Skip to main content Accessibility help
×
  • Cited by 73
Publisher:
Cambridge University Press
Online publication date:
November 2011
Print publication year:
2011
Online ISBN:
9780511997754

Book description

This book provides a comprehensive treatment of the Gross–Pitaevskii equation with a periodic potential; in particular, the localized modes supported by the periodic potential. It takes the mean-field model of the Bose–Einstein condensation as the starting point of analysis and addresses the existence and stability of localized modes. The mean-field model is simplified further to the coupled nonlinear Schrödinger equations, the nonlinear Dirac equations, and the discrete nonlinear Schrödinger equations. One of the important features of such systems is the existence of band gaps in the wave transmission spectra, which support stationary localized modes known as the gap solitons. These localized modes realise a balance between periodicity, dispersion and nonlinearity of the physical system. Written for researchers in applied mathematics, this book mainly focuses on the mathematical properties of the Gross–Pitaevskii equation. It also serves as a reference for theoretical physicists interested in localization in periodic potentials.

Reviews

"The book brilliantly harnesses powerful techniques, teaches them "on-the-job" and illustrates them with a profound and beautiful analysis of these equations, unreally real as suggested by one slogan of Chapter 2, a quote by Einstein, :As far as the laws of mathematics refer to reality, they are not certain; as far as they are certain, they do no refer to reality."
Emma Previato, Mathematics Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
bibliography
[1] Ablowitz, M.J.; Clarkson, P.A.; Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991).
[2] Ablowitz, M.J.; Prinari, B.; Trubach, A.D.; Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004).
[3] Aftalion, A.; Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and Their Applications 67 (Birkhäuser, Boston, 2006).
[4] Aftalion, A.; Helfler, B.; “On mathematical models for Bose–Einstein condensates in optical lattices”, Rev. Math. Phys. 21 (2009), 229–278.
[5] Agrawal, G.P.; Kivshar, Yu.S.; Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
[6] Agueev, D.; Pelinovsky, D.; “Modeling of wave resonances in low-contrast photonic crystals”, SIAM J. Appl. Math. 65 (2005), 1101–1129.
[7] Akhmediev, N.; Ankiewicz, A.; Solitons: Nonlinear Pulses and Beams (Kluwer Academic, Dordrecht, 1997).
[8] Al Khawaja, U.; “A comparative analysis of Painlevé, Lax pair, and similarity transformation methods in obtaining the integrability conditions of nonlinear Schrödinger equations”, J. Math. Phys. 51 (2010), 053506 (11 pp.).
[9] Alama, S.; Li, Y.Y.; “Existence of solutions for semilinear elliptic equations with indefinite linear part”, J. Diff. Eqs. 96 (1992), 89–115.
[10] Alfimov, G.L.; Brazhnyi, V.A.; Konotop, V.V.; “On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation”, Physica D 194 (2004), 127–150.
[11] Angulo Pava, J.; Nonlinear Dispersive Equations (Existence and Stability of Solitary and Periodic Travelling Wave Solutions) (AMS, Providence, RI, 2009).
[12] Azizov, T.Ya.; Iohvidov, I.S.; Elements of the Theory of Linear Operators in Spaces with Indefinite Metric (Nauka, Moscow, 1986) [in Russian].
[13] Bambusi, D.; Sacchetti, A.; “Exponential times in the one-dimensional Gross–Pitaevskii equation with multiple well potential”, Comm. Math. Phys. 275 (2007), 1–36.
[14] Barashenkov, I.V.; Oxtoby, O.F.; Pelinovsky, D.E.; “Translationally invariant discrete kinks from one-dimensional maps”, Phys. Rev. E 72 (2005), 035602(R) (4 pp.).
[15] Barashenkov, I.V.; van Heerden, T.C.; “Exceptional discretizations of the sine-Gordon equation”, Phys. Rev. E 77 (2008), 036601 (9 pp.).
[16] Bao, W.; Du, Q.; “Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow”, SIAM J. Sci. Comput. 25 (2004), 1674–1697.
[17] Belmonte-Beitia, J.; Pérez-García, V.M.; Vekslerchik, V.; Torres, P. J.; “Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities”, Discr. Cont. Dyn. Syst. B 9 (2008), 221–233.
[18] Belmonte-Beitia, J.; Pelinovsky, D.E.; “Bifurcation of gap solitons in periodic potentials with a periodic sign-varying nonlinearity coefficient”, Applic. Anal. 89 (2010), 1335–1350.
[19] Belmonte-Beitia, J.; Cuevas, J.; “Solitons for the cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients”, J. Phys. A: Math. Theor. 42 (2009), 165201 (11 pp.).
[20] Bloch, F.; “Über die Quantenmechanik der Electronen in Kristallgittern”, Z. Phys. 52 (1928), 555–600.
[21] Bluman, G.W.; Kumei, S.; Symmetries and Differential Equations (Springer, New York, 1989).
[22] Brugarino, T.; Sciacca, M.; “Integrability of an inhomogeneous nonlinear Schrödinger equation in Bose–Einstein condensates and fiber optics”, J. Math. Phys. 51 (2010), 093503 (18 pp.).
[23] Buffoni, B.; Sere, E.; “A global condition for quasi-random behaviour in a class of conservative systems”, Commun. Pure Appl. Math. 49 (1996), 285–305.
[24] Busch, K.; Schneider, G.; Tkeshelashvili, L.; Uecker, H.; “Justification of the nonlinear Schrödinger equation in spatially periodic media”, Z. Angew. Math. Phys. 57 (2006), 905–939.
[25] Buslaev, V.S.; Perelman, G.S.; “Scattering for the nonlinear Schrödinger equation: states close to a soliton”, St. Petersburg Math. J. 4 (1993), 1111–1142.
[26] Buslaev, V.S.; Perelman, G.S.; “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl. 164 (1995), 75–98.
[27] Buslaev, V.S; Sulem, C.; “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 419–475.
[28] Calvo, D.C.; Akylas, T.R.; “On the formation of bound states by interacting nonlocal solitary waves”, Physica D 101 (1997), 270–288.
[29] Carretero-Gonzáles, R.; Talley, J.D.; Chong, C.; Malomed, B.A.; “Multistable solitons in the cubic–quintic discrete nonlinear Schrödinger equation”, Physica D 216 (2006), 77–89.
[30] Casenawe, T.; Semilinear Schrödinger Equations, Courant Lecture Notes (Courant Institute, New York, 2003).
[31] Champneys, A.R.; Yang, J.; “A scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrödinger systems”, Nonlinearity 15 (2002), 2165–2192.
[32] Chang, S.M.; Gustafson, S.; Nakanishi, K.; Tsai, T.P.; “Spectra of linearized operators for NLS solitary waves”, SIAM J. Math. Anal. 39 (2007), 1070–1111.
[33] Chugunova, M.; Pelinovsky, D.; “Count of unstable eigenvalues in the generalized eigenvalue problem”, J. Math. Phys. 51 (2010), 052901 (19 pp.).
[34] Chugunova, M.; Pelinovsky, D.; “Two-pulse solutions in the fifth-order KdV equation: rigorous theory and numerical approximations”, Discr. Cont. Dyn. Syst. B 8 (2007), 773–800.
[35] Chugunova, M.; Pelinovsky, D.; “Block-diagonalization of the symmetric first-order coupled-mode system”, SIAM J. Appl. Dyn. Syst. 5 (2006), 66–83.
[36] Chugunova, M.; Pelinovsky, D.; “Spectrum of a non-self-adjoint operator associated with the periodic heat equation”, J. Math. Anal. Appl. 342 (2008), 970–988.
[37] Chugunova, M.; Pelinovsky, D.; “On quadratic eigenvalue problems arising in stability of discrete vortices”, Lin. Alg. Appl. 431 (2009), 962–973.
[38] Colin, Th.; “Rigorous derivation of the nonlinear Schrödinger equation and Davey–Stewartston systems with quadratic hyperbolic systems”, Asymptot. Anal. 31 (2002), 69–91.
[39] Colin, M.; Lannes, D.; “Short pulse approximations in dispersive media”, SIAM J. Math. Anal. 41 (2009), 708–732.
[40] Comech, A.; Pelinovsky, D.; “Purely nonlinear instability of standing waves with minimal energy”, Commun. Pure Appl. Math. 56 (2003), 1565–1607.
[41] Cuccagna, S.; “On asymptotic stability in energy space of ground states of NLS in 1D”, J. Diff. Eqs. 245 (2008), 653–691.
[42] Cuccagna, S.; Pelinovsky, D.; “Bifurcations from the end points of the essential spectrum in the linearized NLS problem”, J. Math. Phys. 46 (2005) 053520 (15 pp.).
[43] Cuccagna, S; Pelinovsky, D.; Vougalter, V.; “Spectra of positive and negative energies in the linearized NLS problem”, Commun. Pure Appl. Math. 58 (2005), 1–29.
[44] Cuccagna, S.; Tarulli, M.; “On asymptotic stability of standing waves of discrete Schrödinger equation in ℤ”, SIAM J. Math. Anal. 41 (2009), 861–885.
[45] Demanet, L.; Schlag, W.; “Numerical verification of a gap condition for a linearized NLS equation”, Nonlinearity 19 (2006), 829–852.
[46] Derks, G.; Gottwald, G.A.; “A robust numerical method to study oscillatory instability of gap solitary waves”, SIAM J. Appl. Dyn. Syst. 4 (2005), 140–158.
[47] Dimassi, M.; Sjöstrand, J.; Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Notes 268 (Cambridge University Press, Cambridge, 1999).
[48] Dmitriev, S.V.; Kevrekidis, P.G.; Yoshikawa, N.; “Discrete Klein–Gordon models with static kinks free of the Peierls–Nabarro potential”, J. Phys. A: Math. Gen. 38 (2005), 7617–7627.
[49] Dmitriev, S.V.; Kevrekidis, P.G.; Sukhorukov, A.A.; Yoshikawa, N.; Takeno, S.; “Discrete nonlinear Schrödinger equations free of the Peierls–Nabarro potential”, Phys. Lett. A 356 (2006), 324–332.
[50] Dohnal, D.; Pelinovsky, D.; Schneider, G.; “Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential”, J. Nonlin. Sci. 19 (2009), 95–131.
[51] Dohnal, D.; Uecker, H.; “Coupled-mode equations and gap solitons for the 2D Gross–Pitaevskii equation with a non-separable periodic potential”, Physica D 238 (2009), 860–879.
[52] Eastham, M.S.; The Spectral Theory of Periodic Differential Equations (Scottish Academic Press, Edinburgh, 1973).
[53] Eckmann, J.-P.; Schneider, G.; “Nonlinear stability of modulated fronts for the Swift–Hohenberg equation”, Comm. Math. Phys. 225 (2002), 361–397.
[54] Esteban, M.J.; Séré, É.; “Stationary states of the nonlinear Dirac equation: a variational approach”, Comm. Math. Phys. 171 (1995), 323–350.
[55] Evans, L.C.; Partial Differential Equations (AMS, Providence, RI, 1998).
[56] Feckan, M.; Topological Degree Approach to Bifurcation Problems (Springer, Heidelberg, 2008).
[58] Floer, A.; Weinstein, A.; “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal. 69 (1986), 397–408.
[59] Floquet, G.; “Sur les équations Différentielles linéaires à coefficients périodique”, Ann. École Norm. Sup. 12 (1883), 47–88.
[60] Friesecke, G.; Pego, R.L.; “Solitary waves on FPU lattices”, Nonlinearity 12 (1999), 1601–1627; 15 (2002), 1343–1359; 17 (2004), 207–227; 17 (2004), 229–251.
[61] Gagnon, L.; Winternitz, P.; “Symmetry classes of variable coefficients nonlinear Schrödinger equations”, J. Phys. A: Math. Gen. 26 (1993), 7061–7076.
[62] Gang, Z.; Sigal, I.M.; “Asymptotic stability of nonlinear Schrödinger equations with potential”, Rev. Math. Phys. 17 (2005), 1143–1207.
[63] Gang, Z.; Sigal, I.M.; “Relaxation of solitons in nonlinear Schrödinger equations with potential”, Adv. Math. 216 (2007), 443–490.
[64] García-Ripoll, J.J.; Pérez-García, V.M.; “Optimizing Schrödinger functionals using Sobolev gradients: applications to quantum mechanics and nonlinear optics”, SIAM J. Sci. Comput. 23 (2001), 1315–1333.
[65] Georgieva, A.; Kriecherbauer, T.; Venakides, S.; “Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium”, SIAM J. Appl. Math. 60 (1999), 272–294.
[66] Giannoulis, J.; Mielke, A.; “The nonlinear Schrödinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities”, Nonlinearity 17 (2004), 551–565.
[67] Giannoulis, J.; Mielke, A.; Sparber, C.; “Interaction of modulated pulses in the nonlinear Schrödinger equation with periodic potential”, J. Diff. Eqs. 245 (2008), 939–963.
[68] Giannoulis, J.; Herrmann, M.; Mielke, A.; “Continuum descriptions for the dynamics in discrete lattices: derivation and Justification”, in Analysis, Modeling and Simulation of Multiscale Problems (Springer, Berlin, 2006), pp. 435–466.
[69] Glazman, I.M.; Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (Israel Program for Scienti.c Translation, Jerusalem, 1965).
[70] Gohberg, I.G.; Krein, M.G.; Introduction to the Theory of Linear Non-self-adjoint Operators, Translations of Mathematical Monographs 18 (AMS, Providence, RI, 1969).
[71] Golubitsky, M.; Schaeffer, D.G.; Singularities and Groups in Bifurcation Theory, Volume 1 (Springer, Berlin, 1985).
[72] Goodman, R.H.; Weinstein, M.I.; Holmes, P.J.; “Nonlinear propagation of light in one-dimensional periodic structures”, J. Nonlin. Sci. 11 (2001), 123–168.
[73] Gorshkov, K.A.; Ostrovsky, L.A.; “Interactions of solitons in nonintegrable systems: Direct perturbation method and applications”, Physica D 3 (1981), 428–438.
[74] Grillakis, M.; Shatah, J.; Strauss, W.; “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal. 74 (1987), 160–197.
[75] Grillakis, M.; Shatah, J.; Strauss, W.; “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal. 94 (1990), 308–348.
[76] Grillakis, M.; “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Commun. Pure Appl. Math. 41 (1988), 747–774.
[77] Grillakis, M.; “Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system”, Commun. Pure Appl. Math. 43 (1990), 299–333.
[78] Grimshaw, R.; “Weakly nonlocal solitary waves in a singularly perturbed nonlinear Schrödinger equation”, Stud. Appl. Math. 94 (1995), 257–270.
[79] Groves, M.D.; “Solitary-wave solutions to a class of fifth-order model equations”, Nonlinearity 11 (1998), 341–353.
[80] Groves, M.D.; Schneider, G.; “Modulating pulse solutions for a class of nonlinear wave equations”, Comm. Math. Phys. 219 (2001), 489–522.
[81] Groves, M.D.; Schneider, G.; “Modulating pulse solutions for quasilinear wave equations”, J. Diff. Eqs. 219 (2005), 221–258.
[82] Groves, M.D.; Schneider, G.; “Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales”, Comm. Math. Phys. 278 (2008), 567–625.
[83] Gross, E.P.; “Hydrodynamics of a superfluid concentrate”, J. Math. Phys. 4 (1963), 195–207.
[84] Gurski, K.F.; Kollar, R.; Pego, R.L.; “Slow damping of internal waves in a stably stratified fluid”, Proc. R. Soc. Lond. 460 (2004), 977–994.
[85] Haragus, M.; Kapitula, T.; “On the spectra of periodic waves for infinite-dimensional Hamiltonian systems”, Physica D 237 (2008), 2649–2671.
[86] Helffer, B.; Semi-classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics 1336 (Springer, New York, 1988).
[87] Heinz, H.P.; Küpper, T.; Stuart, C.A.; “Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation”, J. Diff. Eqs. 100 (1992), 341–354.
[88] Hernández-Heredero, R.; Levi, D.; “The discrete nonlinear Schrödinger equation and its Lie symmetry reductions”, J. Nonlin. Math. Phys. 10 (2003), 77–94.
[89] Hislop, P.D.; Sigal, I.M.; Introduction to Spectral Theory with Applications to Schrödinger Operators (Springer, New York, 1996).
[90] Ilan, B.; Weinstein, M. I.; “Band-edge solitons, nonlinear Schrödinger/Gross–Pitaevskii equations and effective media”, Multiscale Model. Simul. 8 (2010), 1055–1101.
[91] Iohvidov, I.S.; Krein, M.G.; Langer, H.; Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric (Mathematische Forschung, Berlin, 1982).
[92] Iooss, G.; “Travelling waves in the Fermi–Pasta–Ulam lattice”, Nonlinearity 13 (2000), 849–866.
[93] Iooss, G.; Adelmeyer, M.; Topics in Bifurcation Theory and Applications (World Scientific, Singapore, 1998).
[94] Iooss, G.; Kirchgassner, K.; “Travelling waves in a chain of coupled nonlinear oscillators”, Comm. Math. Phys. 211 (2000), 439–464.
[95] Iooss, G.; Pelinovsky, D.; “Normal form for travelling kinks in discrete Klein–Gordon lattices”, Physica D 216 (2006), 327–345.
[96] James, G.; Sire, Y.; “Travelling breathers with exponentially small tails in a chain of nonlinear oscillators”, Comm. Math. Phys. 257 (2005), 51–85.
[97] James, G.; Sire, Y.; “Numerical computation of travelling breathers in Klein–Gordon chains”, Physica D 204 (2005), 15–40.
[98] JeanJean, L.; Tanaka, K.; “A remark on least energy solutions in ℝN”, Proc. Amer. Math. Soc. 131 (2002), 2399–2408.
[99] Jones, C.K.R.T.; “An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation”, J. Diff. Eqs. 71 (1988), 34–62.
[100] Jones, C.K.R.T.; “Instability of standing waves for nonlinear Schrödinger-type equations”, Ergod. Theor. Dynam. Sys. 8 (1988), 119–138.
[101] Kapitula, T.; “Stability of waves in perturbed Hamiltonian systems”, Physica D 156 (2001), 186–200.
[102] Kapitula, T.; Kevrekidis, P.G.; “Stability of waves in discrete systems”, Nonlinearity 14 (2001), 533–566.
[103] Kapitula, T.; Kevrekidis, P.; “Bose–Einstein condensates in the presence of a magnetic trap and optical lattice: two-mode approximation”, Nonlinearity 18 (2005), 2491–2512.
[104] Kapitula, T.; Kevrekidis, P.; Chen, Z.; “Three is a crowd: solitary waves in photorefractive media with three potential wells”, SIAM J. Appl. Dyn. Syst. 5 (2006), 598–633.
[105] Kapitula, T.; Kevrekidis, P.; Sandstede, B.; “Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems”, Physica D 195 (2004), 263–282; Addendum: Physica D 201 (2005), 199–201.
[106] Kapitula, T.; Law, K.J.H.; Kevrekidis, P.G.; “Interaction of excited states in twospecies Bose–Einstein condensates: a case study”, SIAM J. Appl. Dyn. Syst. 9 (2010), 34–61.
[107] Kapitula, T.; Sandstede, B.; “Edge bifurcations for near integrable systems via Evans function techniques”, SIAM J. Math. Anal. 33 (2002), 1117–1143.
[108] Kato, T.; Perturbation Theory for Linear Operators (Springer, New York, 1976).
[109] Kaup, D.J.; “Perturbation theory for solitons in optical fibers”, Phys. Rev. A 42 (1990), 5689–5694.
[110] Kevrekidis, P.G.; The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Springer Tracts in Modern Physics 232 (Springer, New York, 2009).
[111] Kevrekidis, P.G.; “On a class of discretizations of Hamiltonian nonlinear partial differential equations”, Physica D 183 (2003), 68–86.
[112] Kevrekidis, P.G.; Pelinovsky, D.E.; Stefanov, A.; “Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation in one dimension”, SIAM J. Math. Anal. 41 (2009), 2010–2030.
[113] Kirrmann, P.; Schneider, G.; Mielke, A.; “The validity of modulation equations for extended systems with cubic nonlinearities”, Proc. Roy. Soc. Edinburgh A 122 (1992), 85–91.
[114] Khare, A.; Dmitriev, S.V.; Saxena, A.; “Exact moving and stationary solutions of a generalized discrete nonlinear Schrödinger equation”, J. Phys. A: Math. Gen. 40 (2007), 11301–11317.
[115] Klaus, M.; Pelinovsky, D.; Rothos, V.M.; “Evans function for Lax operators with algebraically decaying potentials”, J. Nonlin. Sci. 16 (2006), 1–44.
[116] Klaus, M.; Shaw, K.; “On the eigenvalues of Zakharov–Shabat systems”, SIAM J. Math. Anal. 34 (2003), 759–773.
[117] Kohn, W.; “Analytic properties of Bloch waves and Wannier functions”, Phys. Rev. 115 (1959), 809–821.
[118] Kollar, R.; Pego, R.L.; “Spectral stability of vortices in two-dimensional Bose–Einstein condensates via the Evans function and Krein signature”, Appl. Math. Res. Express 2011 (2011), in press (46 pp.).
[119] Kollar, R.; “Homotopy method for nonlinear eigenvalue pencils with applications”, SIAM J. Math. Anal. 43 (2011), 612–633.
[120] Koukouloyannis, V.; Kevrekidis, P.G.; “On the stability of multibreathers in Klein–Gordon chains”, Nonlinearity 22 (2009), 2269–2285.
[121] Kominis, Y.; Hizanidis, K.; “Power dependent soliton location and stability in complex photonic structures”, Opt. Express 16 (2008), 12124–12138.
[122] Krieger, J.; Schlag, W.; “Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension”, J. Amer. Math. Soc. 19 (2006), 815–920.
[123] Kruskal, M.D.; Segur, H.; “Asymptotics beyond all orders in a model of crystal growth”, Stud. Appl. Math. 85 (1991), 129–181.
[124] Küpper, T.; Stuart, C.A.; “Necessary and sufficient conditions for gap-bifurcation”, Nonlin. Anal. 18 (1992), 893–903.
[125] Lakoba, T.; Yang, J.; “A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity”, J. Comput. Phys. 226 (2007), 1668–1692.
[126] Lakoba, T.I.; Yang, J.; “A mode elimination technique to improve convergence of iteration methods for finding solitary waves”, J. Comput. Phys. 226 (2007), 1693–1709.
[127] Lakoba, T.I.; “Conjugate gradient method for finding fundamental solitary waves”, Physica D 238 (2009), 2308–2330.
[128] Lafortune, S.; Lega, J.; “Spectral stability of local deformations of an elastic rod: Hamiltonian formalism”, SIAM J. Math. Anal. 36 (2005), 1726–1741.
[129] Lannes, D.; “Dispersive effects for nonlinear geometrical optics with rectification”, Asymptot. Anal. 18 (1998), 111–146.
[130] Lieb, E.H.; Loss, M.; Analysis, 2nd edn (AMS, Providence, RI, 2001).
[131] Lieb, E.H.; Seiringer, R.; Solovej, J.P.; Yngvason, J.; The Mathematics of the Bose Gas and its Condensation, Oberwolfach Seminars 34 (Birkhäuser, Basel, 2005).
[132] Lin, Z.; “Instability of nonlinear dispersive solitary waves”, J. Funct. Anal. 255 (2008), 1191–1224.
[133] Linares, F.; Ponce, G.; Introduction to Nonlinear Dispersive Equations (Springer, New York, 2009).
[134] Lions, P.-L.; “The concentration compactness principle in the calculus of variations. The locally compact case”, Ann. Inst. Henri Poincaré 1 (1984), 223–283.
[135] Lukas, M.; Pelinovsky, D.E.; Kevrekidis, P.G.; “Lyapunov–Schmidt reduction algorithm for three-dimensional discrete vortices”, Physica D 237 (2008), 339–350.
[136] MacKay, R.S.; Aubry, S.; “Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators”, Nonlinearity 7 (1994), 1623–1643.
[137] MacKay, R.S.; “Slow manifolds”, in Energy Localization and Transfer, eds. T., DauxoisA., Litvak-Hinenzon, R.S., MacKay, and A., Spanoudaki (World Scientific, Singapore, 2004), pp. 149–192.
[138] Mallet-Paret, J.; “The Fredholm alternative for functional differential equations of mixed type”, J. Dyn. Diff. Eqs. 11 (1999), 1–47.
[139] Melvin, T.R.O.; Champneys, A.R.; Kevrekidis, P.G.; Cuevas, J.; “Travelling solitary waves in the discrete Schrödinger equation with saturable nonlinearity: existence, stability and dynamics”, Physica D 237 (2008), 551–567.
[140] Melvin, T.R.O.; Champneys, A.R.; Pelinovsky, D.E.; “Discrete travelling solitons in the Salerno model”, SIAM J. Appl. Dyn. Syst. 8 (2009), 689–709.
[141] Mizumachi, T.; “Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 48 (2008), 471–497.
[142] Morgante, A.M.; Johansson, M.; Kopidakis, G.; Aubry, S.; “Standing wave instabilities in a chain of nonlinear coupled oscillators”, Physica D 162 (2002), 53–94.
[143] Newell, A.C.; Moloney, J.V.; Nonlinear Optics (Westview Press, Boulder, CO, 2003).
[144] Olver, P.J.; Applications of Lie Groups to Differential Equations (Springer, New York, 1993).
[145] Oxtoby, O.F.; Barashenkov, I.V.; “Moving solitons in the discrete nonlinear Schödinger equation”, Phys. Rev. E 76 (2007), 036603 (18 pp.).
[146] Oxtoby, O.F.; Pelinovsky, D.E.; Barashenkov, I.V.; “Travelling kinks in discrete phi-4 models”, Nonlinearity 19 (2006), 217–235.
[147] Pankov, A.; Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lattices (Imperial College Press, London, 2005).
[148] Pankov, A.; “Periodic nonlinear Schrödinger equation with application to photonic crystals”, Milan J. Math. 73 (2005), 259–287.
[149] Pankov, A.; “Gap solitons in periodic discrete nonlinear Schrödinger equations”, Nonlinearity 19 (2006), 27–40.
[150] Pankov, A.; “Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach”, Discr. Cont. Dyn. Syst. 19 (2007), 419–430.
[151] Pego, R.L.; Warchall, H.A.; “Spectrally stable encapsulated vortices for nonlinear Schrödinger equations”, J. Nonlin. Sci. 12 (2002), 347–394.
[152] Pelinovsky, D.E.; “Asymptotic reductions of the Gross–Pitaevskii equation”, in Emergent Nonlinear Phenomena in Bose–Einstein Condensates eds. P.G., KevrekidisD.J., Franzeskakis, and R., Carretero-Gonzalez (Springer, New York, 2008), pp. 377–398.
[153] Pelinovsky, D.E.; “Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations”, Proc. Roy. Soc. Lond. A, 461 (2005), 783–812.
[154] Pelinovsky, D.E.; “Translationally invariant nonlinear Schrödinger lattices”, Nonlinearity 19 (2006), 2695–2716.
[155] Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.; “Stability of discrete solitons in nonlinear Schrödinger lattices”, Physica D 212 (2005), 1–19.
[156] Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.; “Persistence and stability of discrete vortices in nonlinear Schrödinger lattices”, Physica D 212 (2005), 20–53.
[157] Pelinovsky, D.E.; Melvin, T.R.O.; Champneys, A.R.; “One-parameter localized traveling waves in nonlinear Schrödinger lattices”, Physica D 236 (2007), 22–43.
[158] Pelinovsky, D.E.: Rothos, V.M.; “Bifurcations of travelling breathers in the discrete NLS equations”, Physica D 202 (2005), 16–36.
[159] Pelinovsky, D.; Sakovich, A.; “Internal modes of discrete solitons near the anti–continuum limit of the dNLS equation”, Physica D 240 (2011), 265–281.
[160] Pelinovsky, D.E.; Stepanyants, Yu.A.; “Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations”, SIAM J. Numer. Anal. 42 (2004), 1110–1127.
[161] Pelinovsky, D.E.; Sukhorukov, A.A.; Kivshar, Yu.S.; “Bifurcations and stability of gap solitons in periodic potentials”, Phys. Rev. E 70 (2004), 036618 (17 pp.).
[162] Pelinovsky, D.; Schneider, G.; “Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential”, Applic. Anal. 86 (2007), 1017–1036.
[163] Pelinovsky, D.; Schneider, G.; “Moving gap solitons in periodic potentials”, Math. Meth. Appl. Sci. 31 (2008), 1739–1760.
[164] Pelinovsky, D.; Schneider, G.; “Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential”, J. Diff. Eqs. 248 (2010), 837–849.
[165] Pelinovsky, D.; Schneider, G.; MacKay, R.; “Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential”, Comm. Math. Phys. 284 (2008), 803–831.
[166] Pelinovsky, D.E.; Yang, J.; “Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations”, Stud. Appl. Math. 115 (2005), 109–137.
[167] Perelman, G.; “On the formation of singularities in solutions of the critical nonlinear Schrödinger equation”, Ann. Henri Poincaré 2 (2001), 605–673.
[168] Petviashvili, V.I.; “Equation of an extraordinary soliton”, Sov. J. Plasma Phys. 2 (1976), 257–258.
[169] Pillet, C.A.; Wayne, C.E.; “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Diff. Eqs. 141 (1997), 310–326.
[170] Pitaevskii, L.P.; “Vortex lines in an imperfect Bose gas”, Sov. Phys. JETP 13 (1961), 451–454.
[171] Pitaevskii, L.; Stringari, S.; Bose–Einstein Condensation (Oxford University Press, Oxford, 2003).
[172] Pomeau, Y.; Ramani, A.; Grammaticos, B.; “Structural stability of the Korteweg–de Vries solitons under a singular perturbation”, Physica D 31 (1988), 127–134.
[173] Pontryagin, L.S.; “Hermitian operators in spaces with indefinite metric”, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 243–280.
[174] Porter, M.A.; Chugunova, M.; Pelinovsky, D.E.; “Feshbach resonance management of Bose–Einstein condensates in optical lattices”, Phys. Rev. E 74 (2006), 036610 (8 pp.).
[175] Qin, W.-X.; Xiao, X.; “Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices”, Nonlinearity 20 (2007), 2305–2317.
[176] Reed, M.; Simon, B.; Methods of Modern Mathematical Physics. IV. Analysis of Operators (Academic Press, New York, 1978).
[177] Salerno, M.; “Quantum deformations of the discrete nonlinear Schrödinger equation”, Phys. Rev. A 46 (1992), 6856–6859.
[178] Sánchez, A.; Bishop, A.R.; “Collective coordinates and length-scale competition in spatially inhomogeneous soliton-bearing equations”, SIAM Rev. 40 (1998), 579–615.
[179] Sandstede, B.; “Stability of multiple-pulse solutions”, Trans. Amer. Math. Soc. 350 (1998), 429–472.
[180] Scheel, A.; Van Vleck, E.S.; “Lattice differential equations embedded into reaction–Diffusion systems”, Proc. Roy. Soc. Edinburgh A 139 (2009), 193–207.
[181] Schlag, W.; “Stable manifolds for an orbitally unstable NLS”, Ann. Math. 169 (2009), 139–227.
[182] Schneider, G.; “Validity and limitation of the Newell–Whitehead equation”, Math. Nachr. 176 (1995), 249–263.
[183] Schneider, G.; “The validity of generalized Ginzburg–Landau equations”, Math. Meth. Appl. Sci. 19 (1996), 717–736.
[184] Schneider, G.; “Justification of modulated equations for hyperbolic systems via normal forms”, Nonlin. Diff. Eqs. Appl. 5 (1995), 69–82.
[185] Schneider, G.; Uecker, H.; “Nonlinear coupled mode dynamics in hyperbolic and parabolic periodically structured spatially extended systems”, Asymptot. Anal. 28 (2001), 163–180.
[186] Schneider, G.; Wayne, C.E.; “The long-wave limit for the water wave problem. I. The case of zero surface tension”, Commun. Pure Appl. Math. 53 (2000), 1475–1535.
[187] Schneider, G.; Wayne, C.E.; “The rigorous approximation of long-wavelength capillary–gravity waves”, Arch. Ration. Mech. Anal. 162 (2002), 247–285.
[188] Serkin, V.N.; Hasegawa, A.; Belyaeva, T.L.; “Nonautonomous solitons in external potentials”, Phys. Rev. Lett. 98 (2007), 074102 (4 pp.).
[189] Shatah, J.; Strauss, W.; “Instability of nonlinear bound states”, Comm. Math. Phys. 100 (1985), 173–190.
[190] Shi, H.; Zhang, H.; “Existence of gap solitons in periodic discrete nonlinear Schrödinger equations”, J. Math. Anal. Appl. 361 (2010), 411–419.
[191] Sivan, Y.; Fibich, G.; Efremidis, N.K.; Bar-Ad, S.; “Analytic theory of narrow lattice solitons”, Nonlinearity 21 (2008), 509–536.
[192] Skorobogatiy, M.; Yang, J.; Fundamentals of Photonic Crystal Guiding (Cambridge University Press, Cambridge, 2009).
[193] Soffer, A.; Weinstein, M.I.; “Multichannel nonlinear scattering theory for nonintegrable equations”, Comm. Math. Phys. 133 (1990), 119–146.
[194] Soffer, A.; Weinstein, M.I.; “Multichannel nonlinear scattering theory for nonintegrable equations II: The case of anisotropic potentials and data”, J. Diff. Eqs. 98 (1992), 376–390.
[195] Soffer, A.; Weinstein, M.I.; “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys. 16 (2004), 977–1071.
[196] Speight, J.M.; “Topological discrete kinks”, Nonlinearity 12 (1999), 1373–1387.
[197] de Sterke, C.M.; Sipe, J.E.; “Gap solitons”, Prog. Opt. 33 (1994), 203–259.
[198] Stuart, C.A.; “Bifurcations into spectral gaps”, Bull. Belg. Math. Soc. Simon Stevin, 1995, suppl. (59 pp.).
[199] Sulem, C.; Sulem, P.L.; The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse (Springer, New York, 1999).
[200] Sylvester, J.J.; “A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares”, Philos. Mag. IV (1852), 138–142.
[201] Tao, T.; Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106 (AMS, Providence, RI, 2006).
[202] Tao, T.; “Why are solitons stable?”, Bull. Amer. Math. Soc. 46 (2009), 1–33.
[203] Tovbis, A.; Tsuchiya, M.; Jaffe, C.; “Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Henon map as an example”, Chaos 8 (1998), 665–681.
[204] Tovbis, A.; “On approximation of stable and unstable manifolds and the Stokes phenomenon”, Contemp. Math. 255 (2000), 199–228.
[205] Tovbis, A.; “Breaking homoclinic connections for a singularly perturbed differential equation and the Stokes phenomenon”, Stud. Appl. Math. 104 (2000), 353–386.
[206] Tovbis, A.; Pelinovsky, D.; “Exact conditions for existence of homoclinic orbits in the fifth-order KdV model”, Nonlinearity 19 (2006), 2277–2312.
[207] Vakhitov, M.G.; Kolokolov, A.A.; “Stationary solutions of the wave equation in a medium with nonlinearity saturation”, Radiophys. Quantum Electron. 16 (1973), 783–789.
[208] Vougalter, V.; “On the negative index theorem for the linearized nonlinear Schrödinger problem”, Canad. Math. Bull. 53 (2010), 737–745.
[209] Vougalter, V.; Pelinovsky, D.; “Eigenvalues of zero energy in the linearized NLS problem”, J. Math. Phys. 47 (2006), 062701 (13 pp.).
[210] Weder, R.; “The Wk,p-continuity of the Schrödinger wave operators on the line”, Comm. Math. Phys. 208 (1999), 507–520.
[211] Weinstein, M.I.; “Liapunov stability of ground states of nonlinear dispersive evolution equations”, Commun. Pure Appl. Math. 39 (1986), 51–68.
[212] Weinstein, M.; “Excitation thresholds for nonlinear localized modes on lattices”, Nonlinearity 12 (1999), 673–691.
[213] Yang, J.; “Classification of the solitary waves in coupled nonlinear Schrödinger equations”, Physica D 108 (1997), 92–112.
[214] Yang, J.; Akylas, T.R.; “Continuous families of embedded solitons in the third-order nonlinear Schrödinger equation”, Stud. Appl. Math. 111 (2003), 359–375.
[215] Yang, J.; Pelinovsky, D.E.; “Stable vortex and dipole vector solitons in a saturable nonlinear medium”, Phys. Rev. E 67 (2003), 016608 (12 pp.).
[216] Yang, J.; Lakoba, T.; “Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations”, Stud. Appl. Math. 118 (2007), 153–197.
[217] Yang, J.; Lakoba, T.; “Accelerated imaginary-time evolution methods for computations of solitary waves”, Stud. Appl. Math. 120 (2008), 265–292.
[218] Yau, H.T.; Tsai, T.P.; “Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions”, Commun. Pure Appl. Math. 55 (2002), 1–64.
[219] Yau, H.T.; Tsai, T.P.; “Stable directions for excited states of nonlinear Schrödinger equations”, Comm. Part. Diff. Eqs. 27 (2002), 2363–2402.
[220] Yau, H.T.; Tsai, T.P.; “Relaxation of excited states in nonlinear Schrödinger equations”, Int. Math. Res. Not. 2002 (2002), 1629–1673.
[221] Zelik, S.; Mielke, A.; “Multi-pulse evolution and space-time chaos in dissipative systems”, Mem. Amer. Math. Soc. 198 (2009), 1–97.
[222] Zhang, G.; “Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials”, J. Math. Phys. 50 (2009), 013505 (10 pp.).
[223] Zhou, Z.; Yu, J.; Chen, Y.; “On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity”, Nonlinearity 23 (2010), 1727–1740.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.