Skip to main content Accessibility help
×
  • Cited by 12
  • Gila Sher, University of California, San Diego
Publisher:
Cambridge University Press
Online publication date:
August 2022
Print publication year:
2022
Online ISBN:
9781108981668
Subjects:
Logic, Philosophy

Book description

To understand logic is, first and foremost, to understand logical consequence. This Element provides an in-depth, accessible, up-to-date account of and philosophical insight into the semantic, model-theoretic conception of logical consequence, its Tarskian roots, and its ideas, grounding, and challenges. The topics discussed include: (i) the passage from Tarski's definition of truth (simpliciter) to his definition of logical consequence, (ii) the need for a non-proof-theoretic definition, (iii) the idea of a semantic definition, (iv) the adequacy conditions of preservation of truth, formality, and necessity, (v) the nature, structure, and totality of models, (vi) the logicality problem that threatens the definition of logical consequence (the problem of logical constants), (vii) a general solution to the logicality, formality, and necessity problems/challenges, based on the isomorphism-invariance criterion of logicality, (viii) philosophical background and justification of the isomorphism-invariance criterion, and (ix) major criticisms of the semantic definition and the isomorphism-invariance criterion.

References

Bagaria, J. 2019. “Set Theory.” Stanford Encyclopedia of Philosophy. Zalta, E. N. (ed.). Stanford, CA: The Metaphysics Research Lab.
Barwise, J. 1972. “Absolute Logics and L∞ ω.” Annals of Mathematical Logic 4: 309340.
Barwise, J. 1985. “Model-Theoretic Logics: Background and Aims.” Model-Theoretic Logics. Barwise, J. and Feferman, S. (eds.). New York: Springer-Verlag. pp. 323.
Beall, J. C., and Restall, G.. 2006. Logical Pluralism. Oxford: Oxford University Press.
Bonnay, D. 2008. “Logicality and Invariance.” Bulletin of Symbolic Logic 14: 2968.
Brandom, R. B. 1994. Making It Explicit. Cambridge, MA: Harvard University Press.
Chihara, C. 1998. “Tarski’s Thesis and the Ontology of Mathematics.” The Philosophy of Mathematics Today. Schirn, M. (ed.). Oxford: Oxford University Press. pp. 157172.
Dummett, M. 1978. Truth and Other Enigmas. Cambridge, MA: Harvard University Press.
Dutilh Novaes, C. 2014. “The Undergeneration of Permutation Invariance as a Criterion for Logicality.” Erkenntnis 79: 8197.
Enderton, H. B. 2001. A Mathematical Introduction to Logic. San Diego, CA: Hartcourt.
Etchemendy, J. 1990. The Concept of Logical Consequence. Cambridge, MA: Harvard University Press.
Etchemendy, J. 2008. “Reflections on Consequence.” New Essays on Tarski and Philosophy. Patterson, D. (ed.). Oxford: Oxford University Press. pp. 263299.
Feferman, S. 1999. “Logic, Logics, and Logicism.” Notre Dame Journal of Formal Logic 40: 3154.
Feferman, S. 2000. “Mathematical Intuition vs. Mathematical Monsters.” Synthese 125: 317322.
Feferman, S. 2010. “Set-theoretical Invariance Criteria for Logicality.” Notre Dame Journal of Formal Logic 51: 320.
Field, H. 2009. “What Is the Normative Role of Logic?Proceedings of the Aristotelian Society Suppl. 83: 251268.
Field, H. 2015. “What Is Logical Validity.” Foundations of Logical Consequence. Caret, C. R and Hjortland (eds.), O. T. Oxford: Oxford University Press. pp. 3370.
Fitting, M. 2015. “Intensional Logic.” Stanford Encyclopedia of Philosophy. Zalta, E. N. (ed.). Stanford, CA: The Metaphysics Research Lab.
Frege, G. 1967 (1879). “Begriffsschrift.” From Frege to Gödel. van Heijenoort, J. (ed.). Cambridge, MA: Harvard University Press. pp. 582.
Frege, G. 1893. The Basic Laws of Arithmetic. Vol. 1. Berkeley, CA: University of California Press, English translation 1964.
Frege, G. 1918. “Thoughts.” Logical Investigations. Oxford: Basil Blackwell, English translation 1977. pp. 130.
Friedman, M. 2001. Dynamics of Reason. Stanford, CA: CSLI.
García-Carpintero, M. 1993. “The Grounds of the Model-theoretic Account of the Logical Properties.” Notre Dame Journal of Formal Logic 34: 107131.
Gödel, K. 1986 (1929). “On the Completeness of the Calculus of Logic.” Collected Works. Vol. 1. Feferman, S., Dawson, J. W. Jr., Kleene, S. C., et al. (eds.). New York: Oxford University Press. pp. 61101.
Gödel, K. 1986 (1931). “On Formally Undecidable Propositions of Principia Mathematica and Related Systems I.” Collected Works. Vol. 1. Feferman, S., Dawson, J. D. Jr., Kleene, S. C., et al. (eds.). New York: Oxford University Press. pp. 145195.
Gómez-Torrente, M. 1996. “Tarski on Logical Consequence.” Notre Dame Journal of Formal Logic 37: 125151.
Gómez-Torrente, M. 2002. “The Problem of Logical Constants.” Bulletin of Symbolic Logic 8: 137.
Griffiths, O., and Paseau, A. C.. 2016. “Isomorphism Invariance and Overgeneration.” Bulletin of Symbolic Logic 22: 482503.
Griffiths, O., and Paseau, A. C. 2022. One True Logic. Oxford: Oxford University Press.
Hanson, W. H. 1997. “The Concept of Logical Consequence.” Philosophical Review 106: 365409.
Harman, G. 1986. Change in View. Cambridge, MA: The MIT Press.
Hilbert, D. 1950 (1899). The Foundations of Geometry. La Salle, IL: Open Court.
Hilbert, D., and Ackerman, W.. 1950 (1928). Principles of Mathematical Logic. New York: Chelsea Publishing.
Hodges, W. 1986. “Truth in a Structure.” Proceedings of the Aristotelian Society 86: 135151.
Jacquette, D. 1994. “Tarski’s Quantificational Semantics and Meinongian Object Theory Domains.” Pacific Philosophical Quarterly 75: 88107.
Kant, I. 1929 (1781/1787). Critique of Pure Reason. London: Macmillan.
Keisler, H. J. 1970. “Logic with the Quantifier ‘There Exist Uncountably Many.’” Annals of Mathematical Logic 1: 1–93.
Klein, F. 1872. “A Comparative Review of Recent Researches in Geometry.” PhD thesis. University of Bonn.
Kreisel, G. 1967. “Informal Rigor and Completeness Proofs.” Problems in the Philosophy of Mathematics. Lakatos, I. (ed.). Amsterdam: North-Holland. pp. 138186.
Kripke, S. 1970/1980. Naming and Necessity. Cambridge, MA: Harvard University Press.
Levy, A. 1960. “Axiom Schemata of Strong Infinity in Axiomatic Set Theory.” Pacific Journal of Mathematics 10: 223238.
Lindström, P. 1966. “First Order Predicate Logic with Generalized Quantifiers.” Theoria 32: 186195.
Lindström, P. 1969. “On Extensions of Elementary Logic.” Theoria 35: 111.
Löwenheim, L. 1967 (1915). “On Possibilities in the Calculus of Relatives.” From Frege to Gödel. van Heijenoort, J. (ed.). Cambridge, MA: Harvard University Press. pp. 228251.
MacFarlane, J. 2000. “What Does It Mean to Say That Logic Is Formal?” PhD thesis. University of Pittsburgh.
MacFarlane, J. 2015. “Logical Constants.” Stanford Encyclopedia of Philosophy. Zalta, E. N. (ed.). Stanford, CA: The Metaphysics Research Lab.
Maddy, P. 2007. Second Philosophy. Oxford: Oxford University Press.
May, R. 1985. Logical Form: Its Structure and Derivation. Cambridge, MA: The MIT Press.
McCarthy, T. 1981. “The Idea of a Logical Constant.” Journal of Philosophy 78: 499523.
McGee, V. 1992a. “Review of Etchemendy, The Concept of Logical Consequence.” Journal of Symbolic Logic 57: 254255.
McGee, V. 1992b. “Two Problems with Tarski’s Theory of Consequence.” Proceedings of the Aristotelian Society 92: 273292.
McGee, V. 1996. “Logical Operations.” Journal of Philosophical Logic 25: 567580.
McGee, V. 2004. “Tarski’s Staggering Existential Assumptions.” Synthese 142: 371387.
Montague, R. 1974. “The Proper Treatment of Quantification in Ordinary English.” Formal Philosophy: Selected Papers. Thomason, R. H. (ed.). New Haven, CT: Yale University Press. pp. 247270.
Mostowski, A. 1957. “On a Generalization of Quantifiers.” Fundamenta Mathematicae 44: 1236.
Parsons, C. 1974. “Sets and Classes.” Noûs 8: 112.
Peregrin, J. 2014. Inferentialism: Why Rules Matter. London: Palgrave-Macmillan.
Peters, S., and Westerståhl, D.. 2006. Quantifiers in Language and Logic. Oxford: Oxford University Press.
Posy, C. 2020. Mathematical Intuitionism. Cambridge: Cambridge University Press.
Priest, G. 1995. “Etchemendy and Logical Consequence.” Canadian Journal of Philosophy 25: 283292.
Quine, W. V. 1970/1986. Philosophy of Logic. Cambridge, MA: Harvard University Press.
Ray, G. 1996. “Logical Consequence: A Defense of Tarski.” Journal of Philosophical Logic 25: 303313.
Rescher, N. 1962. “Plurality-Quantification.” Abstract. Journal of Symbolic Logic 27: 373374.
Resnik, M. D. 1981. “Mathematics as a Science of Patterns: Ontology and Reference.” Noûs 15: 529550.
Russell, B. 1971 (1919). Introduction to Mathematical Philosophy. New York: Simon & Schuster.
Russell, G. 2018. “Logical Nihilism: Could There Be No Logic?Philosophical Issues 28: 308324.
Russell, G. 2020. “Logic Isn’t Normative.” Inquiry 63: 371388.
Sagi, G. 2015. “The Modal and Epistemic Arguments against the Invariance Criterion for Logical Terms.” Journal of Philosophy 112: 159167.
Schurz, G. 1994. “Logical Truth: Comments on Etchemendy’s Critique of Tarski.” Sixty Years of Tarski’s Definition of Truth. Twardowski, B and Woleński, J (eds.). Kraków: Philed. pp. 7895.
Shapiro, L. 2011. “Deflating Logical Consequence.” Philosophical Quarterly 61: 320342.
Shapiro, S. 1997. Philosophy of Mathematics. Oxford: Oxford University Press.
Shapiro, S. 1998. “Logical Consequence: Models and Reality.” The Philosophy of Mathematics Today. Schirn, M. (ed.). Oxford: Oxford University Press. pp. 131156.
Shapiro, S. 2014. Varieties of Logic. Oxford: Oxford University Press.
Sher, G. 1991. The Bounds of Logic. Cambridge, MA: The MIT Press.
Sher, G. 1996. “Did Tarski Commit ‘Tarski’s Fallacy’?Journal of Symbolic Logic 61: 653686.
Sher, G. 2001. “The Formal-structural View of Logical Consequence.” Philosophical Review 110: 241261.
Sher, G. 2003. “A Characterization of Logical Constants Is Possible.” Theoria 18: 189197.
Sher, G. 2008. “Tarski’s Thesis.” New Essays on Tarski and Philosophy. Patterson, D (ed.). Oxford: Oxford University Press. pp. 300339.
Sher, G. 2016. Epistemic Friction: An Essay on Knowledge, Truth, and Logic. Oxford: Oxford University Press.
Sher, G. 2021. “Invariance and Logicality in Perspective.The Semantic Conception of Logic: Essays on Consequence, Invariance, and Meaning. Sagi, G. and Woods, J. (eds.). Cambridge: Cambridge University Press.
Skolem, T. 1967 (1920). “A Simplified Proof of a Theorem by L. Löwenheim and Generalizations of the Theorem.” From Frege to Gödel. van Heijenoort, J. (ed.). Cambridge, MA: Harvard University Press. pp. 252263.
Speitel, S. 2020. Logical Constants between Inference and Reference: An Essay in the Philosophy of Logic. PhD thesis. University of California–San Diego.
Steinberger, F. 2019. “Three Ways in Which Logic Might Be Normative.” Journal of Philosophy 116: 531.
Tarski, A. 1966/1986. “What Are Logical Notions?History and Philosophy of Logic 7: 143154.
Tarski, A. 1983 (1933). “The Concept of Truth in Formalized Languages.” Logic, Semantics, Metamathematics. J. Corcoran (ed.). Indianapolis, IN: Hackett. pp. 152278.
Tarski, A. 1983 (1936a). “On the Concept of Logical Consequence.” Logic, Semantics, Metamathematics. J. Corcoran (ed.). Indianapolis, IN: Hackett. pp. 409420.
Tarski, A. 1983 [1936b]. “The Establishment of Scientific Semantics.” Logic, Semantics, Metamathematics. J. Corcoran (ed.). Indianapolis, IN: Hackett. pp. 401408.
Tarski, A., and Vaught, R. L.. 1957. “Arithmetical Extensions of Relational Systems.Compositio Mathematica 13: 81102.
Väänänen, J. 2019. “Second-order and Higher-order Logic.” Stanford Encyclopedia of Philosophy. Zalta, E. N. (ed.). Stanford, CA: The Metaphysics Research Lab.
Varzi, A. C. 2002. “On Logical Relativity.” Philosophical Issues 12: 197219.
Vaught, R. L. 1974. “Model Theory before 1945.” Henkin, L., Addison, J., Chang, C.C., et al. (eds.). Proceedings of the Tarski Symposium. Providence, RI:American Mathematical Society. pp. 153172.
Whitehead, A. N., and Russell, B.. 1910–1913/1925–1927. Principia Mathematica. Vols. I–III. Cambridge: Cambridge University Press.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.