3 surfaces has propelled the development of many of the most powerful tools in the field. The present lectures provide a comprehensive and wide-ranging survey of this fascinating subject. Suitable both for study and as a reference work, and written with Huybrechts's usual clarity of exposition, this book is destined to become the standard text on K3 surfaces.'

Rob Lazarsfeld - State University of New York, Stony Brook

‘This book will be extremely valuable to all mathematicians who are interested in K3 surfaces and related topics. It not only serves as an excellent introduction, but also covers a wide variety of advanced subjects, ranging from complex geometry to derived geometry and arithmetic.'

Klaus Hulek - Leibniz Universität Hannover

‘Since the nineteenth century, K3 surfaces have been a source of intriguing examples, problems and theorems. Huybrechts' book is a beautiful and reader-friendly presentation of the main results regarding this special class of varieties. The author fully succeeded in illustrating the richness of concepts and techniques which come into play in the theory of K3 surfaces.'

Kieran G. O'Grady - Università degli Studi di Roma ‘La Sapienza', Italy

‘K3 surfaces play a ubiquitous role in algebraic geometry. At first glance they seem to be well understood and easy to describe, still they provide non-trivial examples of the most fundamental concepts: Hodge structures, moduli spaces, Chow ring, vector bundles, Picard and Brauer groups … Huybrechts' book, written with the usual talent of the author, is the first to cover systematically all these aspects. It will be an invaluable reference for algebraic geometers.'

Arnaud Beauville - Université de Nice, Sophia Antipolis

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 975 *
Loading metrics...

Book summary page views

Total views: 600 *
Loading metrics...

* Views captured on Cambridge Core between 13th October 2016 - 26th May 2017. This data will be updated every 24 hours.